当前位置:文档之家› 2015届高三物理二轮专题复习讲义(人教版):专题7+带电粒子在复合场中的运动(含14真题及原创解析)

2015届高三物理二轮专题复习讲义(人教版):专题7+带电粒子在复合场中的运动(含14真题及原创解析)

2015届高三物理二轮专题复习讲义(人教版):专题7+带电粒子在复合场中的运动(含14真题及原创解析)
2015届高三物理二轮专题复习讲义(人教版):专题7+带电粒子在复合场中的运动(含14真题及原创解析)

高考定位

带电粒子在复合场中的运动是力电综合的重点和高考的热点,常见的考查形式有组合场(电场、磁场、重力场依次出现)、叠加场(空间同一区域同时存在两种以上的场)、周期性变化场等,近几年高考试题中,涉及本专题内容的频度极高,特别是计算题,题目难度大,涉及面广.试题多把电场和磁场的性质、运动学规律、牛顿运动定律、圆周运动规律、功能关系揉合在一起.主要考查考生的空间想象能力、分析综合能力以及运用数学知识解决物理问题的能力.以考查考生综合分析和解决复杂问题的能力.

考题1带电粒子在叠加场中的运动分析

例1如图1所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C.在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10 m/s2,问:

图1

(1)油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;

(2)油滴在P点得到的初速度大小;

(3)油滴在第一象限运动的时间.

审题突破(1)结合平衡条件判断油滴所受电场力的方向和洛伦兹力的方向,进而判断油滴的电性,对油滴受力分析后采用合成法作图,由几何关系得出三力之比;(2)根据油滴在垂直直线方向上应用平衡条件列方程求得速度大小;(3)进入第一象限,由于重力等于电场力,在电场中做匀速直线运动,在混合场中做匀速圆周运动,作出运动轨迹,结合磁场中圆周运动的周期公式即运动的对称性确定运动总时间.

解析 (1)根据受力分析(如图)可知油滴带负电荷,

设油滴质量为m ,由平衡条件得: mg ∶qE ∶F =1∶1∶ 2. (2)由第(1)问得:mg =qE q v B =2qE 解得:v =

2E

B

=4 2 m/s. (3)进入第一象限,电场力和重力平衡,知油滴先做匀速直线运动,进入y ≥h 的区域后做匀速圆周运动,轨迹如图,最后从x 轴上的N 点离开第一象限.

由O →A 匀速运动的位移为x 1=h

sin 45°

=2h

其运动时间:t 1=x 1v =2h 2E B

=hB

E =0.1 s

由几何关系和圆周运动的周期关系式T =2πm

qB

知,

由A →C 的圆周运动时间为t 2=14T =πE

2gB ≈0.628 s

由对称性知从C →N 的时间t 3=t 1

在第一象限运动的总时间t =t 1+t 2+t 3=2×0.1 s +0.628 s =0.828 s 答案 (1)1∶1∶2 油滴带负电荷 (2)4 2 m/s (3)0.828 s

1.如图2,水平地面上方有一底部带有小孔的绝缘弹性竖直挡板,板高h =9 m ,与板上端等高处水平线上有一P 点,P 点离挡板的距离x =3 m .板的左侧以及板上端与P 点的连线上

方存在匀强磁场和匀强电场.磁场方向垂直纸面向里,磁感应强度B =1 T ;比荷大小q

m =1.0

C /kg 可视为质点的小球从挡板下端处小孔以不同的速度水平射入场中做匀速圆周运动,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能经过位置P ,g =10 m/s 2,求:

图2

(1)电场强度的大小与方向;

(2)小球不与挡板相碰运动到P 的时间;

(3)要使小球运动到P 点时间最长应以多大的速度射入?

答案 (1)10 N/C ,方向竖直向下 (2)π+arcsin 3

5(s)

(3)3.75 m/s

解析 (1)由题意可知,小球带负电,因小球做匀速圆周运动,有:Eq =mg

得:E =mg

q =10 N/C ,方向竖直向下

(2)小球不与挡板相碰直接到达P 点轨迹如图:

有:(h -R )2+x 2=R 2得:R =5 m 设PO 与挡板的夹角为θ,则sin θ=x R =3

5

小球做圆周运动的周期T =2πm

qB

设小球做圆周运动所经过圆弧的圆心角为α,则t =αm

qB

运动时间t =(π+arcsin 3

5)m

qB =π+arcsin 3

5(s).

(3)因速度方向与半径垂直,圆心必在挡板上,

设小球与挡板碰撞n 次,有R ≤h

2n

又R ≥x ,n 只能取0,1. n =0时,(2)问不符合题意 n =1时,有(3R -h )2+x 2=R 2 解得:R 1=3 m ,R 2=3.75 m

轨迹如图,半径为R 2时运动时间最长

洛伦兹力提供向心力:q v B =m v

2

R 2

得:v =3.75 m/s.

带电粒子在叠加场中运动的处理方法 1.弄清叠加场的组成特点.

2.正确分析带电粒子的受力及运动特点. 3.画出粒子的运动轨迹,灵活选择不同的运动规律

(1)若只有两个场且正交,合力为零,则表现为匀速直线运动或静止.例如电场与磁场中满足qE =q v B ;重力场与磁场中满足mg =q v B ;重力场与电场中满足mg =qE .

(2)若三场共存时,合力为零,粒子做匀速直线运动,其中洛伦兹力F =q v B 的方向与速度v 垂直.

(3)若三场共存时,粒子做匀速圆周运动,则有mg =qE ,粒子在洛伦兹力作用下做匀速圆周

运动,即q v B =m v 2

r .

(4)当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.

考题2 带电粒子在组合场中的运动分析

例2 (2014·广东·36)如图3所示,足够大的平行挡板A 1、A 2竖直放置,间距为6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离为L .质量为m 、电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.

图3

(1)若k =1,求匀强电场的电场强度E ;

(2)若2

审题突破 (1)粒子在电场中做加速直线运动,根据动能定理列式;粒子在磁场中做匀速圆周运动,根据牛顿第二定律列式;结合几何关系得到轨道半径;最后联立求解.(2)结合几何关系列式求解出轨道半径;粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,根据牛顿第二定律列式;最后联立求解即可.

解析 (1)若k =1,则有MP =L ,粒子在匀强磁场中做匀速圆周运动,根据几何关系,该情

况粒子的轨迹半径为 R =L

粒子在匀强磁场中做匀速圆周运动,则有:q v B 0=m v 2

R

粒子在匀强电场中加速,根据动能定理有:qEd =1

2

m v 2

综合上式解得:E =qB 20L

22dm

(2)因为2

由几何关系:R 2-(kL )2=(R -L )2,

又有q v B 0=m v 2

R

则整理解得:v =qB 0(L +k 2L )

2m

又因为:6L -2kL =2x

根据几何关系有:kL x =R

r

又q v B =m v

2r

则Ⅱ区的磁感应强度B 与k 的关系:B =kB 0

3-k

.

答案 (1)qB 20L

2

2dm (2)v =qB 0(L +k 2L )2m B =kB 03-k

2.如图4所示的直角坐标xOy 平面内有间距为d ,长度为23

3

d 的平行正对金属板M 、N ,M

位于x 轴上,OP 为过坐标原点O 和极板N 右边缘的直线,与y 轴的夹角θ=π

3,OP 与y 轴

之间及y 轴右侧空间中分别存在磁感应强度大小相等方向相反且均垂直于坐标平面的匀强磁场.质量为m 、电荷量为q 的带正电粒子从M 板左侧边缘以速度v 0沿极板方向射入,恰好从N 板的右侧边缘A 点射出进入磁场.粒子第一次通过y 轴时,速度与y 轴负方向的夹角为π

6

.不计粒子重力,求:

图4

(1)极板M 、N 间的电压; (2)匀强磁场磁感应强度的大小; (3)粒子第二次通过y 轴时的纵坐标值;

(4)粒子从进入板间到第二次通过y 轴时经历的时间.

