当前位置:文档之家› 电力变压器课程设计

电力变压器课程设计

电力变压器课程设计
电力变压器课程设计

1 前言

随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。

电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。

本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台

WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。

图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统

2.1 发电机组

该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。

2.1.1 原动机

在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。

在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

构相同,都是由定子和转子构成,其中定子包括主磁极,机座,换向极,电刷装置等,转子包括电枢铁芯,电枢绕组,换向器,轴和风扇等。将直流电源通过电刷接通电枢绕组,电枢导体中就有电流流过,由于电机内部有磁场的存在(由定子中的永磁体或励磁绕组产生),则根据电磁力定律(毕奥-萨伐电磁力定律)可知载流的转子(即电枢)导体将受到电磁力F的作用,(其中F=∑dF=i∑dl B,B为磁场的强度;l为电枢绕组的长度;i为所加直流电流)式中的电磁力F、磁场B、和载流导体l的关系是由左手定则(又称电动机定则)确定的。导体产生的电磁力都作用于转子,使转子在该电磁力矩作用下旋转,向外输出机械功率,以便拖动发电机转子的旋转。

为了满足电力系统的需求以及实验的要求,需要调节发电机转子的转速,即要调节原动机的转速。发电机运行时的频率和有功功率分配情况取决于原动机的调速特性。各种原动机调速系统在调速功能上,一般主要包含转速反馈输入、控制调节和执行机构输出这几个环节上(有些调速器,如一些用于发电机的柴油机,在调速时附加上负荷输入,作为转速反馈的补偿)。其转速反馈环节的主要作用是感知发电机的实际转速,如机械调速器的飞铁,电子调速器的磁电式传感器等。控制调节环节的作用是,将反馈转速的输入,根据调速器自身的结构(机械式调速器)或调速算法(数字式电子调速器),转换成控制输出。而执行机构的作用是将控制输出转换成可调节转速装置的动作(如柴油机上的油泵的齿条位移)。对于电子调速器而言,一般这几个环节在结构上比较清楚,而对另一些调速器,如机械式调速器或机械液压调速器,则往往是将其中的一些环节结合在一起。这样就形成了直接作用调速器和间接作用调速器。

目前的电子调速器按控制器分为模拟式和数字式两类。电子调速器的工作是用转速调节电位器设定需要的转速。传感器通过机械调速器的飞铁,电子调速器的磁电式传感器等感知发电机实际转速的装置测量发动机转速实际值,并送至控制器,在控制器中实际值与设定值相比较,其比较的差值经控制线路或控制算法程序按设计的控制规律整理或运算,再经放大器驱动执行器输出轴,使调节转速装置的动作(如柴油机上的油泵的齿条位移,执行器输出轴通过调节连杆拉动喷油泵齿杆,进行供油量的调节),从而达到保持此设定转速的目的。一般电子调速器可以根据使用场合的需要选择稳态调速率的大小,实现有差或无左调节。有的还与附件装置配合,可实现自动并车等功能。

在本实验系统中,有时需要调节同步发电机的转速,此时就需要通过改变直流电动机(模拟原动机)的转速从而调节同步发电机的转速。直流电动机的调速方式分为两种,

一种是调节其电枢电压来改变电机出力,即是调节其转子上的电压,可以通过改变通入电枢绕组中电流的方式来实现;另一种是通过改变电动机励磁绕组中的电流,即改变定子线圈中的电流,从而改变磁场的强度来实现电动机的调速。在本实验台中,直流电动机(模拟原动机)的励磁为恒定方式,因此我们可以通过调节其电枢电压实现直流电动机的调速,最终达到调节同步发电机转速的目的。

直流电动机在U=U N =常值时,转速n 与电磁转矩T em 之间的关系曲线n=f(T em )称为机械特性,其基本性质与工作特性中的速率特性相同。对应于电枢回路电阻R a +R j (R j 为串入电枢回路的调节电阻,R j =0时为自然机械特性,R j ≠0为人工机械特性),I a =T em /C T Φ代入式(2.1) 20em d T T T J

dt

Ω=++ (式2.1) 可得式(2.2)为: 2()

a a j a j em E E E T U I R R R R U n T C C C C -++==-ΦΦΦ (式2.2) 称之为机械特性方程式。

直流电动机(模拟原动机)的电枢电压是由市电380V 交流电源通过整流变压器降压后,经可控硅整流再通过平波电抗器平波后作为供电电源的。由于输入动模发电机的机械功率来源于直流电动机,所以直流电动机的调速代表着动模发电机的调速系统。输入直流电动机的电流一般由可控硅三相全波整流装置提供,由三相交流电源(U a 、U b 、U c )可控硅全波整流桥、平波电抗器(L )和直流电动机(D )构成的直流机调速系统主电路结构框图如下图2.2所示。

图 2.2 直流电动机调速系统主电路结构框图

可控硅全波整流桥的六个触发脉冲分别为:A+,A-,B+,B-,C+,C-。平波电抗器用来限制整流回路电流I 的波动。直流电动机的输出功率与其输入电流成正比,所以调节其输

入电流就可控制输入发电机的机械功率。可控硅的导通触发角度正比于整流装置的输出电压,该电压等于电动机转子的感应电势,又正比于转子的转速,所以调节可控硅的导通触发角度等于调节了转速。

可控硅的三相全波整流技术已经很成熟了,主要内容包括:信号同步、同步移相控制、可控硅触发、转速和电流的双闭环比例积分无静差调节。利用可控硅三相全波整流的直流电动机调速原理框图如下图2.3所示。

图 2.3 直流电动机调速原理框图

根据同步移相控制方式的不同,可分成四类:锯齿波移相控制、国产KC (KJ)系列集成移相控制、单片机移相控制和锁相环移相控制。实现前两种方式的模拟器件多,需要三相的同步信号,抗干扰能力强但结构复杂;第三种方式只需要一相的同步信号,可实现利用开关量或模拟量进行移相控制,控制方法灵活但抗干扰能力差;利用锁相环移相控制只需一个相同步信号,便可形成精确的间隔60°的六个触发脉冲,触发脉冲具有很好的对称性和一致性,能够自动跟踪电网频率和相位的波动,电路结构简单并且抗干扰能力强。一般可控硅整流调速装置的时间常数较小,其设计目的是保证直流电动机的转速和输入转矩恒定[1]。

