当前位置:文档之家› 离散数学(刘任任版)习题8

离散数学(刘任任版)习题8

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

信息安全课程表(武汉大)

武大信息安全专业课程简介(一)(2007-05-27 13:18:33) 武大信息安全专业课程简介(一)(2007-05-27 13:18:33) 武大信息安全专业课程简介(一)(2007-05-27 13:18:33) 武大信息安全专业课程简介(一) 2006-12-27 13:12 课程名称(中、英文) 计算机导论 Introduction to Computer 7、课程简介 主要讲授计算机科学与技术学科体系、课程体系、知识结构(包括计算机软件与理论、计算机硬件与网络、计算机应用与信息技术等)、计算机法律、法规和知识产权,计算机学生的择业与职业道德等内容。使学生对所学专业及后续课程的学习有一个整体性、概括性的了解,树立专业学习的信心和自豪感,为今后的学习打下良好的基础。 11、参考书 1)Roberta Baber, Marilyn Meyer,《计算机导论》,汪嘉Min译,清华大学出版社,2000。 2 ) Tony Greening 主编,《21世纪计算机科学教育》,麦中凡等译,高等教育出版社,2001。 3)姚爱国等,《计算机导论》,武汉大学出版社,2003 4) 黄国兴,陶树平,丁岳伟,《计算机导论》,清华大学出版社,2004。 2、课程名称(中、英文) 计算机应用基础

An Introduction to Computer 7、课程简介 本课程是计算机科学与技术、信息安全专业的专业基础必修课。目的是使学生掌握必须的计算机基础知识与基本技能,为后续专业基础和专业课程的学习打下良好的基础。 10、指定教材 《计算机导论》,姚爱国、杜瑞颖、谭成予等编著,武汉大学出版社,2003年。 2、课程名称(中、英文) 电路与电子技术 Circuit and Electrical Technology 7、课程简介 本课程是计算机科学与技术、信息安全专业的专业基础必修课,是学生学习专业知识和从事工程技术工作的理论基础。通过对该课程的学习,让学生掌握各种电路尤其是电路的组成及基本分析方法,为系统学习专业基础和专业知识打下坚实的基础。 10、参考书目 《电路原理》,江缉光主编,清华大学出版社。 《电路原理》,范承志等编,机械工业出版社。 《模拟电子技术基础》,童诗白等主编,清华大学出版社。

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案 一、 填空 10% (每小题 2分) 1、 若P ,Q 为二命题,Q P ?真值为1,当且仅当 。 2、 对公式),()),(),((y x xR z x zQ y x yP ?∨?∧?中自由变元进行代入的 公 式 为 。 3、 )) (()(x xG x xF ??∧?的 前 束 范 式为 。 4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的, 则 被称为全称量词消去规则,记为US 。 5、 与非门的逻辑网络为 。 二、 选择 30% (每小题 3分) 1、 下列各符号串,不是合式公式的有( )。 A 、R Q P ?∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨?))((。 2、 下列语句是命题的有( )。 A 、2是素数; B 、x+5 > 6; C 、地球外的星球上也有人; D 、这朵花多好看呀!。 3、 下列公式是重言式的有( )。 A 、)(Q P ??; B 、Q Q P →∧)(; C 、P P Q ∧→?)(; D 、P Q P ?→)( 4、 下列问题成立的有( )。 A 、 若C B C A ∨?∨,则B A ?; B 、若C B C A ∧?∧,则B A ?; C 、若B A ???,则B A ?; D 、若B A ?,则B A ???。 5、 命题逻辑演绎的CP 规则为( )。 A 、 在推演过程中可随便使用前提; B 、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果; C 、如果要演绎出的公式为C B →形式,那么将B 作为前提,设法演绎出C ;

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

信息安全课程表(武大)