答案 (1)3m v 2

2q (2)2m v 0qd (3)2d (4)(43+7π6)d v 0

解析 (1)粒子在M 、N 板间做类平抛运动,设加速度为a ,运动时间为t 1,则23

3

d =v 0t 1

d =12at 21

根据牛顿运动定律得q U

d =ma

联立解得U =3m v 2

2q .

(2)设粒子经过A 点时的速度为v ,方向与x 轴的夹角为α,

根据动能定理,得qU =12m v 2-12

m v 2

0 cos α=v 0

v

解得v =2v 0,α=π

3

设粒子第一次与y 轴相交于D 点,轨迹如图,由几何关系知D 点与A 点高度相等,△C 1DO 为等边三角形.

R =d

根据牛顿定律,得q v B =m v 2

R

整理得B =2m v 0

qd

.

(3)粒子在y 轴右侧空间的运动轨迹如图.

由几何关系知 DE =2R cos θ=d

即E 点的纵坐标为y E =2d . (4)粒子从A 到D 的时间

t 2=13

T

从D 到E 的时间t 3=5

6

T

而T =2πm qB =πd v 0

故t =t 1+t 2+t 3=(43+7π6)d

v 0

.

3.如图5所示,相距3L 的AB 、CD 两直线间的区域存在着两个大小不同、方向相反的有界匀强电场,其中PT 上方的电场Ⅰ的场强方向竖直向下,PT 下方的电场Ⅱ的场强方向竖直向上,电场Ⅰ的场强大小是电场Ⅱ的场强大小的两倍,在电场左边界AB 上有点Q ,PQ 间距离为L .从某时刻起由Q 以初速度v 0沿水平方向垂直射入匀强电场的带电粒子,电量为+q 、质量为m .通过PT 上的某点R 进入匀强电场Ⅰ后从CD 边上的M 点水平射出,其轨迹如图,若PR 两点的距离为2L .不计粒子的重力.试求:

图5

(1)匀强电场Ⅰ的电场强度的大小和MT 之间的距离;

(2)有一边长为a 、由光滑弹性绝缘壁围成的正三角形容器,在其边界正中央开有一小孔S ,将其置于CD 右侧且紧挨CD 边界,若从Q 点射入的粒子经AB 、CD 间的电场从S 孔水平射入容器中.欲使粒子在容器中与器壁多次垂直碰撞后仍能从S 孔射出(粒子与绝缘壁碰撞时无机械能和电量损失),并返回Q 点,需在容器中现加上一个如图所示的匀强磁场,粒子运动

的半径小于1

2a ,求磁感应强度B 的大小应满足的条件以及从Q 出发再返回到Q 所经历的时

间.

答案 (1)m v 20qL 12L (2)B =2m v 0(1+2n )

qa

,n =1,2,…

6L v 0+(6n +1)πa 2(2n +1)v 0

,n =1,2,… 解析 (1)设粒子经PT 直线上的点R 由E 2电场进入E 1电场,由Q 到R 及R 到M 点的时间分别为t 2与t 1,到达R 时竖直速度为v y , 则由F =qE =ma , 2L =v 0t 2, L =v 0t 1,

L =12·E 2q m t 22,

E 1=2E 2,

得E 1=m v 2

0qL

v y =E 2q m t 2=E 1q m t 1

MT =12·E 1q m t 2

1

联立解得MT =1

2

L .

(2)欲使粒子仍能从S 孔处射出,粒子运动的半径为r ,则

q v 0B =m v 20

r

(1+2n )r =1

2

a ,n =1,2,…

解得:B =2m v 0(1+2n )

qa

, n =1,2,…

由几何关系可知t ′=3×(2n ×T 2+T 6)=(3n +1

2)T

n =1,2,3…

T =2πR v =2πm Bq

代入B 得T =πa

(2n +1)v 0

,n =1,2,…

t =2t 1+2t 2+t ′=6L v 0+(6n +1)πa

2(2n +1)v 0

,n =1,2,…

带电粒子在组合场内的运动实际上也是运动过程的组合,解决方法如下:

(1)分别研究带电粒子在不同场区的运动规律.在匀强磁场中做匀速圆周运动.在匀强电场中,若速度方向与电场方向平行,则做匀变速直线运动;若速度方向与电场方向垂直,则做类平抛运动.

(2)带电粒子经过磁场区域时利用圆周运动规律结合几何关系处理.

(3)当粒子从一个场进入另一个场时,分析转折点处粒子速度的大小和方向往往是解题的突破口.

例3 (19分)如图6甲所示,在xOy 平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、沿y 轴正方向电场强度为正).在t =0时刻由原点O 发射初速度大小为v 0,方向沿y 轴正方向的带负电粒子.

图6

已知v 0、t 0、B 0,粒子的比荷为πB 0t 0

,不计粒子的重力.求:

考题3 带电粒子在周期性变化的电磁场中的运动分析

(1)t =t 0时,求粒子的位置坐标;

(2)若t =5t 0时粒子回到原点,求0~5t 0时间内粒子距x 轴的最大距离; (3)若粒子能够回到原点,求满足条件的所有E 0值.

解析 (1)由粒子的比荷q m =π

B 0t 0

则粒子做圆周运动的周期T =2πm

B 0q =2t 0(1分)

则在0~t 0内转过的圆心角α=π(2分)

由牛顿第二定律q v 0B 0=m v 20

r 1

(2分)

得r 1=v 0t 0

π

(1分)

位置坐标(2v 0t 0

π,0).(1分)

(2)粒子t =5t 0时回到原点,轨迹如图所示

r 2=2r 1(2分)

r 1=m v 0B 0q r 2=m v 2B 0q (1分)

得v 2=2v 0(1分)

又q m =π

B 0t 0,r 2=2v 0t 0π

(1分) 粒子在t 0~2t 0时间内做匀加速直线运动,2t 0~3t 0时间内做匀速圆周运动,则在0~5t 0时间

内粒子距x 轴的最大距离:h m =v 0+2v 02t 0+r 2=(32+2

π)v 0t 0.(2分)

(3)如图所示,设带电粒子在x 轴上方做圆周运动的轨道半径为r 1,在x 轴下方做圆周运动的轨道半径为r 2′,由几何关系可知,要使粒子经过原点,则必须满足:

n (2r 2′-2r 1)=2r 1,(n =1,2,3,…)(1分)

r 1=m v 0B 0q r 2′=m v B 0q

(1分)

联立以上各式解得v =n +1

n v 0

,(n =1,2,3,…)(1分)

又由v =v 0+E 0qt 0

m

(1分)

得E 0=v 0B 0

n π,(n =1,2,3,…).(1分)

答案 (1)(2v 0t 0π,0) (2)(32+2

π)v 0t 0 (3)v 0B 0n π

,(n =1,2,3,…)

(20分)如图7甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t =0时刻,一质量为m 、带电量为+q 的粒子(不计重力),以初速度v 0由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B 0和T B 取某些特定值时,可使t =0时刻入射的粒子经Δt 时间恰能垂直打在P 板上(不考虑粒子反弹).上述m 、q 、d 、v 0为已知量.

图7

(1)若Δt =1

2T B ,求B 0;

(2)若Δt =3

2T B ,求粒子在磁场中运动时加速度的大小;

(3)若B 0=4m v 0

qd ,为使粒子仍能垂直打在P 板上,求T B .