因此,可以通过改变可控硅的导通角调节电枢电压,从而完成对于发电机转速的调节。可控硅的控制是由实验操作台“操作面板”左下部的“TGS-04型微机调速装置”完成。

本实验台提供了三种不同的开机方式:

(1)模拟方式开机,它是通过调整指针电位器来改变可控硅输出电压;

(2)微机手动开机方式,它是通过增速、减速按钮来改变发电机的转速;

(3)微机自动开机方式,它是由微机自动将机组升到额定转速,并列之后,通过增速、减速按钮来改发电机的功率。

同步发电机的开机运行必须给其原动机提供一个电源,使发电机组逐步运转起来。

传统方法是用人工的方法调节其电枢或者励磁电压,使发电机组升高或降低转速,达到预期的转速。但是这种方法已逐渐不适应现代设备的高质量要求,采用微机调速装置既可以用传统的人工调节方法,又可以跟踪系统频率进行自动的调速,这样既简单又快速地达到系统的频率,具有很好的效果。

图2.4 TGS-04型微机调速装置面板图

TGS-04型微机调速装置面板包括:12位LED数码显示器,8个信号指示灯,6个操作按钮和一个多圈指针电位器等(其面板图如图2.4所示),具体介绍如下:(1)两个6位LED数码显示器:当发电机开机时,分别显示发电机转速和输出控制量(最大控制量为10V;n为转速、F为系统频率、C为控制量);当发电机并网时,分别显示输出控制量和发电机对无穷大系统的功率角。( 为功率角)

(2)信号指示灯11个:检查输出量是否为零指示灯一个,即“输出零”指示灯,当控制量为零时亮;开机方式选择指示灯三个,即“模拟方式”、“微机自动”、“微机手动”指示灯,当选中某一方式时,对应灯亮;并网信号指示灯一个,即“并网”指示灯,当发电机开关合上时亮光;装置运行指标灯一个,即“微机故障”指示灯,闪烁时表示微机调速装置运行正常;监视测速传感器运行指示灯一个,即“光电故障”指示灯;增减速操作指示灯二个,即“增速”、“减速”指示灯,当按增、减速按钮。

(3)操作按钮分4个区,共6个按钮:开机方式选择区有2个按钮,一个为模拟方式按钮,另一个为微机方式的自动/手动选择按钮;显示切换按钮一个,可进行“发电机转速”、“控制量”、“功率角”之间的显示切换;微机调节区有2个按钮,即为“增

速”、“减速”操作;停机/开机按钮一个,按下为开机命令,松开为停机命令。

(4)模拟调节区1个:模拟调节指针电位器一个,即为模拟方式下的手动调节。

“TGS-04型微机调速装置”是针对大、中专院校教学和科研而设计的,能做到最大限度地满足教学科研灵活多变的需要。本调速系统具有测量发电机转速、测量电网频率、测量系统功角、手动模拟调节、手动数字调节、微机自动调速以及过速保护等功能。

2.1.2 发电机

发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。发电机可以分为直流发电机和和交流发电机,而交流发电机又包括同步发电机和异步发电机,在实际生产生活中,异步发电机很少采用,主要采用的还是同步发电机。交流发电机还可分为单相发电机与三相发电机。发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线圈绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。转子的励磁绕组通入直流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相交链。转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,在定子绕组内感应出交流电势。发电机带对称负载运行时,电枢电流合成产生一个同步转速的旋转磁场。定子磁场和转子磁场相互作用,会产生制动转矩。从原动机输入的机械转矩克服制动转矩而做功。发电机可发出有功功率和无功功率,所以,调整有功功率就得调节原动机的转速。转子磁场的强弱直接影响定子绕组的电压,而调发电机端电压或调发电机的无功功率必须调节转子电流。发电机的有功功率和无功功率几何相加之和称为视在功率。有功功率和视在功率之比称为发电机的功率因数(力率),发电机的额定功率因数一般为0.85。在传统的电工技术中,功率因数常采用两种方法来定义,即总功率因数λ和位移因数cosφ。其中总功率因数λ如式(2.3)

λ=p/s(式2.3)式中,p为电力设备输入侧的有功功率,单位KW;S为电力设备输入侧的视在功率,

单位KV A,φ为输入正弦电压和正弦电流的夹角。

本实验台的发电机采用的是三相同步发电机(S N=2.5kV A,U N=400V,n N=1500r.p.m),它与模拟原动机同在一个轴上。直流电动机(模拟原动机)、同步发电机经弹性联轴器对轴联结后组装在一个活动底盘上构成可移动式机组。

普通的同步发电机与异步发电机的根本区别是转子侧(特殊结构时也可以是定子侧)装有磁极并通入直流电流励磁,因而具有确定的极性。由于定子、转子磁场相对静止及气隙合成磁场恒定是所有旋转电机稳定实现机械能和电能转换的两个前提条件,因此,同步发电机的运行特点是转子的旋转速度必须与定子磁场的旋转严格同步,并因此而得名。设产生定子侧旋转磁场的交流电流的频率为f,电机的极对数为p,则同步电机转速n与电流频率f和电机的极对数p的基本关系如式(2.4)。

60f

n

(式2.4)

p

我国规定交流电网的标准工作频率(简称工频)为50Hz,即同步速与极对数成正比,最高为3000r/min,对应于p=1。极对数越多,转速越低。

同步发电机被原动机拖动到同步转速,转子励磁绕组通入直流励磁电流而定子绕组开路时的运行工况称之为空载运行。此时,定子电流为零,电机内的磁场仅由转子励磁电流I f及相应的励磁磁动势F f单独建立,称为励磁磁场。既交链转子,又经过气隙交链定子的磁通,称为主磁通。被原动机带动到同步转速的旋转磁场,其磁密波形沿气隙圆周近似作为正弦分布(由设计保证),其基波分量的每极磁通量用Φ0表示。Φ0将参与电机的机电能量转换过程。

