当前位置:文档之家› R25=12k±1% B25-50=3600NTC热敏电阻RT表

R25=12k±1% B25-50=3600NTC热敏电阻RT表

R25=12k±1% B25-50=3600NTC热敏电阻RT表
R25=12k±1% B25-50=3600NTC热敏电阻RT表

人性科技感知温度

TEMPERATURE VS RESISTANCE TABLE

Resistance 12k Ohms at 25deg. C

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

NTC热敏电阻参数及其对照表

10K NTC热敏电阻参数及其对照表常温下R25℃ = 10K B(25-85)=3435

10K NTC热敏电阻负温度系数(NTC电阻随着温度的升高而降低)温度传感器探头是基于一个10K的±1% @ 25oC传感器-即电阻值在25oC 是10K,一般用途的温度测量,NTC温度传感器可以在很宽的温度范围内工作(-40 + 125°C)他们是稳定的,年/阻值漂移小于1PPM。10K NTC热敏电阻产品尺寸图: 10K 3435NTC热敏电阻特点: 1:MF52系列产品为径向绝缘引线,使用时无需引脚绝缘处理 2:产品稳定性好,可靠性高,年漂移率小于1PPM 3:热敏电阻阻值范围宽:1KΩ~1000KΩ 4:阻值及B值精度高,一致性好 6:体积小热感应时间快灵敏度高,便于自动化安装 7:使用温度范围-40℃~+125℃ R25=10K B=3435NTC热敏电阻应用范围: ?充电器、温湿度计、美容仪器、电源、电子玩具 ?气体分析计手机电池、NB电池、电动车电池、医疗仪器 ?太阳能热水器、冷藏库、汽车、複印机、传真机 ?电子体温计、电子炉台、电子锅、电热水瓶

?即热式热水器、瓦斯热水器、电毯、空调 ?3C家电产品、石油暖炉、打印机 103F3435NTC热敏电阻机械性能标准: MF52产品型号说明 MF 52 103 F 3435 ①② ③ ④ ⑤ ①MF ——负温度系数(NTC)热敏电阻编号。 ②52——树脂封装小黑头热敏电阻(包括漆包线、小皮线) ③103 ——热敏电阻的标称阻值(10K欧),表示该电阻标称阻值为:10×103(Ω)。 ④F——电阻值的误差(精度)为:S=±0.5% F=±1%,G=±2%,H=±3%,J=±5% ⑤3435——电阻的热敏指数(材料系数)B值为:343×10(K) R25=10K B=3435NTC热敏电阻阻温特性R/T表:

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

热敏电阻温度-阻值表

柜机、分体、窗机、TMC、变频空调(除压缩机排气处)热敏电阻 温度/阻值表(R25=5KΩB25/50=3470K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -30.0 63.7306 14.0 7.7643 58.0 1.5636 -29.0 60.3223 15.0 7.4506 59.0 1.5142 -28.0 57.1180 16.0 7.1513 60.0 1.4666 -27.0 54.1043 17.0 6.8658 61.0 1.4206 -26.0 51.2686 18.0 6.5934 62.0 1.3763 -25.0 48.5994 19.0 6.3333 63.0 1.3336 -24.0 46.0860 20.0 6.0850 64.0 1.2923 -23.0 43.7182 21.0 5.8479 65.0 1.2526 -22.0 41.4868 22.0 5.6213 66.0 1.2142 -21.0 39.3832 23.0 5.4048 67.0 1.1771 -20.0 37.3992 24.0 5.1978 68.0 1.1413 -19.0 35.5274 25.0 5.0000 69.0 1.1068 -18.0 33.7607 26.0 4.8108 70.0 1.0734 -17.0 32.0927 27.0 4.6298 71.0 1.0412 -16.0 30.5172 28.0 4.4566 72.0 1.0100 -15.0 29.0286 29.0 4.2909 73.0 0.9800 -14.0 27.6216 30.0 4.1323 74.0 0.9509 -13.0 26.2913 31.0 3.9804 75.0 0.9228 -12.0 25.0330 32.0 3.8349 76.0 0.8957 -11.0 23.8424 33.0 3.6955 77.0 0.8695 -10.0 22.7155 34.0 3.5620 78.0 0.8441 -9.0 21.6486 35.0 3.4340 79.0 0.8196 -8.0 20.6380 36.0 3.3113 80.0 0.7959 -7.0 19.6806 37.0 3.1937 81.0 0.7730 -6.0 18.7732 38.0 3.0809 82.0 0.7508 -5.0 17.9129 39.0 2.9727 83.0 0.7293 -4.0 17.0970 40.0 2.8688 84.0 0.7086 -3.0 16.3230 41.0 2.7692 85.0 0.6885 -2.0 15.5886 42.0 2.6735 86.0 0.6690 -1.0 14.8913 43.0 2.5816 87.0 0.6502 0.0 14.2293 44.0 2.4934 88.0 0.6320 1.0 13.6017 45.0 2.4087 89.0 0.6144 2.0 1 3.0057 46.0 2.3273 90.0 0.5973 3.0 12.4393 47.0 2.2491 91.0 0.5808 4.0 11.9011 48.0 2.1739 92.0 0.5647 5.0 11.3894 49.0 2.1016 93.0 0.5492 6.0 10.9028 50.0 2.0321 94.0 0.5342 7.0 10.4399 51.0 1.9656 95.0 0.5196 8.0 9.9995 52.0 1.9015 96.0 0.5055 9.0 9.5802 53.0 1.8399 97.0 0.4919 10.0 9.1810 54.0 1.7804 98.0 0.4786 11.0 8.8008 55.0 1.7232 99.0 0.4658 12.0 8.4385 56.0 1.6680 100.0 0.4533 13.0 8.0934 57.0 1.6149 借助上表,用万用表测量热敏电阻的阻值,比较实际温度,可以判断热敏电阻的好坏,也可以通 过测量热敏电阻的阻值来简单测量温度。 变频空调压缩机排气处热敏电阻 温度/阻值表(R25=50.000KΩB25/50=3950K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -40.0 2009.2 0.0 168.10 40.0 26.507 80.0 6.3515 -39.0 1869.0 1.0 159.46 41.0 25.464 81.0 6.1541