答案 (1)m v 0qd (2)3v 20

d (3)πd 3v 0或????π2+arcsin 14d 2v 0 解析 (1)设粒子做圆周运动的半径为R 1, 由牛顿第二定律得q v 0B 0=m v 20

R 1

① 据题意由几何关系得R 1=d

② 联立①②式得B 0=m v 0

qd

③ (2)设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得a =v 20

R 2

④ 据题意由几何关系得3R 2=d

联立④⑤式得a =3v 2

0d

.

⑥ (3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得T =2πR

v 0

由牛顿第二定律得

q v 0B 0=m v 2

0R

由题意知B 0=4m v 0

qd ,代入⑧式得

d =4R

粒子运动轨迹如图所示,

O 1、O 2为圆心,O 1O 2连线与水平方向的夹角为θ,在每个T B 内,只有A 、B 两个位置才有可

能垂直击中P 板,且均要求0<θ<π

2

,由题意可知

π2+θ2πT =T B

2 ⑩ 设经历完整T B 的个数为n (n =0,1,2,3,…) 若在A 点击中P 板,据题意由几何关系得 R +2(R +R sin θ)n =d ? 当n =0时,无解

?

当n =1时,联立⑨?式得 θ=π6(或sin θ=12) ?

联立⑦⑨⑩?式得 T B =πd 3v 0

? 当n ≥2时,不满足0<θ<90°的要求

?

若在B 点击中P 板,据题意由几何关系得 R +2R sin θ+2(R +R sin θ)n =d ? 当n =0时,无解

?

当n =1时,联立⑨?式得

θ=arcsin 14(或sin θ=1

4)

?

联立⑦⑨⑩?式得 T B =????π2

+arcsin 14d 2v 0 ?

当n≥2时,不满足0<θ<90°的要求.

知识专题练训练7

题组1带电粒子在叠加场中的运动分析

1.如图1所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球.O点为圆环的圆心,

a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,b、O、d三点在同一水平

线上.已知小球所受电场力与重力大小相等.现将小球从环的顶端a点由静止释放,下列判断正确的是()

图1

A.小球能越过d点并继续沿环向上运动

B.当小球运动到d点时,不受洛伦兹力

C.小球从d点运动到b点的过程中,重力势能减小,电势能减小

D.小球从b点运动到c点的过程中,经过弧bc中点时速度最大

答案BD

解析电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad弧的中点相当于竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大;由于a、d两点关于新的最高点对称,若从a点静止释放,最高运动到d点,故A错误;当小球运动到d点时,速度为零,故不受洛伦兹力,故B正确;由于d、b等高,故小球从d点运动到b点的过程中,重力势能不变,故C错误;由于等效重力指向左下方45°,由于弧bc中点是等效最低点,故小球从b点运动到c点的过程中,经过弧bc中点时速度最大,故D正确.

2.如图2甲所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆形区域内加有与xOy平面垂直的匀强磁场.在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量q(q>0)和初速度为v0的带电微粒.(已知重力加速度为g)

图2

(1)当带电微粒发射装置连续不断地沿y 轴正方向发射这种带电微粒时,这些带电微粒将沿圆形磁场区域的水平直径方向离开磁场,并继续沿x 轴正方向运动.求电场强度E 和磁感应强度B 的大小和方向.

(2)调节坐标原点处的带电微粒发射装置,使其在xOy 平面内不断地以相同速率v 0沿不同方向将这种带电微粒射入第Ⅰ象限,如图乙所示.现要求这些带电微粒最终都能平行于x 轴正方向运动,则在保证电场强度E 和磁感应强度B 的大小和方向不变的条件下,求出符合条件的磁场区域的最小面积.

答案 (1)E =mg q ,沿y 轴正方向 B =m v 0qR ,垂直纸面向外 (2)(π

2-1)R 2

解析 (1)微粒沿x 轴正方向运动,即带电微粒所受重力与电场力平衡. 设电场强度大小为E ,由平衡条件得:mg =qE 解得:E =mg

q

由于粒子带正电,故电场方向沿y 轴正方向

带电微粒进入磁场后,做匀速圆周运动,且半径r =R . 设匀强磁场的磁感应强度大小为B .

由牛顿第二定律得:q v 0B =m v 20

R

解得B =m v 0

qR

,磁场方向垂直纸面向外.

(2)沿y 轴正方向射入的微粒,运动轨迹如图所示:

以半径R 沿x 轴正方向运动四分之一圆弧,该圆弧也恰为微粒运动的上边界.以O 点为圆心、R 为半径做的四分之一圆弧BC 为微粒做圆周运动的圆心轨迹.微粒经磁场偏转后沿x 轴正方向运动,即半径沿竖直方向.并且射出点距圆心轨迹上各点的距离为R ,射出点的边界与圆弧BC 平行,如图中的圆弧ODA ,圆弧OA 与圆弧ODA 之间的区域即为磁场区域的最小面积:

S =2(14πR 2-12R 2)=(π

2

-1)R 2.

题组2 带电粒子在组合场中的运动分析

3.如图3所示,在矩形区域CDNM 内有沿纸面向上的匀强电场,场强的大小E =1.5×105 V /m ;在矩形区域MNGF 内有垂直纸面向外的匀强磁场,磁感应强度大小B =0.2 T .已知CD =MN =FG =0.60 m ,CM =MF =0.20 m .在CD 边中点O 处有一放射源,沿纸面向电场中各方向

均匀地辐射出速率均为v 0=1.0×106 m/s 的某种带正电粒子,粒子质量m =6.4×10-27

kg ,电

荷量q =3.2×10

-19

C ,粒子可以无阻碍地通过边界MN 进入磁场,不计粒子的重力.求:

图3

(1)粒子在磁场中做圆周运动的半径; (2)边界FG 上有粒子射出磁场的范围长度;

(3)粒子在磁场中运动的最长时间.(后两问结果保留两位有效数字) 答案 (1)0.2 m (2)0.43 m (3)2.1×10-

7 s

解析 (1)电场中由动能定理得:

qEd =12m v 2-12m v 2

由题意知d =0.20 m ,代入数据得 v =2×106 m/s

带电粒子在磁场中做匀速圆周运动, qB v =m v 2

r

解得r =m v

qB

=0.2 m.

(2)设粒子沿垂直于电场方向射入时,出电场时水平位移为x ,则由平抛规律得:?????

d =12·qE m ·t 2x =v 0t 解得x =23

15

m

离开电场时,sin θ1=v 0v =1

2

,θ1=30°.

由题意可知,PS ⊥MN ,沿OC 方向射出粒子到达P 点,为左边界,垂直MN 射出的粒子与边界FG 相切于Q 点,Q 为右边界,

QO ″=r ,轨迹如图.

范围长度为l =x +r =(23

15

+0.2) m ≈0.43 m.

(3)T =2πm qB ,由分析可知,OO ′方向射出的粒子运动时间最长,设FG 长度为L

sin θ2=12L -r r =1

2

,θ2=30°

带电粒子在磁场中运动的最大圆心角为120°,对应的最长时间为t max =13T =2πm 3qB

≈2.1×10-

7 s

题组3 带电粒子在周期性变化的电磁场中运动分析

4.如图4甲所示,水平直线MN 上方有竖直向下的匀强电场,场强大小E =π×103 N/C ,MN 下方有垂直于纸面的磁场,磁感应强度B 随时间t 按如图乙所示规律做周期性变化,规定垂

直纸面向外为磁场正方向.T =0时将一重力不计、比荷q

m =106 C/kg 的正点电荷从电场中的

O 点由静止释放,在t 1=1×10-

5 s 时恰通过MN 上的P 点进入磁场,P 点左方d =105 cm 处

有一垂直于MN 且足够大的挡板.