2.1.3 测速装置

检测装置的性能主要反应在其静态特性和动态特性上。静态特性包括精度、分辨率、灵敏度、迟滞、零漂与温漂。动态性能主要指检测装置输出量对随时间变化输入量的响应特性。为保证同步与定速比控制系统的控制精度,要求检测装置工作可靠,抗干扰能力强;满足分辨率、速度控制的实时性要求;同时兼顾使用维护方便,易于实现高速的动态测量和处理,易于实现自动化,成本低。

对于电机转速的检测通常使用测速发电机和光电编码盘。测速发电机体积较大,安装维修也不方便,而检测电压信号易受环境干扰,目前大多数控制系统均使用光电编码

盘对转速和位置进行检测。

转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。目前,应用较多的是电子式定时计数法,即由增量式光电编码器将电机转速转换成脉冲信号,然后由单片机对信号进行处理,其本质就是对转子旋转引起的周期脉冲信号的频率进行测量。假设测得的脉冲频率为f,编码器每转脉冲数为P,则对应的实际转速为60fP(r/min)。这样对转速测量方法的讨论就是对脉冲频率进行高精度快速测量方法的讨论。在频率的工程测量中,目前使用最为广泛的是电子式定时计数测量方法,这种频率测量方法一般有三种:测频率法、测周期法、多周期测频法。

2.1.4 功率角指示器

同步发电机组装有功率角指示器装置,用它来测量发电机电势与系统电压之间的相角δ,即发电机转子相对位置角。

一般实验室是采用闪光测速原理来测量功角δ。即在发电机轴上固定一个圆盘,根据发电机的极数,在圆盘上画上相应数量的箭头,如发电机是四极的或者六极,则在圆盘上相应画上四箭头或者六箭头(如图2.5所示)。

t

四极六极

闪光灯采用普通日光灯管,因为日光灯管要在两端电压达到一定值时,才会放电发光,因此,加上交流电压时它便按交流电压的频率变化而闪光。正常时,由于所加交流电压较高,闪光持续时间较长。如果控制交流电压频率的幅值或使之波形变为尖峰波,则闪光持续时间缩短,只有它在电压达到最大值瞬刻才闪光。这样,日光灯管的闪光时刻便可以代表所施电压的相位,并且转盘箭头清晰。

2.2 实验操作台

实验操作台是由输电线路单元、微机线路保护单元、功率调节和同期单元、仪表测量和短路故障模拟单元等组成。其中微机线路保护单元是由“YHB-Ⅲ型微机线路保护”装置组成,具有过流选相跳闸、自动重合闸功能,备有事故记录功能;负荷调节和同期单元是由“TGS-04型微机调速装置”、“WL-04B 微机励磁调节器”、“HGWT-03微机准同期控制器”等微机型的自动装置和其相对应的手动装置组成。

2.2.1 输电线路单元

输电线路采用双回路远距离输电线路模型,每回线路分成两段,并设置中间开关站,使发电机与系统之间可构成四种不同联络阻抗,便于实验分析比较。“YHB-Ⅲ型微机线路保护”装置是专为实验教学设计,有利于实验分析。在实验中可以观测到线路重合闸对系统暂态稳定性影响以及非全相运行状况。

实际中,电力线路包括输电线路和配电线路。其中架空线路是将导线通过杆塔架设在露天,它是由导线、避雷针(或称架空地线)、杆塔、绝缘子和金具等主要元件组成。而电缆线路一般是将埋在地底下的电缆沟或管道中。

输电线路的电气参数是指线路的电阻r 、电抗x 、电导g 和电纳b 。单位长度多股绞线的直流电阻计算方法如式(2.5),

K r nS

ρ= Ω/km (式2.5) 其中,n 为绞线中股数;K 为绞入系数。

输电线路的电抗是系统分析、计算中一个重要参数,在高压线路中,电抗占有主要地位。当导线中流过交流电流时,在导线周围产生磁场H 和电场E ,导线的电导由式(2.6)求得。

2x fL π= (式2.6)

输电线路电导主要由沿绝缘子泄漏和电晕所决定,沿绝缘子的泄漏通常很小。可用导线对地电导来表示,如式(2.7)。

3210g

P g U -?=? S/km (式2.7)

输电线路的电纳是与导线周围电厂有关,当导线中通有交流电流时,其周围就存在电场,电纳和电容有如式(2.8)。

2B C fC ωπ== (式2.8)

2.2.2 同步发电机的励磁系统

同步发电机励磁控制系统是同步发电机的重要组成部分,直接影响发电机的运行特性。其主要任务是向同步发电机的励磁绕组提供一个可调的直流电流(电压),控制机端电压恒定,以满足发电机正常发电的需要,同时控制发电机组间无功功率的合理分配,保证同步发电机并列运行的稳定性,以满足电力系统安全运行的需要。无论在稳态运行或者暂态运行过程中,同步发电机的运行状态在很大程度上与励磁有关。优良的励磁系统不仅可以保证发电机运行的可靠性和稳定性,而且可以有效地提高发电机及其相联的电力系统的技术经济指标[2]。随着控制理论的发展和新技术、新器件的不断出现,近年来人们对励磁系统的控制方法和可靠性技术作了大量的研究,使励磁系统的性能和可靠性得到了一定的提高。总体来说,励磁调节方式从手动发展到了自动;调节功能从单一电压调节发展到多功能的励磁控制;调节规律从线性励磁调节发展到非线性励磁调节;在实现手段上,从模拟调节器直至数字式励磁调节器;在功能上,集成了参数优化和自动诊断等模块。

励磁系统一般包括由以下几个部分组成,其结构如图2.6所示,

(1)励磁功率单元;

(2)励磁调节器;

(3)保护和测量单元。

励磁功率单元包括励磁机或励磁变压器、可控硅整流器等,它向同步发电机的励磁绕组提供直流励磁电流:励磁调节器可根据发电机的运行状态,自动调节励磁功率单元输出的励磁电流的大小,以满足发电机运行的需要;保护和测量单元包括灭磁及过电压保护以及起励单元等。

图2.6 励磁系统组成单元及相互联接关系

在正常运行或事故情况下,同步发电机都需要调节励磁电流,励磁控制系统的作用主要包括三个方面:

(1) 维持发电机电压到给定水平。在发电机正常运行条件下,励磁控制系统应维持发电机端(或给定控制点)电压在给定水平。通常发电机机端电压会随着发电机负荷变化而变化,这时,励磁系统将自动地增加或减少发电机的励磁电流,使机端电压维持在一定的水平上。

(2) 调节并列运行发电机间的无功功率分配。多台发电机在母线上并列运行时,它们输出的有功决定于从原动机输入的轴功率,而发电机输出的无功则和励磁电流有关,控制并联运行的发电机之间无功分配是励磁控制系统的一项重要功能.