武大信息安全专业课程简介(一) 课程名称(中、英文) 计算机导论Introduction to Computer 1、课程简介 主要讲授计算机科学与技术学科体系、课程体系、知识结构(包括计算机软件与理论、计算机硬件与网络、计算机应用与信息技术等)、计算机法律、法规和知识产权,计算机学生的择业与职业道德等内容。使学生对所学专业及后续课程的学习有一个整体性、概括性的了解,树立专业学习的信心和自豪感,为今后的学习打下良好的基础。 2、参考书 1)Roberta Baber, Marilyn Meyer,《计算机导论》,汪嘉Min译,清华大学出版社,2000。 2 ) Tony Greening 主编,《21世纪计算机科学教育》,麦中凡等译,高等教育出版社,2001。3)姚爱国等,《计算机导论》,武汉大学出版社,2003 4) 黄国兴,陶树平,丁岳伟,《计算机导论》,清华大学出版社,2004。 计算机应用基础An Introduction to Computer 1、课程简介 本课程是计算机科学与技术、信息安全专业的专业基础必修课。目的是使学生掌握必须的计算机基础知识与基本技能,为后续专业基础和专业课程的学习打下良好的基础。 2、指定教材 《计算机导论》,姚爱国、杜瑞颖、谭成予等编著,武汉大学出版社,2003年。 电路与电子技术Circuit and Electrical Technology 1、课程简介 本课程是计算机科学与技术、信息安全专业的专业基础必修课,是学生学习专业知识和从事工程技术工作的理论基础。通过对该课程的学习,让学生掌握各种电路尤其是电路的组成及基本分析方法,为系统学习专业基础和专业知识打下坚实的基础。 2、参考书目 《电路原理》,江缉光主编,清华大学出版社。 《电路原理》,范承志等编,机械工业出版社。 《模拟电子技术基础》,童诗白等主编,清华大学出版社。 《电子技术基础》,康华光主编,高等教育出版社。 数字逻辑Digital Logic 1、课程简介 本课程是计算机科学与技术、信息安全专业的专业基础必修课。目的是使学生了解逻辑器件与数字逻辑电路的基本工作原理,能灵活运用逻辑代数、卡诺图、状态理论来研究和分析由逻辑器件构成的数字逻辑电路,掌握计算机应用系统中基本逻辑部件的分析与设计方法,并能熟练选择和使用基本逻辑器件及常用功能器件。本课程是一门实验性较强的课程。 2、指定教材 《电子技术基础》数字部分(第四版),华中理工大学电子学教研室编,高等教育出版 3、参考书目 《逻辑设计》(第二版),毛法尧、欧阳星明、任宏萍编著,华中理工大学出版社。 《数字逻辑与数字系统》,白中英、岳怡、郑岩编,科学出版社,1998。 《数字电子技术基础》(第四版),阎石主编,高等教育出版社。 《数字逻辑》,周南良编,国防科技大学出版社,1992。 计算机组成原理Principles of Computer Construction 本课程是计算机科学与技术、信息安全专业的专业基础必修课。本课程的学习将使学生了解

离散数学习题

第一章习题 1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。(1)2是无理数。 (2)5能被2整除。 (3)现在开会吗? (4)x+5>0 (5)这朵花真是好看! (6)2是素数当且仅当三角形有三条边。 (7)雪是黑色的当且仅当太阳是从东方升起。 (8)2000年10月1日天气晴好。 (9)太阳系以外的星球上有生物。 (10)小李在宿舍里。 (11)全体起立。 (12)4是2的倍数或是3的倍数。 (13)4是偶数且是奇数。 (14)李明和王华是同学。 (15)蓝色和黄色可以调配成绿色。 1..2 将上题中的命题符号化,并讨论他们的真值。 1.3判断下列各命题的真值。 (1)若2+2=4,则3+3=6; (2)若2+2=4,则3+3≠6; (3)若2+2≠=4,则3+3=6; (4)若2+2≠=4,则3+3≠=6; (5)2+2=4,当且仅当3+3=6; (6)2+2=4,当且仅当3+3≠6; (7)2+2≠4,当且仅当3+3=6; (8)2+2≠4,当且仅当3+3≠6; 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号; (2)如果今天是1号,则明天是3号; 1.5将下列命题符号化。 (1)2是偶数不是素数; (2)小王不但聪明而且用功; (3)虽然天气冷。老王还是来了; (4)他一边吃饭,一边看电视; (5)如果天下大雨,他就乘公交汽车来; (6)只有天下大雨,他才乘公交汽车来; (7)除非天下大雨,否则他不乘公交汽车来; (8)不经一事,不长一智; 1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。(1)p∨(q∧r);