图4

求:(1)电荷从P 点进入磁场时速度的大小v 0; (2)电荷在t 2=4×10-

5 s 时与P 点的距离Δx ;

(3)电荷从O 点出发运动到挡板所需时间t 总. 答案 (1)π×104 m/s (2)20 2 cm (3)1.42×10-

4 s

解析 (1)电荷在电场中做匀加速直线运动,则Eq =ma v 0=at 1

解得v 0=Eqt 1m =π×103×106×1×10-

5 m /s =π×104 m/s

(2)电荷在磁场中做匀速圆周运动,洛伦兹力提供向心力

q v B =m v 2r ,r =m v

Bq

当B 1=π

20 T 时,半径r 1=m v 0B 1q =0.2 m =20 cm

周期T 1=2πm B 1q

=4×10-

5 s

当B 2=π

10 T 时,半径r 2=m v 0B 2q =0.1 m =10 cm

周期T 2=2πm B 2q =2×10-

5 s

故电荷从t =0时刻开始做周期性运动,其运动轨迹如图所示.

在t =0到t 2=4×10-

5 s 时间内,电荷先沿直线OP 运动t 1,再沿大圆轨迹运动T 14,紧接着沿

小圆轨迹运动T 2,t 2=4×10-

5 s 时电荷与P 点的距离Δx =2r 1=20 2 cm

(3)电荷从P 点开始的运动周期T =6×10-

5 s ,且在每一个周期内向左沿PM 移动x 1=2r 1=40

cm ,电荷到达挡板前经历了2个完整周期,沿PM 运动距离x =2x 1=80 cm ,设电荷撞击挡板前速度方向与水平方向成θ角,最后d -x =25 cm 内的轨迹如图所示.

据几何关系有r 1+r 2sin θ=0.25 m 解得sin θ=0.5, 即θ=30°

则电荷从O 点出发运动到挡板所需总时间

t 总=t 1+2T +T 14+θ

360°T 2

解得t 总=856×10-5 s ≈1.42×10-

4 s.

初三物理培优专题训练

【V-S 图像】 1.(2017年朝阳一模)用弹簧测力计分别拉着甲、乙两物体竖直向上运动,两次运动的路程随时间变化的图象如图所示,已知甲的重力大于乙的重力。则下列说法中正确的是( )(多选) A .甲的速度大于乙的速度 B .弹簧测力计对甲的拉力大于弹簧测力计对乙的拉力 C .甲物体的动能转化为重力势能 D .甲的机械能一定大于乙的机械能 2.(2017年东城一模)一辆新能源电动汽车在水平公路上沿直线行驶,假设所受到的阻力不变,其?-t 图象如图6所示。其中0~1s 内和3~4s 内的图象为直线,1~3s 内的图象为曲线,则下列说法中正确的是 ( )(单选) A .0~1s 内电动汽车做匀速运动 B .1~3s 内电动汽车做减速运动 C .3~4s 内电动汽车处于静止状态 D .3~4s 内电动汽车的牵引力一定最小 3.(2018年石景山二模)一物体在水平拉力的作用下沿水平面运动,其运动的路程(s )与时间(t )关系如图12所 示,下列判断正确的是 A .物体5s 时的速度小于2s 时的速度 B .前3s 拉力对物体做的功大于后3s 做的功 C .前3s 拉力对物体做功的功率小于后3s 做功的功率 D .前3s 物体所受的拉力大于后3s 物体所受的拉力 图12

【机械能转化】 1.(2017年东城一模考)两年一届的世界蹦床锦标赛于2015年12月1日在 丹麦欧登塞落幕,中国队以8金3银2铜领跑奖牌榜。关于运动员从图8所示的最高点下落到最低点的过程中(不计空气阻力的影响),下列说法中正确的是( )(多选) A.重力势能一直减小 B.接触到蹦床时开始减速 C.所受重力等于弹力时动能最大 D.在最低点时速度为零、受力平衡(提示,画受力分析图) 2.如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)从高 于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以下关于重球运动过程的正确说法应是 ( ).(多选) A.重球下落压缩弹簧由a至d的过程中,重球作减速运动 B.重球下落至b处获得最大速度 C.由a至d过程中重球克服弹簧弹力做的功等于小球由c下落至d处时重力势能减少量 D.重球在b位置处具有的动能等于小球由c下落到b处减少的重力势能 图8

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

2021高考物理一轮复习第2章相互作用热点专题系列二求解共点力平衡问题的八种方法学案新人教版

热点专题系列(二)求解共点力平衡问题的八种方法 热点概述:共点力作用下的平衡条件是解决共点力平衡问题的基本依据,广泛应用于力、电、磁等各部分内容的题目中,求解共点力平衡问题的八种常见方法总结如下。 [热点透析] 力的合成、分解法 三个力的平衡问题,一般将任意两个力合成,则该合力与第三个力等大反向,或将其中某个力沿另外两个力的反方向分解,从而得到两对平衡力。 如图所示,用三段不可伸长的轻质细绳OA 、OB 、OC 共同悬挂一重物使其静止,其中OA 与竖直方向的夹角为30°,OB 沿水平方向,A 端、B 端固定。若分别用F A 、F B 、F C 表示OA 、OB 、OC 三根绳上的张力大小,则下列判断中正确的是( ) A .F A >F B >F C B .F A F C >F B D .F C >F A >F B 解析 根据平衡条件有细绳OC 的张力大小等于重物的重力,对O 点受力分析,如图所示。F A =mg cos30°=233mg ,F B =mg tan30°=33mg ,因此得F A >F C >F B ,C 正确。 答案 C 正交分解法 将各力分解到x 轴上和y 轴上,运用两坐标轴上的平衡条件F x =0、F y =0进行分析,多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使较多的力落在x 、y 轴上,被分解的力尽可能是已知力,不宜分解待求力。 如图所示,水平细杆上套有一质量为0.54 kg 的小环A ,用轻绳将质量为0.5 kg 的小球B 与A 相连。B 受到始终与水平方向成53°角的风力作用,与A 一起向右匀速运动,此时轻绳与水平方向夹角为37°,运动过程中B 球始终在水平细杆的下方,则:(取g =10 m/s 2 ,sin37°=0.6,cos37°=0.8)

高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优易错试卷篇含详细答案

高考物理备考之临界状态的假设解决物理试题压轴突破训练∶培优易错试卷篇 含详细答案 一、临界状态的假设解决物理试题 1.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求: (1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。 【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】 (1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得 1111m g m a μ= 可得 2112m/s a g μ==. 再以整体为研究对象,由牛顿第二定律得 212121 ))F m m g m m a μ-+= +(( 故得最大拉力 18F N =; (2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2 a ,则 2121122)m m g m g m a μμ+-=( 解得 225m/s a = 故A 滑动的时间 22 0.45 v t s s a = == (3)撤去F 后A 滑动的距离 22 122m=0.4m 225 v x a ==? B 滑动的距离

2020届高三物理精准培优专练:二十一 原子物理

培优点二十一 原子物理 一、考点分析 记住几个二级结论: (1)遏止电压U c 与入射光频率ν、逸出功W 0间的关系式:U c =ν-。h e W 0 e (2)截止频率νc 与逸出功W 0的关系:hνc -W 0=0,据此求出截止频率νc 。 (3)光照引起的原子跃迁,光子能量必须等于能级差;碰撞引起的跃迁,只需要实物粒子的动能大于(或等于)能级差。 (4)大量处于定态的氢原子向基态跃迁时可能产生的光谱线条数:C n 2= 。 n n -1 2 (5)磁场中的衰变:外切圆是α衰变,内切圆是β衰变,半径与电荷量成反比。(6)平衡核反应方程:质量数守恒、电荷数守恒。 二、考题再现 典例1.(2019?全国I 卷?14) 氢原子能级示意图如图所示,光子能量在1.63 eV ~3.10 eV 的光为可见光。要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为( )A .12.09 eV B .10.20 eV C .1.89 eV D .1.5l eV 典例2.(2019?全国II 卷?15) 太阳内部核反应的主要模式之一是质子-质子循环,循环的结果可表示为: 4H→He +2e +2ν。已知H 和He 的质量分别为m p =1.007 8 u 和m α=4.002 6 u ,1 u =931 MeV/c 2,c 14 201142为光速.在4个H 转变成1个He 的过程中,释放的能量约为( )142A .8 MeV B .16 MeV C .26 MeV D .52 MeV 三、对点速练 1.下列说法正确的是( )