(3) 提高电力系统的稳定性。励磁控制系统可以通过维持机端电压提高发电机静态稳定极限,对暂态稳定的贡献则主要体现在增加人工阻尼消除第二摆或多摆失步方面。

另外,除以上三点外,励磁系统还具有保护同步发电机的作用。

同步发电机励磁控制系统是由同步发电机及其励磁系统共同组成的反馈控制系统,励磁调节器是励磁控制系统的主要部分。励磁调节器的主要功能是感受发电机电压的变化,对励磁功率单元施加控制作用。在励磁调节器没有改变给出的控制命令之前,励磁功率单元不应该改变输出值。常规的半导体励磁调节装置主要由测量比较、综合放大和移相触发三个基本单元组成PI。每个单元再由若干环节组成。测量比较单元由电压测量、比较整定和调差环节组成,电压测量环节还包括整形电路、滤波电路等,用来测量经过变换的与发电机端电压成比例的直流电压并与相应于发电机额定电压的基准电压相比较,得到发电机端电压与给定值的偏差以用来进行后续的控制规律运算。同时该环节还要测量发电机的其它参数,供给保护、限制程序使用。综合放大单元对测量等信号起综合和放大的作用。为了得到调节系统良好的静态和动态特性,并满足运行要求,除了由

基本装置来的电压偏差信号外,有时还必须要求综合辅助装置来的稳定信号、限制信号、补偿信号等其它信号。综合放大后的控制信号输入到移相触发单元。

移相触发单元包括同步、移相、脉冲形成和脉冲放大等环节,该单元根据输入的控制信号的变化,改变输出到可控硅的脉冲相位,即改变控制角a ,从而控制可控硅整流电路的输出,以此调节发电机的励磁电流。为了触发脉冲能可靠地触发可控硅,往往需要采用脉冲放大环节进行功率放大。同步信号取自可控整流装置的主回路,保证在可控硅阳极电压为正半周时发出,使主回路与控制脉冲同步。励磁系统中通常还有手动部分,当励磁调节器自动部分发生故障时,可切换到手动方式运行[3]。

自并激励磁方式发电机机端电压与励磁电压之间的关系如式(2.9),

∑?--=U I RX U n U fd K G fd πα3cos 35.1 (式2.9)

其中:∑?U 为电压降之和;X K 为换流电抗;U fd 为晶闸管整流输出电压;U G 为发电机机端电压;n 为励磁变压器变比;R 为励磁回路直流电阻[4]。

微机励磁调节器由微型计算机、外围硬件、系统软件和应用软件组成。其基本工作原理:测量硬件对输入量进行A /D 转换并对反馈量进行定时采样,微机按采样值和调节规律计算出控制量,由数字触发器送出控制角为a 的触发脉冲,经脉冲放大后,触发相应的晶闸管,形成闭环励磁调节系统[5]。

为实现精确调节同步发电机的机端电压和控制同步发电机的无功功率,励磁调节器必须连续比较机端电压实际值与给定值,并实时改变晶闸管的控制角,以保证励磁电压

图2.7 励磁系统一次接线图

对工况的变化做出快速反应[6]。

在本实验台中,同步发电机励磁系统如图2.7所示,其调节有三种励磁方式可以选择:

(1)手动励磁方式。它是市电交流220V通过变压器TCL降压后,经自耦调压器TSL调至需要电压,再通过整流桥ZL整成直流。此时KM3闭合,电磁继电器KM2的常开触点闭合,常闭触点断开,从而向同步发电机励磁绕组供电。励磁调节由试验人员手动操作自耦调压器来实现;

(2)微机它励方式。它是市电交流380V通过变压器TC2降压后,经可控硅整流向发电机励磁绕组供电;

(3)微机自并励方式,它是同步发电机机端电压通过变压器TC2降压后,经可控硅整流向发电机励磁绕组供电。

图2.8 WL-04B微机励磁调节器面板图

可控硅的整流过程就是通过“WL-04B微机励磁调节器”实现的。其励磁方式可选择:它励、自并励两种;控制方式可选择恒UF、恒IL、恒α、恒Q等四种;设有定子过电压保护和励磁电流反时限延时过励限制、最大励磁电流瞬时限制、欠励限制、伏赫限制等励磁限制功能;设有按有功功率反馈的电力系统稳定器(PSS);励磁调节器控制参数可在线修改,在线固化,灵活方便,并具有实验录波功能,可以记录UF、IL、UL、P、Q、α等信号的时间响应曲线,供实验分析用。

微机励磁调节器面板包括:8位LED数码显示器,若干指示灯和按钮,强、弱电测试孔以及串行通讯接口等,其调节器面板图如上图2.8所示。

2.2.3 同步发电机的准同期并列

在日常的生产生活中,一般的发电厂总是有多台同步发电机并联运行,而更大的电力系统亦必然有多个发电厂并联而成。因此,研究同步发电机投入并联的方法以及并联运行的规律,对于动力资源的合理利用、发电设备的运行和维护、供电的可靠性、稳定性和经济性等,具有极为重要的意义。发电机并网是电力系统的一项经常、重要操作,不恰当的并列可能造成电气设备的损坏并对系统的稳定产生影响[7]。