NTC10K_热敏电阻温度阻值对应表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0 1.7944 -11.5 59.3908 29.0 8.4063 69.5 1.7636 -11.0 57.8038 29.5 8.2281 70.0 1.7334 -10.5 56.2639 30.0 8.0541 70.5 1.7037 -10.0 54.7694 30.5 7.8842 71.0 1.6747 -9.5 53.3189 31.0 7.7184 71.5 1.6462 -9.0 51.9111 31.5 7.5565 72.0 1.6183 -8.5 50.5445 32.0 7.3985 72.5 1.5910 -8.0 49.2178 32.5 7.2442 73.0 1.5641 -7.5 47.9298 33.0 7.0935 73.5 1.5378 -7.0 46.6792 33.5 6.9463 74.0 1.5120 -6.5 45.4649 34.0 6.8026 74.5 1.4867 -6.0 44.2856 34.5 6.6622 75.0 1.4619 -5.5 43.1403 35.0 6.5251 75.5 1.4375 -5.0 42.0279 35.5 6.3912 76.0 1.4136 -4.5 40.9474 36.0 6.2604 76.5 1.3902 -4.0 39.8978 36.5 6.1326 77.0 1.3672 -3.5 38.8780 37.0 6.0077 77.5 1.3447 -3.0 37.8873 37.5 5.8858 78.0 1.3225 -2.5 36.9246 38.0 5.7666 78.5 1.3008 -2.0 35.9892 38.5 5.6501 79.0 1.2795 -1.5 35.0801 39.0 5.5363 79.5 1.2586 -1.0 34.1965 39.5 5.4251 80.0 1.2381 -0.5 33.3378 40.0 5.3164 80.5 1.2180 0.0 32.5030 40.5 5.2102 81.0 1.1983