A .放射性元素的半衰期与原子所处的化学状态和外部条件有关 B .结合能越大,原子中核子结合得越牢固,原子核越稳定 C .一束光照射到某种金属上不能发生光电效应,是因为该束光的波长太短 D .各种气体原子的能级不同,跃迁时发射光子的能量(频率)不同,因此利用不同的气体可以制成五颜六色的霓虹灯 2.下列说法中正确的是( ) A .光电效应说明光具有粒子性的,它是爱因斯坦首先发现并加以理论解释的 B .235U 的半衰期约为7亿年,随着地球环境的变化,半衰期可能变短 C .卢瑟福通过对α粒子散射实验的研究,揭示了原子核的结构 D .据波尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的动能增大3.下列说法正确的是( ) A .衰变成要经过4次α衰变和2次β衰变 23290Th 208 82Pt B .核泄漏事故污染物Cs137能够产生对人体有害的辐射,其核反应方程式为,可以判断 1371375556Cs Ba x →+为质子 x C .玻尔理论的假设是原子能量的量子化和轨道量子化 D .康普顿效应说明光具有粒子性,电子的衍射实验说明实物粒子只具有粒子性 4.如图所示为氢原子的能级图,一群氢原子处于n =4的激发态,在向低能级跃迁的过程中向外发出光子,用这些光照射逸出功为1.90 eV 的金属铯,下列说法正确的是( ) A .这群氢原子能发出6种频率不同的光,其中从n =4跃迁到n =3所发出的光波 长最短 B .这群氢原子能发出3种频率不同的光,其中从n =4跃迁到n =1所发出的光频率最高 C .金属铯表面所逸出的光电子的初动能最大值为12.75 eV D .金属铯表面所逸出的光电子的初动能最大值为10.85 eV 5.根据玻尔理论,氢原子的能级公式为(n 为能级,A 为基态能量),一个氢原子中的电子从n =42 n A E n =的能级直接跃迁到基态,在此过程中( ) A .氢原子辐射一个能量为的光子 15A 16

2021年高考生物二轮专题复习讲义江苏专版:第一部分 专题三 遗 传

专题三 ??? 遗 传 [理清——知识联系] [记清——主干术语] 1.噬菌体侵染细菌实验的两次标记: (1)第一次标记:分别用含35S 和32P 的培养基培养大肠杆菌。 (2)第二次标记:分别用含35S 和32P 的大肠杆菌培养噬菌体。 2.遗传物质发现的三个实验结论:

(1)格里菲思实验的结论:加热杀死的S型细菌中存在“转化因子”。 (2)艾弗里实验的结论:DNA才是使R型细菌产生稳定性变化的物质,即DNA是遗传物质。 (3)噬菌体侵染细菌实验的结论:DNA是遗传物质,但不能证明蛋白质不是遗传物质。 3.DNA复制: (1)DNA复制特点:边解旋边复制、半保留复制。 (2)复制的“四要素”。 ①模板:DNA分子的两条链。 ②原料:游离的四种脱氧核苷酸。 ③酶:解旋酶和DNA聚合酶。 ④能量:细胞呼吸产生的ATP。 4.DNA三个结构特点: (1)DNA的两条脱氧核苷酸链反向平行盘旋成规则的双螺旋结构。 (2)DNA双螺旋结构的基本骨架是由脱氧核糖与磷酸交替连接而成的。 (3)DNA上的碱基对严格遵循碱基互补配对原则,通过氢键连接。 5.密码子和反密码子的两点比较: (1)位置:密码子位于mRNA上,反密码子位于tRNA上。 (2)数目:密码子有64种,决定氨基酸的密码子有61种;反密码子有61种。 6.基因对性状的控制有两条途径:一是基因通过控制酶的合成来控制代谢过程,进而控制生物性状;二是基因通过控制蛋白质结构

直接控制生物的性状。 7.三种伴性遗传的特点: (1)伴X染色体隐性遗传表现出隔代交叉遗传,男性患者多于女性患者,女性患者的父亲、儿子都是患者的特点。 (2)伴X染色体显性遗传表现出连续遗传,女性患者多于男性患者,男性患者的母亲、女儿都是患者的特点。 (3)伴Y染色体遗传表现出男性都是患者的特点。 8.生物变异的三个实质: (1)基因突变是由于DNA分子中发生碱基对的缺失、增添或替换,而引起的基因结构的改变。 (2)基因重组来源于减数分裂形成配子时,非同源染色体上的非等位基因的自由组合及同源染色体上的非姐妹染色单体的交叉互换。 (3)染色体变异的实质是基因数目和位置的改变。 9.三种育种方式的优点: (1)杂交育种能将多个优良性状集中到同一生物个体上。 (2)诱变育种能产生前所未有的新基因,创造变异新类型。 (3)基因工程育种能定向改造生物性状。 10.生物进化的方向:自然选择决定生物进化的方向,在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。 11.生物进化的两个必清: (1)隔离是新物种形成的必要条件,新物种形成的标志是生殖隔离。 (2)可遗传的变异(基因突变、基因重组和染色体变异)提供进化的原材料。变异是不定向的,变异的利害性取决于生物所生存的环境。

突破17 竖直面内的圆周运动-2019高三物理一轮微专题系列之热点专题突破

突破17 竖直面内的圆周运动 一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型 1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。 2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。 【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则( )

aR A.小球的质量为b R B.当地的重力加速度大小为b C.v2=c时,小球对杆的弹力方向向上 D.v2=2b时,小球受到的弹力与重力大小相等 【答案】:ACD 【典例2】用长L =0.6 m的绳系着装有m =0.5 kg水的小桶,在竖直平面内做圆周运动,成为“水流星”。G =10 m/s2。求: (1) 最高点水不流出的最小速度为多少?

(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上 【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。这是最小速度即是过最高点的临界速度v 0。 以水为研究对象, mg =m 0 解得v 0== m/s ≈ 2.45 m/s (2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。 V = 3 m/s>v 0,水不会流出。 设桶底对水的压力为F ,则由牛顿第二定律有:mg +F =m L v2 解得F =m L v2-mg =0.5×(0.632 -10)N =2.5N 根据牛顿第三定律F ′=-F 所以水对桶底的压力F ′=2.5N ,方向竖直向上。 【跟踪短训】 1. 如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m 的小球(可看做质点)在圆管中运动.小球以速率v 0经过圆管最低点时,杆对圆管的作用力大小为( ) A .m 0 B .mg +m 0 C .2mg +m 0 D .2mg -m 0