根据系统运行情况的需要,有时会将一台或多台同步发电机退出或投入运行,在某些情况下,甚至需要将己被解列为两部分的电力系统重新恢复并列运行同步发电机投入电力系统并列运行的操作,或者电力系统解列的两部分进行并列运行的操作称为并列或同期操作[8]。电力系统动态模拟要历经几个过程,当发电机转速调节好以后,发电机要和无穷大系统并列运行。这里的并列不是简单的将发电机组高压侧断路器合上,而是不断调节发电机运行参数,在发电机的电压、频率和功角满足规定要求时,才合上断路器

[9]。

为了提高供电的可靠性和电能质量,电力系统中的发电机通常都采用并联运行。根据系统运行情况的需要,有时会将一台或多台同步发电机退出或投入运行,在某些情况下,甚至需要将己被解列为两部分的电力系统重新恢复并列运行同步发电机投入电力系统并列运行的操作,或者电力系统解列的两部分进行并列运行的操作称为并列或同期操作。

同期控制器需要解决的关键技术问题是无扰动合闸。所谓有扰动,就是指断路器合闸瞬间的合闸冲击电流不等于零。实践证明,在发电机并列瞬间,往往伴随有冲击电流和冲击功率。这些冲击,将引起系统电压瞬间下降。如果并列操作不当,冲击电流过大,还可能引起机组大轴发生机械损伤,或者引起机组绕组电气损伤。过大的合闸电流会发生大量热量使定子绕组过热,从而使绝缘加速老化;过大的合闸电流还会产生危险的电动力,使定子绕组变形受损;同时,合闸电流的有功分量还会产生有功功率冲击;对机组转速施加过大的冲击力矩,严重时会损坏同步发电机的联轴器;此外,过大的冲击电流对电力系统稳定也会产生不利影响。所以必须严格控制合闸冲击电流,以延长发电机的使用寿命,避免意外事故发生。

同步发电机与电力系统并列示意图如图2.9所示。在相量上,G U 和S

U 以不同的角

速度G ω和S ω旋转。由等效电路可知:断路器两侧的电动势相量不等,或两电动势相量

差不等于零是产生扰动的根本原因。若要消除扰动,就要做到合闸瞬间断路器两侧的电动势相量相等,即电动势相量差为零。

发电机并列运行是一项经常性操作。在系统发生事故出现功率缺额时,也往往要求将备用发电机组迅速投入电网。因此,并列操作在电力系统中是频繁而必要的。同步发电机并联投入电网时,为避免发生电磁冲击和机械冲击,避免并列操作不当而影响电力系统的安全运行,发电机的同期并列,应满足下列两个基本要求:

(1) 发电机投入瞬间冲击电流应尽可能小,其最大值不应超过允许值;

(2) 发电机组并入系统后 ,应尽可能快的进入同步运行状态。

在实际操作中,可以通过以下五个方面做具体的判断:

(1) 待并网发电机电压和并列点的系统侧电压的波形相同;

(2) 待并网发电机频率和并列点的系统侧频率相等;

(3) 待并网发电机电压和并列点的系统侧电压的幅值相等;

(4) 待并网发电机电压和并列点的系统侧电压相位差为零;

(5) 待并网发电机相序和并列点的系统侧相序相同;

前四点是交流电磁量恒等的基本条件,最后一点是多项系统相容的基本要求。

并列的方式可分为两种:准同期并列和自同期并列(特殊条件下,还有非同期并列方式)。

(1)准同期并列:它是将发电机调整到完全符合并联条件后的合闸并网操作过程称

为准确同步法。它是待并列机组并列前,转子先加励磁电流,并调整到使发电机电压与

X '' G

U S U 图 2.9 同步发电机与系统并列等效

系统电压相等,同时调整发电机转速使发电机频率与系统频率相等。当上述条件基本满足时,在相位重合前一定时期发出合闸脉冲,合上发电机与系统之间的并列断路器,这种并列称为准同期并列。就调整过程中而言,常用同步指示器来判断条件的满足情况。最简单的同步指示器有三组相灯组成,并有直接接法和交叉接法两种。

采用准同期并列的优点是:在正常情况下,并列时产生的冲击电流比较小,对系统和待并发电机均不会产生什么危害,因而在电力系统中得到广泛采用。准同期并列的缺点是: 虽然准确同步法投入并联在合闸时没有明显的电流冲击,但因同期时需调整待并发电机的电压和频率,使之与系统电压、频率接近,其操作比较复杂,这就要花费一定时间,使并列时间加长,不利于系统发生事故出现功率缺额时及时投入备用容量。

(2)自同期并列:它是待并发电机并列时,将发电机励磁绕组经限流电阻短路,转子先不加励磁,调整待并发电机的转速,当发电机转速接近同步转速时(正常情况下频率差允许为(2-3)%,事故情况下可达10%),首先合上机端断路器,接着立刻合上励磁开关,给转子加励磁电流,最后利用自整步作用实现同步,在发电机电势逐渐增长的过程中由系统将发电机拉入同步运行。

自同期并列最大的优点是投入迅速,操作简单,不需要添加复杂设备。当系统发生事故要求备用机组迅速投入时,采用这种并列方式比较有效。它的缺点是:并列过程中,合闸及投入励磁时均有较大的电流冲击,对发电机不利。此外,自同期初期,待并发电机不加励磁,它将从系统吸收无功功率,从而导致系统电压突然降低,影响供电质量。因此,对自同期的应用规定了较严格的限制条件。

应用自同期并列方式将发电机投入系统时,因为发电机不加励磁,这相当于系统经过很小的发电机纵轴次暂态电抗心而短路,所以合闸时的冲击电流较大,这会引起系统电压的短时下降。自同期合闸时最大冲击电流的周期分量sh I 可由式(2.10)求得:

)("X X U I d sh += (式2.10)

式中 "d X — 发电机纵轴次暂态电抗;

X — 系统电抗;

U — 系统电压。

发电机母线电压t U 可由式(2.11)求得: )(""X X UX U d d t += (式2.11)

可以看出,自同期合闸时的最大冲击电流必然小于发电机出口三相短路时的电流,一般来说发电机是应该经受得起这一冲击电流的。但由于这种并列操作是经常进行的,为了避免由于多次使用自同期产生的积累效应而造成绝缘缺陷,所以应对自同期使用作一定的限制[9]。