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

NTC热敏电阻(25℃-100K)温度

T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max -30 1671.2 1721.2 1771.2 15 157.05 159.19 161.33 -29 1569.5 1615.9 1662.2 16 150.16 152.15 154.15 -28 1474.8 1517.8 1560.8 17 143.53 145.38 147.24 -27 1387.0 1426.8 1466.7 18 137.13 138.86 140.58 -26 1305.8 1342.8 1379.8 19 130.96 132.56 134.16 -25 1230.9 1265.3 1299.7 20 125.00 126.48 127.96 -24 1162.1 1194.1 1226.1 21 119.27 120.64 122.01 -23 1098.9 1128.7 1158.5 22 113.78 115.05 116.32 -22 1040.9 1068.8 1096.6 23 108.59 109.73 110.87 -21 987.82 1013.9 1039.9 24 103.63 104.71 105.79 -20 939.21 963.60 987.99 25 99.000 100.00 101.00 -19 878.25 900.70 923.16 26 94.648 95.629 96.609 -18 825.09 845.86 866.64 27 90.654 91.617 92.580 -17 778.08 797.36 816.64 28 87.037 87.985 88.932 -16 735.91 753.85 771.80 29 83.818 84.752 85.687 -15 697.56 714.30 731.04 30 81.015 81.940 82.865 -14 662.26 677.89 693.52 31 77.811 78.720 79.629 -13 629.37 643.98 658.58 32 74.679 75.571 76.463 -12 598.42 612.08 625.73 33 71.612 72.486 73.361 -11 569.05 581.81 594.57 34 68.611 69.467 70.323 -10 540.98 552.90 564.82 35 65.683 66.520 67.357 -9 514.01 525.13 536.26 36 62.837 63.654 64.471 -8 488.00 498.37 508.74 37 60.084 60.882 61.679 -7 462.85 472.51 482.16 38 57.438 58.216 58.994 -6 438.52 447.49 456.47 39 54.913 55.671 56.429 -5 414.97 423.30 431.63 40 52.521 53.260 53.999 -4 392.32 400.04 407.76 41 50.276 50.997 51.718 -3 371.74 378.91 386.08 42 48.190 48.894 49.598 -2 352.88 359.56 366.23 43 46.275 46.963 47.651 -1 335.49 341.70 347.91 44 44.541 45.215 45.889 0 318.95 325.10 331.25 45 42.998 43.660 44.322 1 303.83 309.58 315.33 46 41.279 41.926 42.573 2 289.63 294.99 300.35 47 39.656 40.288 40.920 3 276.20 281.20 286.21 48 38.122 38.740 39.357 4 263.46 268.13 272.81 49 36.669 37.273 37.877 5 251.34 255.70 260.06 50 35.289 35.880 36.471 6 239.77 243.84 247.92 51 33.976 34.554 35.132 7 228.72 232.52 236.32 52 32.724 33.289 33.854 8 218.14 221.68 225.23 53 31.524 32.077 32.630 9 208.02 211.32 214.62 54 30.372 30.913 31.454 10 198.33 201.40 204.47 55 29.261 29.790 30.319 11 188.70 191.55 194.40 56 28.186 28.703 29.220 12 179.94 182.59 185.25 57 27.142 27.647 28.152 13 171.84 174.31 176.78 58 26.124 26.617 27.111 14 164.25 166.55 168.85 59 25.128 25.610 26.091 R ---- T 分 度 表 R 25℃ =100.00KΩ±1% B 25/50: 3950 本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2009,版权所有,仅供试用。

热敏电阻数字温度计的设计和制作

WORD格式可编辑 评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器: 惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电

炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或 R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加 的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样 作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升 会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

半导体热敏电阻

航:OLS > 实验首页> 综合设计性物理实验> 实验三温度传感器特性研究 .::实验预习::. 【实验目的】 1.了解几种常用的接触式温度传感器的原理及其应用范围; 2.测量这些温度传感器的特征物理量随温度的变化曲线. 【实验原理】 1.铂电阻 导体的电阻值随温度变化而改变,通过测量其电阻值推算出被测环境的温度,利用此原理构成的传感器就是热电阻温度传感器.能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定.目前,在工业中应用最广的材料是铂和铜. 铂电阻与温度之间的关系,在0~630.74 o C范围内可用下式表示 (1) 在-200~0 o C的温度范围内为 (2)

式中,R0和RT分别为在0 o C和温度T时铂电阻的电阻值,A、B、C为温度系数,由实验确定,A = 3.90802×10-3o C-1,B = -5.80195×10-7o C-2,C = -4.27350×10-12o C-4.由式(1)和式(2)可见,要确定电阻RT 与温度T的关系,首先要确定R0的数值,R0值不同时,RT 与T的关系不同.目前国内统一设计的一般工业用标准铂电阻R0值有100Ω和500Ω两种,并将电阻值RT 与温度T的相应关系统一列成表格,称其为铂电阻的分度表,分度号分别用Pt100和Pt500表示. 铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033 K~961.78 o C标准温度计来使用.铂电阻广泛用于-200~850 o C范围内的温度测量,工业中通常在600 o C以下. 2.半导体热敏电阻 热敏电阻是其电阻值随温度显著变化的一种热敏元件.热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC)热敏电阻,正温度系数(PTC)热敏电阻和临界温度电阻器(CTR).PTC和CTR型热敏电阻在某些温度范围内,其电阻值会产生急剧变化,适用于某些狭窄温度范围内一些特殊应用,而NTC热敏电阻可用于较宽温度范围的测量.热敏电阻的电阻-温度特性曲线如图1所示.