高考物理 专题四 共点力的平衡精准培优专练

培优点四 共点力的平衡 1. 从历年命题看,对共点力平衡的考查,常以选择题的形式出现,以物体的平衡状态为背景,考查整体与隔离法、受力分析、正交分解与共点力平衡,同时对平衡问题的分析在后面的计算题中往往也有所涉及。 2. 解决平衡问题常用方法: (1)静态平衡:三力平衡一般用合成法,合成后力的问题转换成三角形问题;多力平衡一般用正交分解法;遇到多个有相互作用的物体时一般先整体后隔离。 (2)动态平衡:三力动态平衡常用图解法、相似三角形法等,多力动态平衡问题常用解析法,涉及到摩擦力的时候要注意静摩擦力与滑动摩擦力的转换。 典例1. (2017·全国Ⅰ卷?21)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物, 用手拉住绳的另一端N 。初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α? ????α>π2。现将重物向右上方缓慢拉起,并保持夹角α不变。在OM 由竖直被拉到水平的过程中( ) A .MN 上的张力逐渐增大 B .MN 上的张力先增大后减小 C .OM 上的张力逐渐增大 D .OM 上的张力先增大后减小 【解析】方法一 设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN 。开始时,T OM =mg ,T MN =0。由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向。 如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增 大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定 理得:T OM α-β=mg sin θ,(α-β)由钝角变为锐角,则T OM 先增 大后减小,选项D 正确;同理知T MN sin β=mg sin θ,在β由0变为π2的一、考点分析 二、考题再现

2020年高考化学二轮专题复习讲义:《铁、铜及其重要化合物》

高考化学二轮复习铁、铜及其重要化合物 1.了解铁单质及化合物的颜色.状态及性质。 2.通过合金材料了解铜及化合物的性质。 3.能用氧化还原反应的规律探究铁的化合物之间的相互转化。 4.能掌握氢氧化铁胶体制备,能列举合金材料的应用。 (1)NO3-与Fe2+在酸性条件下,不能共存。 (2)过量的Fe与硝酸作用,或在Fe和Fe2O3的混合物中加入盐酸,要注意产生的Fe3+还可以氧化单质Fe这一隐含反应:Fe+2Fe3+=3Fe2+。 (3)注意FeCl3、Fe2(SO4)3的水溶液蒸干所得剩余固体的区别。FeCl3溶液加热浓缩时,因Fe3+水解和HCl的挥发,得到的固体为Fe(OH)3,如灼烧后得到红色的Fe2O3固体。但Fe2(SO4)3溶液蒸干时,因硫酸是难挥发性酸,将不能得到Fe(OH)3固体。 考点解读 知识体系

(4)注意亚铁盐及Fe(OH)2易被空气中氧气氧化成三价铁的化合物。如某溶液中加入碱溶液后,最终得到红褐色沉淀,并不能断定该溶液中一定含有Fe3+,而也可能含有Fe2+。 (5)注意铁单质与强氧化性物质反应时,也有生成二价铁化合物的可能性。反应中若铁为足量,最终铁元素将以二价铁形式存在,因为2Fe3++Fe=3Fe2+。 铁和“铁三角” 1.铁的氧化物的比较 化学式FeO Fe2O3Fe3O4 俗称—铁红磁性氧化铁 色态黑色粉末红棕色粉 末 黑色晶体 价态+2 +3 1/3正2价,2/3正3 价 水溶性不溶不溶不溶 与酸的反应FeO+2H+===Fe2++ H2O 遇氧化性酸生成 Fe3+盐 Fe2O3+6H+===2 Fe3++3H2O Fe3O4+8H+===Fe2++ 2Fe3++4H2O 与CO的反应 高温FexOy+yCO===xFe+yCO2 基础考点

2021年高三物理第二轮总复习教师工作计划

高三的第一轮复习主要是巩固基础知识,为后面的复习做好铺垫,第二轮复习则是提升学生各方面的能力。因此在进入第二轮复习之前,一定要做出合理的计划安排。下面是为您整理的“高三物理第二轮总复习教师工作计划”,希望您喜欢! 高三物理的第二轮总复习教师工作计划 高三物理通过第一轮的复习,学生大都能掌握物理学中的基本概念、规律,及其一般应用。但这些方面的知识,总的感觉是比较零散的,同时,对于综合方面的应用更存在较大的问题。 因此,在第二轮复习中,首要的任务是能把整个高中的知识网络化、系统化,把所学的知识连成线,铺成面,织成网,疏理出知识结构,使之有机地结合在一起。另外,要在理解的基础上,能够综合各部分的内容,进一步提高解题能力。 为达到第二轮复习的目的,经备课组老师讨论决定,仍将以专题复习的形式为主。计划(初稿)如下 一、时间按排 2xx年3月初至2xx年4月中旬(具体安排另附表) 二、内容安排 第一专题牛顿运动定律; 第二专题动量和能量; 第三专题带电粒子在电场中的运动; 第四专题电磁感应和电路分析、计算; 第五专题物理学科内的综合; 第六专题选择题的分析与解题技巧; 第七专题实验题的题型及处理方法; 第八专题论述、计算题的审题方法和技巧; 第九专题物理解题中的数学方法。 三、其它问题

我们认为要搞好第二轮复习还应注意以下几个方面 1、应抓住主干知识及主干知识之间的综合概括起来 高中物理的主干知识有以下方面的内容 (1)力学部分物体的平衡;牛顿运动定律与运动规律的综合应用;动量守恒定律的应用;机械能守恒定律及能的转化和守恒定律。 (2)电磁学部分带电粒子在电、磁场中的运动;有关电路的分析和计算;电磁感应现象及其应用。 (3)光学部分光的反射和折射及其应用。 在各部分的综合应用中,主要以下面几种方式的综合较多(在高考中突出学科内的综合已成为高考物理试题的一个显著特点) (1)牛顿三定律与匀变速直线运动的综合(主要体现在力学、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式)。 (2)动量和能量的综合(是解决物理问题中一个基本的观念,一定要加强这方面的训练,也是每年必考内容之一); (3)以带电粒子在电场、磁场中为模型的电学与力学的综合,主要有三种具体的综合形式 一是利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场中的运动;二是利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动,三是用能量观点解决带电粒子在电场中的运动。 (4)电磁感应现象与闭合电路欧姆定律的综合,用力学和能量观点解决导体在匀强磁场中的运动问题; (5)串、并联电路规律与实验的综合,主要表现为三个方面,一是通过粗略的计算选择实验器材和电表的量程,二是确定滑动变阻器的连接方法,三是确定电流表的内外接法。对以上知识一定要特别重视,尽可能做到每个内容都能过关,绝不能掉以轻心。 2、针对高考能力的要求,应做好以下几项专项训练。 高考《考试大纲》中明确表示学生应具有五个方面的能力即理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力、实验能力。针对以上能力的要求,要注意加强二个方面的专项训练。

2020届高三物理总复习热点专题训练----运动学图像问题(解析版)

2020届高三物理总复习热点专题训练----运动学图像问题 【题型归类】 类型一运动学图象的理解和应用 1.利用传感器与计算机可以绘制出物体运动的图象,某同学在一次实验中得到沿平直轨道运动小车的速度—时间图象,如图所示,由此图象可知() A.小车在20~40 s做加速度恒定的匀变速直线运动 B.20 s末小车回到出发点 C.小车在10~20 s内与20~30 s内的加速度方向相同 D.小车在0~10 s内的平均速度小于在10~20 s内的平均速度 【解析】:20~30 s和30~40 s,加速度的方向相反,A错;20 s末,正向位移最大,B错.10~20 s和20~30 s内,图线斜率符号相同,说明加速度方向相同,C对.小车在0~10 s内的位移小于10~20 s内的位移,故平均速度也小些,D 对. 【答案】:CD 2.如图所示,A、B两物体从同一点开始运动,从A、B两物体的位移图象可知下述说法中正确的是() A.A、B两物体同时自同一位置向同一方向运动 B.A、B两物体自同一位置向同一方向运动, B比A晚出发2 s C.A、B两物体速度大小均为10 m/s D.A、B两物体在A出发后4 s时距原点20 m处相遇 【解析】:由x-t图象可知,A、B两物体自同一位置向同一方向运动,且B比A