本实验台采用的同步发电机并网方式是准同期方式,是通过HGWT-03微机准同期控制装置实现的,它的控制器面板如图2.10所示。

图2.10 HGWT-03微机准同期控制器的面板图

它按恒定越前时间原理工作,主要特点如下:(1)可选择全自动准同期合闸;(2)可选择半自动准同期合闸;(3)可测定断路器的开关时间;(4)可测定合闸误差角;(5)可改变频差允许值,电压差允许值,观察不同整定值时的合闸效果;(6)按定频调宽原理实现均频均压控制,自由整定均频均压脉冲宽度系数,自由整定均频均压脉冲周期;观察不同整定值时的均频均压效果;(7)可观察合闸脉冲相对于三角波的位置,测定越前时间和越前角度;(8)可自由整定越前(开关)时间;(9)输出合闸出口电平信号,供实验录波之用。

微机自动准同期控制器由三个基本单元组成:(1)合闸控制单元;(2)均频控制单

元;(3)均压控制单元。控制器的主要输入信号有:(1)断路器系统侧a、b相电压U Sa 和U Sb;(2)断路器发电机侧a、b相电压U Ga和U Gb;(3)通常将和短路后接大地。控制器的主要输出信号有:(1)合闸;(2)加速和减速;(3)升压和降压。

合闸控制单元的作用是:检测准同期条件(电压差、频率差和相位差),当电压差和频率差条件满足时,选择合适时机(相位差等于超前相角)发出合闸命令;当电压差和/或频率差条件不满足时,闭锁合闸。

均频控制单元的作用是:当频率差条件不满足时,根据频率差的方向,相应发出加速或减速命令给原动机调速器,调整调速器的速度给定值,使发电机频率(转速)向系统频率靠近,进而满足频率差条件。调速命令一般以脉冲形式输出,调速脉冲的宽度和/或调速脉冲的频率,根据频率差的大小按一定控制准则计算得出。

均压控制单元的作用与均频控制单元相类似,即用以在电压差条件不满足时尽快创造满足要求的电压条件。均压(升压和减压)脉冲送往自动励磁调节器用以调节励磁调节器的极端电压给定值。频率差条件和电压差条件的创造,使准同期控制器和原动机调速器、自动励磁调节器三个自动装置协同完成的。

微机自动准同期控制器由微机系统、输入通道和输出通道三部分组成。微机系统的硬件因CPU而异,它是准同期控制器的核心。输入通道的任务是为微机提供准同期条件的各种信息,主要是电压(发电机电压和系统电压)、变送器和频率(发电机频率和系统频率)传感器,微机借助它们,可以检测到发电机电压和频率、系统电压和频率、以及断路器两侧电压相量的相位差。输出通道的任务是输出均频、均压脉冲和合闸脉冲,实现均频均压和合闸并列的目的。

微机自动准同期控制器的软件框图如下,其中图2.11为合闸控制软件框图,图2.12为测频软件框图。

图2.11 合闸控制软件框图

电力变压器继电保护设计

电力变压器继电保护设计 Final revision on November 26, 2020

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 57_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

115、变压器型号、铭牌的含义详解

引自电气设计工程师培训班资料 变压器型号、铭牌的含义详解 变压器型号含义 第一部分干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压,0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。 (2)相数,涵义分:单相(D);三相(S)。 (3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。 (4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。 (5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。 (6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。 (8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。 (10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 第二部分变压器型号 一、电力变压器型号说明如下:

GB148-90电气装置安装工程电力变压器施工与验收规范标准

电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规 GBJ 148 -90 主编部门:中华人民国原水利电力部 批准部门:中华人民国建设部 施行日期:1991 年 10 月 1 日 关于发布国家标准《电气装置安装工程高压电器施工及验收规》等三项规的通知(90) 建标字第 698 号 根据原国家计委计综[1986]2630 号文的要求,由原水利电力部组织修订的《电气装置安装工程高 压电器施工及验收规》等三项规,已经有关部门会审,现批准《电气装置安装工程高压电器施工 及验收规》 GBJ147-90 ;《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规》 GBJ148-90 ;《电气装置安装工程母线装置施工及验收规》 GBJ149-90 为国家标准。自 1991 年 10 月 1 日起施行。 原国家标准《电气装置安装工程施工及验收规》 GBJ232-82 中的高压电器篇,电力变压器、互 感器篇,母线装置篇同时废止。 该三项规由能源部负责管理,其具体解释等工作,由能源部电力建设研究所负责。出版发行由 建设部标准定额研究所负责组织。 中华人民国建设部 1990 年 12 月 30 日 修订说明 本规是根据原国家计委计综(1986)2630 号文的要求,由原水利电力部负责主编,具体由能源部 电力建设研究所会同有关单位共同编制而成。 在修订过程中,规组进行了广泛的调查研究,认真总结了原规执行以来的经验,吸取了部分科研成果,广泛征求了全国有关单位的意见,最后由我部会同有关部门审查定稿。 本规共分三章和两个附录,这次修订的主要容为: 1. 根据我国电力工业发展需要及实际情况,增加了电压等级为 500kV 的电力变压器、互感器的 施工及验收的相关容,使本规的适用围由 330kV 扩大到 500kV 及以下。 2. 由于油浸电抗器在 330kV 及 500kV 系统量采用,故将油浸电抗器的相关容纳入本规 。 3. 充实了对高电压、大容量变压器和油浸电抗器的有关要求,例如:运输过程中安装冲击记录 仪,充气运输的设备在运输、保管过程中的气体补充和压力监视;排氮、注油后的静置、热油循环等。 4. 根据各地的反映及多年的实践经验,并参照了联的有关标准,将器身检查允许露空时间作 了适当的修改,较以前的规定稍为灵活。 5. 根据国外引进设备的安装经验,并参照了国外的有关标准,补充了变压器、电抗器绝缘是否