《离散数学》试题和答案及解析

一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 2 2n. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 . 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是(P∧?Q∧R) 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B={4} ; A?B={1,2,3,4}; A-B={1,2} . 7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0) 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则 R1?R2 ={(1,3),(2,2),(3,1)} , R2?R1 = {(2,4),(3,3),(4,2)} _ R12 ={(2,2),(3,3). 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = . 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} , A∩B ={x | 0≤x≤1, x∈R} , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为 {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} . 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是?x(?P(x)∨Q(x)) . 15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。(完全图的边 数 2)1 (- n n ,树的边数为n-1) 16.设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_ (R(a)∧R(b))→(S(a)∨S(b)) _. 17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。则

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学例题整理

第一章 定律证明: (1) A?B=B?A (交换律) 证?x x∈A?B ? x∈A 或x∈B, 自然有x∈B 或x∈A ? x∈B?A 得证A?B?B?A. 同理可证B?A?A?B. (2) A?(B?C)=(A?B)?(A?C) (分配律) 证?x x∈A?(B?C) ? x∈A或(x∈B且x∈C ) ?(x∈A或x∈B)且(x∈A或x∈C) ?x∈(A?B)?(A?C) 得证A?(B?C)?(A?B)?(A?C). 类似可证(A?B)?(A?C)?A?(B?C). (3) A?E=E (零律) 证根据并的定义, 有E?A?E. 根据全集的定义, 又有A? E?E. (4) A?E=A (同一律) 证根据交的定义, 有A?E?A. 又, ?x x∈A, 根据全集E的定义, x∈E, 从而x∈A且x∈E, ?x∈A?E 得证A?A?E. 例4 证明A?(A?B)=A(吸收律) 证利用例3证明的4条等式证明 A?(A?B) = (A?E)?(A?B) (同一律) = A?(E?B) (分配律) = A?(B?E) (交换律) = A?E (零律) = A (同一律) 例5 证明(A-B)-C=(A-C)-(B-C) 证(A-C)-(B-C) = (A ?~C) ? ~(B ? ~C) (补交转换律) = (A ?~C) ? (~B ? ~~C) (德摩根律) = (A ?~C) ? (~B ? C) (双重否定律) = (A ?~C? ~B)?(A ?~C? C) (分配律) = (A ?~C? ~B)?(A ??) (矛盾律) = A ?~C? ~B (零律,同一律) = (A ?~B) ? ~C (交换律,结合律)

【离散数学】知识点及典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

010A3350现代密码学

《现代密码学》教学大纲 课程英文名称:Modern Cryptology 课程编号:010A3350 学时:54 学分:3.0 一、课程教学对象 本课程教学对象为五邑大学数学与计算科学学院信息与计算科学专业和数学与应用数学专业的本科学生。 二、课程性质、目的和任务 课程性质:现代密码学是五邑大学数学与计算科学学院信息与计算科学专业和数学与应用数学专业本科学生选修的专业模块课程。信息化是当今世界经济与社会发展的大趋势,其安全性也成为人们日益关切问题。密码学技术为现代电子商务、网络安全等的必备工具。 目的和任务:本课程旨在介绍流密码学、分组密码学、公钥密码学、数字签名、消息认证和密码协议等,使学生对密码学有一个清晰完整的认识。在本课程的学习过程中,学生要掌握一定的相关的理论基础知识;同时通过阅读参考文献,了解密码学的新发展、新动态,加强知识的深度和广度。通过本课程的学习,学生要了解现代密码学的基本概念,建立信息安全的模型;掌握单钥、公钥密码体制,密钥管理,消息认证和杂凑算法,数字签名和密码协议等密码学的主要内容。 三、对先修课的要求 学生在学习本课之前,应先修课程:数学分析、高等代数、离散数学、概率论与数理统计、初等数论。 四、课程的主要内容、基本要求和学时分配建议(总学时数: 54) 本课程授课计划54学时,其中理论部分44学时,实验10学时。理论部分(44学时)基本要求和安排如 下: 第1章现代密码学概论(5学时) 1.1 信息安全面临的威胁1.2 信息安全的模型 1.3 密码学基本概念 1.4 几种古典密码(C)(C)(A)(A) 第2章流密码(9学时) 2.1 流密码的基本概念 2.2 线性反馈移位寄存器 2.3 线性移位寄存器的一元多项式表示2.4 m序列的伪随机性 2.5 m序列密码的破译 2.6 非线性序列(A)(A)(A)(C)(B)(C) 第3章分组密码体制(4学时) 3.1 分组密码概述 3.2 数据加密标准 3.3 差分密码分析与线性密码分析(A)(C)(C)