晚出发2 s,图象中直线的斜率大小表示做匀速直线运动的速度大小,由x-t图象可知,B物体的运动速度大小比A物体的运动速度大小要大,A、B两直线的交点的物理意义表示相遇,交点的坐标表示相遇的时刻和相遇的位置,故A、B 两物体在A物体出发后4 s时相遇.相遇位置距原点20 m,综上所述,B、D选项正确. 【答案】:BD 类型二两类图像的对比 3.如图甲、乙所示的位移—时间(x-t)图象和速度—时间(v-t)图象中,给出了四条曲线1、2、3、4,代表四个不同物体的运动情况,则下列说法中错误的是() A.图线1、3表示物体做曲线运动 B.x-t图象中0~t1时间内物体1和2的平均速度相等 C.v-t图象中t4时间内3的加速度大于4的加速度 D.两图象中,t2、t5时刻分别表示2、4开始反向运动 【解析】:运动图象反映物体的运动规律,不是运动轨迹,无论速度—时间图象 还是位移—时间图象只能表示物体做直线运动,故A错误;由平均速度v=Δx Δt知 x-t图象在0~t1时间内两物体的位移Δx相同,时间Δt相等,则平均速度相等,故B正确;在v-t图线中图线的斜率表示物体的加速度,在0~t4时间内的前半段图线3的斜率小于图线4的斜率,a3a4,故3的瞬时加速度不是总大于4的瞬时加速度,故C错误; x-t图线的斜率等于物体的速度,斜率大于0,表示物体沿正方向运动;斜率小于0,表示物体沿负方向运动,而t2时刻之前物体的运动沿正方向,t2时刻之后物体沿负方向运动,故t2时刻开始反向运动.v-t图象中速度的正负表示运动方向,从0~t5这段时间内速度为正,故t5时刻反向运动,故D正确.本题选错误的,故选A、C. 【答案】:AC

高三物理尖子生培优资料(1)

高三物理尖子生培优资料(1)(2017.8.23) 命题:阮文超 共点力的平衡 摩 擦 角 ?: 例1:如图所示,用绳通过定滑轮 物块,使物块在水平面上从图示位置开始沿地面 匀速直线运动,若物块与地面的摩擦因素1μ<,滑轮的质量及摩擦不计,则物块运动过程中,以下判断正确的是( )【多选】 A.绳子的拉力将保持不变 B.绳子的拉力将不断增大 C.地面对物块的摩擦力不断减小 D.物块对地面的压力不断减小 例2:如图所示,倾角45o的斜面上,放置一质量m 的小物块,小物块与斜面的动摩擦因素3μ=,欲使小物块能静止在斜面上,应对小物块再施加一力,该力最小时大小与方向是( ) A.0sin15mg ,与水平成15o斜向右 B.0sin30mg ,竖直向上 C.0sin 75mg ,沿斜面向上 D.0tan15mg ,水平向右 例3:水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平面夹角为θ,如图所示,在θ从0逐渐增 大到90°的过程中,木箱的速度保持不变,则( )【多选】 A. F 先减小后增大 B. F 一直增大 C. F 的功率减小 D. F 的功率不变 练习 1.在固定的斜面上放一物体,并对它施加一竖直向下的压力,物体与斜面间的摩擦因数为μ。求斜面倾角θ的最大值,使得当θ≤θm 时,无论竖直向下的压力有多大,物体也不会滑下。 2.倾角为θ的三角形木块静止于水平地面上,其斜面上有一滑块正向下匀速直线运动,现对其分别施加如图所示的F 1 、F 2 、F 3三个力作用,滑块仍然下滑,则地面对三角形木块的支持力和摩擦力会怎么变化?

人教版高一物理必修一第三章《相互作用》重点专题:力的正交分解(基础+培优)

力的正交分解 打卡物理:让优秀成为习惯 【好题精选】 【例题1】物体在与水平夹角为θ的力F的作用下在摩擦因数为μ的水平地面上静止,求物块受到的支持力和摩擦力。 【变式1】物体在与水平夹角为θ的力F的作用下在摩擦因数为μ的水平地面上静止 【例题2】物体A在摩擦因数为μ倾角为θ的斜面上静止,求物块受到的支持力和摩擦力。 【变式2】A物体在沿斜面向上的力F的作用下沿摩擦因数为μ倾角为θ的斜面向上匀速运动,求物块受到的支持力和摩擦力。

【例题3】物体在与竖直夹角为θ的力F的作用下在光滑墙面上向上匀速运动,求物块受到的支持力和摩擦力。 【变式3】物体在与竖直夹角为θ的力F的作用下在摩擦因数μ的墙面上向下匀速,求物块受到的支持力和摩擦力。 【例题4】如图,求绳子的拉力 【例题5】如图,球静止在斜面与挡板间,挡板竖直,求弹力

习题部分: 1.(2020·江苏高二月考)图中的大力士用绳子拉动汽车,绳中的拉力为F ,绳与水平方向的夹角为θ.若将F 沿水平方向和竖直方向分解,则其竖直方向的分力为( ) A .Fsin θ B .Fcos θ C . sin θ F D . cos F θ 2.(2020·广东茂名高一期中)如图所示,将光滑斜面上的物体的重力mg 分解为F 1、F 2两个力,下列结论正确的是( ) A .F 1是斜面作用在物体上使物体下滑的力,F 2是物体对斜面的正压力 B .物体受mg 、F N 、F 1、F 2四个力作用 C .物体只受重力mg 和弹力F N 的作用 D .F N 、F 1、F 2三个力的作用效果跟mg 、F N 两个力的作用效果相同 3.(2019·江西省靖安中学高一月考)如图所示,一光滑轻绳左端固定在竖直杆顶端,其右端系于一光滑圆环上,圆环套在光滑的矩形支架ABCD 上.现将一物体以轻质光滑挂钩悬挂于轻绳之上,若使光滑圆环沿着ABCD 方向在支架上缓慢地顺时针移动,圆环在A )B )C )D 四点时,绳上的张力分别为F a )F b )F c )F d ,则( ) A .F a )F b B .F b )F c C .F c )F d D .F d )F a

导数之恒成立存在性问题(二)(指对混合问题)-2020高三数学二轮专题复习讲义(教育机构专用)

恒成立存在性问题(二)(指对混合问题) 1. 指对同构 常用的公式 ①x x x x x e e e xe +==ln ln ②x x x x x e e e x e ln ln -== ③x x x x x e e e e x -==ln ln ④x x xe x e x x ln ln ln ln =+=+ ⑤x e x e x x x x ln ln ln ln =-=- 常用模型 ①e x a x a x a x a x a x e a x a x e x e a x x x e a x x e a a x e x a 1 ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln log >?>??>??>??>??>?> ②e x x e x e x x x e x x e x e x x x x x 1 ln ln ln ln ln ln >?>??>??>??>?>λλλλλλλλλλ

③1) 1ln()1ln() 1ln(1)1ln()1ln(>?+>?+>?++>+?+++>++a x x a x ax x e ax e x x ax e x ax ax 例1. 对下列不等式或方程进行同构变形,并写出相应的同构函数 (1)02log 2≥?-kx k x (2)0ln 1 2≥-x e x λλ (3)0ln 2≥-x m me x x (4)x x x e a ax ln )1 (2)1(+≥+ (5)x e ax x x a 2)1(2)1ln(+≥-+- (6))1(ln >≥++-x x e x a x a x (7)a a ax a e x -->)ln( (8)0ln 2=+x e x x

2020年高考高三物理二轮复习力学专题复习(含答案)