三相变压器的联接方式和联结组别的判定方法

三相变压器的联接方式和联结组别的判定方法 (https://www.doczj.com/doc/2e12033751.html, 李谦) 目录 一.首端、尾端和同名端的概念 1. 变压器绕组的路端子和首尾端 2. 两个绕组的同名端 3. 首端、尾端跟同名端的关系 4. 同名端的测试方法 二.三相变压器的联结方式和联结方式的标号 1. 表示联结方式的字母符号 2. 表示联结组别的数字符号 3. 表示三相变压器结线状况的标号 三.三相变压器联结组别的判定方法 1. Y-d形结线的变压器联结组别的判定方法 2. D-y形结线的变压器联结组别的判定方法 3. Y-y形结线的变压器联结组别的判定方法 4. D-d形结线的变压器联结组别的判定方法 5. Z形变压器的联结组别的判定方法 四.根据变压器组别标号绘制接线图的方法 1. Y-y形接线的变压器结线图的绘制方法 2. Y-d形和D-y形变压器结线图的绘制方法 3. Z形变压器的结线组别的判定方法 五.三相变压器负序相量图的绘制方法 (正文) 在电力系统,三相变压器是最重要的高压电器设备之一。本文准备简单介绍三相变压器的结线原理和结线方式,并且重点介绍怎样根据结线方式来判断三相变压器的联结线组别。所谓“联结组别”实际上就是弄清楚低压绕组上的电压的相位跟对应的高压绕组上的电压相位相比时,低压落后多大角度。当计算和分析三相电路时,必须搞清楚这个问题。并作相应的技术处理,否则,否则可能酿成重大事故。 当前,国内书刊介绍的判别三相变压器的联结组别的方法有多种,基本上都是按线电压来判别的。可是,国际标准(我国已全面采用作为国家标准)中明确

规定用相电压进行判断,在IEC 标准中给出了相量示意图,但是并没有作解释。在美国的大学课本中(见文献1)介绍了相量图的画法和结线组别的分析方法。本文就是介绍这种方法的。在学习介绍过程中,作者也提出了更简化的分析判定方法。 一.首端、尾端和同名端的概念 1.变压器绕组的线路端子和首尾端 三相变压器可以是由三个单相变压器通过外部连线组成,也可以制成一个整体的三相变压器。不管用哪种方法组成三相变压器,总得要把各个端子的用途标示出来。在国家标准中把用于连接电网络导线的端子称为线路端子。高压绕组的线路端子通常是用大写的A 、B 、C 或U 、V 、W 表示;低压绕组的线路端子通常是用小写a 、b 、c 或u 、v 、w 表示。见下图。 图1 三相变压器的线路端子及其标记 通常把跟线路端子连接的绕组那端称为首端(或始端),在我国,线路端子的符号就是绕组的首端符号。也就是说,首端没有专门的符号。把同一个绕组的另一端称为尾端(或末端),高压绕组的尾端通常用大写的X 、Y 、Z 表示;低压绕组的尾端通常用小写的x 、y 、z 表示。见图1,这是我国的标记方法。 但是,在文献1中,高压侧的首端是另有符号的。所用的符号是C B A 321H 、H 或H 和H 、H H 和表示;低压侧则用C B A 321X X 、X 或X 和X 、X 和表示。尾端则没有专用符号。这点跟我们国家不同。见上图的右图。 2. 两个绕组的同名端 在交流电路里,变压器的感应电压方向是跟绕组的缠绕方向紧密相关的。但是,当画电路图时,不便画出绕组的绕线方向,怎么办呢?用标出同名端的方法来解决。什么是同名端呢?请看下图:

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

变压器型号含义大全

变压器型号的含义: 第一个字母:O表示为自耦; 第二个字母表示相数:S为三相,D为单相; 第三个字母:表示冷却方式,F为油浸风冷;J油浸自冷;P强迫油循环; 第四个字母:表示绕组数,双绕组不标;S为三绕组;F为分裂绕组; 第五个字母:表示导线材料L为铝线,铜线不标; 第六个字母:表示调压方式Z有载,无载不标; 数字部分:第一个表示变压器容量,第二个表示变压器使用电压等级. 根据的SJ-560/10,应该是3相油浸自冷容量为560KVA电压为10KV的变压器 一、SII-M-220KV A S11-变压器型号,11为设计序号,节能型产品。 M-全密封。 220kVA-表示额定容量为220千伏安 叠铁心无励磁调压油浸配电变压器,220KV A 二、scr9-500/10,s11-m-100/10 S--三相 C--浇注成型(干式变压器) 9(11)--设计序号 500(100)--容量(KVA) 10--额定电压(KV) m--密闭 r没查着 三、电力变压器型号定义 变压器型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么? D S J L Z SC SG JMB YD BK(C) DDG D-单相S-三相J-油浸自冷L-绕组为铝线Z-又载调压SC-三相环氧树脂浇注 SG-三相干式自冷JMB-局部照明变压器YD-试验用单相变压器BF(C) -控制变压器(C为C型铁芯结构DDG-单相干式低压大电流变压器 四、SFSZ9-31500/110

S:三相 F:风冷 S:三绕组 Z:有载调压 9:设计序号9型 31500:容量为31500kVA 110:一次侧额定电压110kV 变压器型号含义 干式变压器;例如,(SCB10-1000KVA/10KV/0.4KV):S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。C的意思表示此变压器的绕组为树脂浇注成形固体。B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。10的意示是设计序号,也叫技术序号。1000KVA则表示此台变压器的额定容量(1000千伏安)。10KV的意思是一次额定电压,0.4KV意思是二次额定电压。2:电力变压器产品型号其它的字母排列顺序及涵义。(1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。不对的地方请各位专家朋友指正。 变压器型号 变压器型号 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么?