热敏电阻温度对照表

NTC熱敏電阻R/T對照表型號: mfh103-3950 T(℃)R(KΩ)T(℃)R(KΩ)T(℃) R(KΩ) -20.0 95.337020.5 12.213861.0 2.3820 -19.5 92.655921.0 11.942561.5 2.3394 -19.0 90.058021.5 11.677862.0 2.2977 -18.5 87.540622.0 11.419862.5 2.2568 -18.0 85.100922.5 11.168163.0 2.2167 -17.5 82.736423.0 10.922763.5 2.1775 -17.0 80.444523.5 10.683464.0 2.1390 -16.5 78.222724.0 10.449964.5 2.1013 -16.0 76.068924.5 10.222265.0 2.0644 -15.5 73.980625.0 10.000065.5 2.0282 -15.0 71.955825.5 9.783366.0 1.9928 -14.5 69.992326.0 9.571866.5 1.9580 -14.0 68.088126.5 9.365567.0 1.9240 -13.5 66.241227.0 9.164267.5 1.8906 -13.0 64.449927.5 8.967768.0 1.8579 -12.5 62.712228.0 8.776068.5 1.8258 -12.0 61.026428.5 8.588969.0 1.7944 -11.5 59.390829.0 8.406369.5 1.7636 -11.0 57.803829.5 8.228170.0 1.7334 -10.5 56.263930.0 8.054170.5 1.7037 -10.0 54.769430.5 7.884271.0 1.6747 -9.5 53.318931.0 7.718471.5 1.6462 -9.0 51.911131.5 7.556572.0 1.6183 -8.5 50.544532.0 7.398572.5 1.5910 -8.0 49.217832.5 7.244273.0 1.5641 -7.5 47.929833.0 7.093573.5 1.5378 -7.0 46.679233.5 6.946374.0 1.5120 -6.5 45.464934.0 6.802674.5 1.4867 -6.0 44.285634.5 6.662275.0 1.4619 -5.5 43.140335.0 6.525175.5 1.4375 -5.0 42.027935.5 6.391276.0 1.4136 -4.5 40.947436.0 6.260476.5 1.3902 -4.0 39.897836.5 6.132677.0 1.3672 -3.5 38.878037.0 6.007777.5 1.3447 -3.0 37.887337.5 5.885878.0 1.3225

温度传感器原理及热敏电阻NTC温度常数β值计算温度

温度传感器原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所调用标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶和温度传感器热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化温度传感器热电偶为我国统一设计型温度传感器热电偶。 (2)温度传感器热电偶的结构形式为了保证温度传感器热电偶可靠、稳定地工作,对它的结构要求如下: ①组成温度传感器热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与温度传感器热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.温度传感器热电偶冷端的温度补偿 由于温度传感器热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都

热敏电阻及各种温度传感器资料

温度传感器 选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。 在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。(5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。 容器中的流体温度一般用热电偶或热电阻探头测量,但当整个系统的使用寿命比探头的预计使用寿命长得多时,或者预计会相当频繁地拆卸出探头以校准或维修却不能在容器上开口时,可在容器壁上安装永久性的热电偶套管。用热电偶套管会显著地延长测量的时间常数。当温度变化很慢而且热导误差很小时,热电偶套管不会影响测量的精确度,但如果温度变化很迅速,敏感元件跟踪不上温度的迅速变化,而且导热误差又可能增加时,测量精确度就会受到影响。因此要权衡考虑可维修性和测量精度这两个因素。 热电偶或热电阻探头的全部材料都应与可能和它们接触的流体适应。使用裸露元件探头时,必须考虑与所测流体接触的各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)的适应性,使用热电偶套管时,只需要考虑套管的材料。 电阻式热敏元件在浸入液体及多数气体时,通常是密封的,至少要有涂层,裸露的电阻元件不能浸入导电或污染的流体中,当需要其快速响应时,可将它们用于干燥的空气和有限的几种气体及某些液体中。电阻元件如用在停滞的或慢速流动的流体中,通常需有某种壳体罩住以进行机械保护。 当管子、导管或容器不能开口或禁止开口,因而不能使用探头或热电偶套管时,可通过在外壁钳夹或固定一个表面温度传感器的方法进和测量。为了确保合理的测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,而且必须通过传感器的适当设计与安装使壁对敏感元件的热传导达到到最佳状态。 所测的固体材料可以是金属的或非金属的,任何类型的表面温度传感器都会在某种程度上改变被测物表面或表面下层的材料特性。因此,必须对传感器及其安装方法进行适当的选择以便将这种干扰减到最小程度。理想的传感器应该完全用与所测固体相同的材料制造并与材料形成一体,这样测量点或其周围的结构特征就不会以任何方式改变。可用的这类传感器有各种各样,其中包括电阻(薄膜热电阻、温度传感器)型,也包括薄膜和细导线型的热电偶。用可埋入的小传感器或带螺纹的镶嵌件进行表面玉的温度测量,应使埋入的传咸器或镶嵌件的外缘与所测材料的外表面平齐。镶嵌件的材料应与所测的材料相同,至少要非常相似。使用垫圈式传感器时,必须注意确保垫圈所能达到的温度尽可能接近欲测温度。

相关主题
文本预览
相关文档 最新文档