2020 年高三物理二轮复习力学专题复习 ▲不定项选择题 1.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面。着陆前的部分运动过程简化如下:在距月面15km 高处绕月做匀速圆周运动,然后减速下降至距月面100m 处悬停,再缓慢降落到月面。己知万有引力常量和月球的第一宇宙速度,月球半径约为 1.7 ×103km,由上述条件不能..估算出() A .月球质量 B .月球表面的重力加速度 C.探测器在15km 高处绕月运动的周期D.探测器悬停时发动机产生的推力 2.“民生在勤”,劳动是幸福的源泉。如图,疫情期间某同学做家务时,使用浸湿的拖把清理地板上的油渍。假设湿拖把的质量为2kg,拖把杆与水平方向成53°角,当对拖把施加一个沿拖把杆向下、大小为10N 的力F1 时,恰好能推动拖把向前匀速运动并将灰尘清理干净。如果想要把地板上的油渍清理干净,需将沿拖把杆向下的力增大到F2=25N 。设拖把与地板、油渍间的动摩擦因数相等且始终不变(可认为油渍与地板间的附着力等于拖把与地板间的滑动摩擦力,重力加速度g取10m/s2,sin53° =0.8 ,cos53° =0.6 ),那么油渍与地板间的附着力约为() A.7.7N B.8.6N C.13.3N D.20N 3.如图所示,物块 A 静止在粗糙水平面上,其上表面为四分之一光滑圆弧。一小滑块 B 在水平外力 F 的作 用下从圆弧底端缓慢向上移动一小段距离,在此过程中, A 始终静止。设 A 对 B 的支持力为F N ,地面对A 4.如图所示,一轻绳跨过光滑的定滑轮,一端与质量为10kg 的吊篮相连,向另一端被站在吊篮里质量为 50kg 的人握住,整个系统悬于空中并处于静止状态。重力加速度g=10m/s2,则该人对吊篮的压力大小为() D.F N增大,F f 不变 C .F N 减小,F f 不 变

高考物理(热点 题型全突破)专题 3 三种特殊的卫星及卫星的变轨问题天体的追击相遇问题(含解析)

专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较 比较内容赤道表面的物体近地卫星同步卫星 向心力来源万有引力的分力万有引力 向心力方向指向地心 重力与万有引力的关系重力略小于万有引力重力等于万有引力 线速度 v1=ω1R v 2= GM R v3=ω3(R+h)= GM R+h v1<v3<v2(v2为第一宇宙速度) 角速度 ω1=ω自ω 2= GM R3 ω3=ω自= GM R+h3 ω1=ω3<ω2 向心加速度 a1=ω21R a2=ω22R= GM R2 a3=ω23(R+h) = GM R+h2 a1<a3<a2 卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。 【示例1】 (多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( ) A.v1>v2>v3B.v1<v3<v2 C.a1>a2>a3D.a1<a3<a2 【答案】BD 【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同

步卫星和近地资源卫星来说,满足v = GM r 、a =GM r 2,可知v 3<v 2、a 3<a 2。故选项B 、D 正确。 【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( ) A.a 1a 2=r R B.a 1a 2=r 2 R 2 C.v 1v 2=r R D.v 1v 2= R r 【答案】: AD 【示例3】(2016·四川理综·3)国务院批复,自20XX 年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3 【答案】 D 【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2 r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mm r 2=ma ,由题目中数据可以得出,r 1a 2>a 3,选项D 正确. 【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )

高考物理培优专题限时训练(十一)含答案

培优专题限时训练11带电粒子在磁场中的运动1.如图所示,O'PQ是关于y轴对称的四分之一圆,在PQMN区域有均匀辐向电场,PQ与MN间的电压为U。PQ上均匀分布带正电的粒子,可均匀持续地以初速度为零发射出来,任一位置上的粒子经电场加速后都会从O'进入半径为R、中心位于坐标原点O的圆形匀强磁场区域,磁场方向垂直xOy平面向外,大小为B,其中沿+y轴方向射入的粒子经磁场偏转后恰能沿+x轴方向射出。在磁场区域右侧有一对平行于x轴且到x轴距离都为R的金属平行板A和K, 金属板长均为4R, 其中K板接地,A与K 两板间加有电压U AK>0, 忽略极板电场的边缘效应。已知金属平行板左端连线与磁场圆相切,O'在y 轴(0,-R)上。(不考虑粒子之间的相互作用力) (1)求带电粒子的比荷; (2)求带电粒子进入右侧电场时的纵坐标范围; (3)若电压U AK=,求到达K板的粒子数与进入平行板总粒子数的比值。 2.如图为一装放射源氡的盒子,静止的氡核Rn)经过一次α衰变成钋Po,新核Po的速率约为2×105 m/s。衰变后的α粒子从小孔P进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B=0.1 T。之后经过A孔进入电场加速区域Ⅱ,加速电压U=3×106 V。从区域Ⅱ射出的α粒子随后又进入半径为r=m的圆形匀强磁场区域Ⅲ,该区域磁感应强度B0=0.4 T、方向垂直纸面向里。圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M和圆形磁场的圆心O、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为=5×107 C/kg。

(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置。 3.(2018年3月新高考研究联盟第二次联考)一台质谱仪的工作原理如图1所示。大量的甲、乙两种离子以0到v范围内的初速度从A点进入电压为U的加速电场,经过加速后从O点垂直边界MN进入磁感应强度为B的匀强磁场中,最后打到照相底片上并被全部吸收。已知甲、乙两种离子的电荷量均为+q、质量分别为2m和m。不考虑离子间的相互作用。 图1 图2 (1)求乙离子离开电场时的速度范围;

2020年高考物理热点题型归纳与精讲(含2019真题)-专题31 光电效应

2020年高考物理热点题型归纳与精讲-专题31 光电效应 【专题导航】 目录 热点题型一光电效应现象和光电效应方程的应用 (1) 热点题型二光电效应的图象问题 (3) (一)对E k-ν图象的理解 (4) (二)对I-U图象的理解 (5) (三)对Uc-ν图象的理解 (7) 热点题型三对光的波粒二象性的理解 (8) 【题型演练】 (9) 【题型归纳】 热点题型一光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率. (2)光电效应中的“光”不是特指可见光,也包括不可见光. (3)逸出功的大小由金属本身决定,与入射光无关. (4)光电子不是光子,而是电子. 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大; (2)光子频率高→光子能量大→光电子的最大初动能大. 3.定量分析时应抓住三个关系式 (1)爱因斯坦光电效应方程:E k=hν-W0. (2)最大初动能与遏止电压的关系:E k=eU c. (3)逸出功与极限频率的关系:W0=hνc. 4.区分光电效应中的四组概念 (1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发

射出来的电子,其本质是电子. (2)光电子的动能与光电子的最大初动能:电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能. (3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关. (4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量. 【例1】(2018·高考全国卷Ⅱ)用波长为300 nm 的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10 - 19 J .已知普朗克常量为 6.63×10 -34 J·s ,真空中的光速为3.00×108 m·s - 1.能使锌产生光电效应的单色光的最 低频率约为( ) A .1×1014 Hz B .8×1014 Hz C .2×1015 Hz D .8×1015 Hz 【答案】B 【解析】设单色光的最低频率为v 0,由E k =hv -W 0知E k =hv 1-W 0,0=hv 0-W 0,又知v 1=c λ,整理得v 0= c λ-E k h ,代入数据解得v 0≈8×1014 Hz. 【变式1】.(2019·山东泰安检测)如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K 上时,电 路中有光电流,则 ( ) A .若增加电路中电源电压,电路中光电流一定增大 B .若将电源极性反接,电路中一定没有光电流产生 C .若换用波长为λ1(λ1>λ0)的光照射阴极K 时,电路中一定没有光电流 D .若换用波长为λ2(λ2<λ0)的光照射阴极K 时,电路中一定有光电流 【答案】D 【解析】光电流的强度与入射光的强度有关,当光越强时,光电子数目会增多,初始时电压增加光电流可能会增加,当达到饱和光电流后,再增大电压,光电流不会增大,故A 错误;将电路中电源的极性反接,电

相关主题
文本预览
相关文档 最新文档