离散数学题目大汇总

离散数学试题一(A 卷答案) 一、(10分)证明(A ∨B )(P ∨Q ),P ,(B A )∨P A 。 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4 种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误为什么给出正确的推理形式。 (1)x (P (x ) Q (x )) P (2)P (y )Q (y ) T (1),US (3)xP (x ) P (4)P (y ) T (3),ES (5)Q (y ) T (2)(4),I (6)xQ (x ) T (5),EG 四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、 五、(15分)设函数g :A →B ,f :B →C , (1)若f o g 是满射,则f 是满射。 (2)若f o g 是单射,则g 是单射。 六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得T R 且R ,证明T 是一个等价关系。 七、(15分)若是群,H 是G 的非空子集,则的子群对任意的a 、b ∈H 有 a * b -1∈H 。 八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。 (2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗 离散数学试题一(B 卷答案) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。设F 表示灯亮。 u v w

离散数学习题答案

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ? ∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学练习题

离散数学练习题 一、填空题 1. 命题Q →P 的真值为0,当且仅当 。 2. 构造公式S R S R →∨∧)(的真值表 。 3. 仅用∧和┐写出下列表达式的等价形式 a) R Q P ?→∨?? b) P Q ∨? 4. 仅用∨和┐写出下列表达式的等价形式 a) )()(D C B A ∨→∨? 。 b) )(E D A ?→→?? 5. 公式A 有三个命题变元P 、Q 、R 组成,其主析取范式为A 6531m m m m ∨∨∨?,则其主合取 范式为: 6. 公式A 有三个命题变元P 、Q 、R 组成,其主合取范式为A ?65310M M M M M ∧∧∧∧,则 其主析取范式为: 。 7. 设解释I 如下: D={n ,m} P(n ,n) P(n ,m) P(m ,n) P(m ,m) 1 1 0 0 8. 确定下列各式的真值: ),(m x xP ? ___ ___; ),(y n yP ? __ ___; ),(y x yP x ??) __ ___。 ),(n x xP ? ___ ___; ),(y m yP ? __ ___; ),(y x yP x ??) __ ___。 9. 谓词合式公式)()(x xQ x xP ?→?的前束范式为 。 10. 某集合有101个元素,则有 个子集的元素为奇数。 11. 某班有32个学生,其中14个人选择艺术,7个人选择生物,6个人选择音乐,三门课都选的有 2人,问这三门课都没选的至少有 人? 12. 设全集U={1,2,3,4,5,6,7,8,9,10}, A={1,2,3,5,6}, B={2,4,6,8,9}, 则:A ∩B= , B ⊕A= , B A ?= ; (A ∪B)-B = , (A ∪B)-(B ∩C)= 13. =Φ=)(},,a {A A ρ 。 14. B A b a B A ×==2},,{},1{= =×B A )(ρ

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

离散数学答案(刘玉珍 编著)

习题1.1 1、(1)否 (2)否 (3)是,真值为0 (4)否 (5)是,真值为1 2、(1)P:天下雨 Q:我去教室┐P → Q (2)P:你去教室 Q:我去图书馆 P → Q (3)P,Q同(2) Q → P (4)P:2是质数 Q:2是偶数 P∧Q 3、(1)0 (2)0 (3)1 4、(1)如果明天是晴天,那么我去教室或图书馆。 (2)如果我去教室,那么明天不是晴天,我也不去图书馆。 (3)明天是晴天,并且我不去教室,当且仅当我去图书馆。 习题1.2 1、(1)是 (2)是 (3)否 (4)是 (5)是 (6)否 2、(1)(P → Q) →R,P → Q,R,P,Q (2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P (3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P → Q,(Q → P),P → Q,P,Q,Q,P,P,Q 3、(1)((P → Q) → (Q → P)) → (P → Q) (2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R)) (3)(Q → P∧┐P) → (P∧┐P → Q) 4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q) 习题1.3

1、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1 (2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0 (3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0 (4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 = 1 (5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 1 3、(1)原式 <=> F→Q <=> T 原式为永真式 (2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)

文本预览