电力变压器安装施工方案

电力变压器安装施工方案 一、设备及材料准备 1、变压器应装有铭牌。铭牌上应注明制造厂名、额定容量,一二次额定容量,一二次额定电压,电流,阻抗,电 压%及接线组别等技术数据。 2、变压器的容量,规格及型号必须符合设计要求。附件备件齐全,并有岀厂合格证及技术文件。 3、型钢:各种规格型钢应符合设计要求,并无明显锈蚀。 4、螺栓:除地脚螺栓及防震装置螺栓外,均应采用镀锌螺栓,并配相应的平垫圈和弹簧垫。 5、其它材料:电焊条,防锈漆,调和漆等均应符合设计要求,并有产品合格证。 二、主要机具 2、搬运吊装机具:汽车吊,汽车,卷扬机,吊链,三步搭,道木,钢丝绳,带子绳,滚杠。 2、安装机具:台钻,砂轮,电焊机,气焊工具,电锤, 台虎钳,活扳子、鄉头,套丝板。 3、测试器具:钢卷尺,钢板尺,水平尺,线坠,摇表, 万用表,电桥及测试仪器。

三、作业条件 1>施工图及技术资料齐全无误。 2、土建工程基本施工完毕,标高、尺寸、结构及预埋件强度符合设计要求。 3、屋面、屋顶喷浆完毕,屋顶无漏水,门窗及玻璃安装完好。 4、室内粗制地面工程结束,场地清理干净,道路畅通。 四、操作工艺 1、工艺流程: (1)>设备点检查 1)>设备点件检查应由安装单位、供货单位、会同建设单位代表共同进行,并做好记录。 2)、按照设备清单,施工图纸及设备技术文件核对变压器本体及附件备件的规格型号是否符合设计图纸要求。是否 齐全,有无丢失及损坏。 3)、变压器本体外观检查无损伤及变形,油漆完好无损伤。 4)、绝缘瓷件及环氧树脂铸件有无损伤、缺陷及裂纹。 (2)、变压器二次搬运 1)、变压器二次搬运应由起重工作业,电工配合。最好采用汽车吊吊装,也可采用吊链吊装。

干式变压器安装要求规范标准

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! 环氧树脂干式电力变压器安装技术要求2010-06-07 14:54:38来源: (1)前期准备 1)变压器安装施工图手续齐全,并通过供电部门审批资料。 2)应了解设计选用的变压器性能、结构特点及相关技术参 数等。 (2)设备及材料要求 1)变压器规格、型号、容量应符合设计要求,其附件,备 件齐全,并应有设备的相关技术资料文件,以及产品出厂合 格证。设备应装有铭牌,铭牌上应注明制造厂名、额定容量、 一、二次额定电压、电流、阻抗、及接线组别等技术数据。 2)辅助材料:电焊条,防锈漆,调和漆等均应符合设计要 求,并有产品合格证。 (3)作业条件 1)变压器室内、墙面、屋顶、地面工程等应完毕,屋顶防

水无渗漏,门窗及玻璃安装完好,地坪抹光工作结束,室外场地平整,设备基础按工艺配制图施工完毕。受电后无法进行再装饰的工程以及影响运行安全的项目施工完毕。 2)预埋件、预留孔洞等均已清理并调整至符合设计要求。3)保护性网门,栏杆等安全设施齐全,通风、消防设置安装完毕。 4)与电力变压器安装有关的建筑物、构筑物的建筑工程质量应符合现行建筑工程施工及验收规范的规定。当设备及设计有特殊要求时,应符合其他要求。 (4)开箱检查 1)变压器开箱检查人员应由建设单位、监理单位、施工安装单位、供货单位代表组成,共同对设备开箱检查,并做好记录。 2)开箱检查应根据施工图、设备技术资料文件、设备及附件清单,检查变压器及附件的规格型号,数量是否符合设计要求,部件是否齐全,有无损坏丢失。 3)按照随箱清单清点变压器的安装图纸、使用说明书、产品出厂试验报告、出厂合格证书、箱内设备及附件的数量等,与设备相关的技术资料文件均应齐全。同时设备上应设置铭牌,并登记造册。 4)被检验的变压器及设备附件均应符合国家现行有关规范的规定。变压器应无机械损伤,裂纹、变形等缺陷,油漆应

10KV变压器安装施工工艺标准[详]

1、变压器安装 1)变压器本体安装 (1)变压器在装卸的过程中,设专人负责统一指挥,指挥人员发出的指挥信号必须清晰、准确。 (2)采用起重机具装卸时,起重机具的支撑腿必须稳固,受力均匀。应准确使用变压器油箱顶盖的吊环,吊钩应对准变压器重心,吊挂钢丝绳间的夹角不得大于60°。起吊时必须试吊,防止钢索碰损变压器瓷套管。起吊过程中,在吊臂及吊物下方严禁任何人员通过或逗留,吊起的设备不得在空中长时间停留。 (3)变压器就位采取人力搬运和铺设枕木、槽钢轨道就位等方法。 较大容量变压器,采取铺设枕木、槽钢轨道就位,枕木、槽钢轨道铺设必须平稳牢固,在变压器两侧和后部以铁钎子或木棒撬变压器的底盘,沿槽钢轨道向基础方向移动到位,或在变压器室里墙根部设牵引钩,用钢丝绳将变压器底部绑扎牢固,用手拉葫芦将变压器从槽钢轨道上由门外向室内牵引到位。在就位移动时不宜过快,不得发生碰撞及不应有严重的冲击和震荡,以免损坏绝缘构件。就位移动时要有防止变压器滑出轨道和倾倒的措施,做好变压器基础保护工作,要设专人指挥,统一信号,用力均匀,速度要缓慢,互相协调。 (4)装有滚轮的变压器在就位后,应将滚轮用能拆卸的制动装置加以固定或将滚轮拆卸。 (5)油浸变压器应安装稳固,底部用枕木垫起离地,必要时加装防震胶垫,以降低噪声;用垫片对变压器的水平度、垂直度进行调整。 (6)变压器安装后,套管表面应光洁,不应有裂纹、破损等现象;套管压线螺栓等部件应齐全,且安装牢固;储油柜油位正常,外壳干净。 (7)装有气体继电器的变压器顶盖,沿气体继电器的气流方向有 1.0%~1.5%的升高坡度;储油柜阀门必须处于开启状态;气体继电器安装前应经检验合格。 2)一次接线作业 (1)变压器进出线的支架按设计施工,牢固可靠,标高误差、水平误差均不大于5mm,与地网连接可靠。 (2)高、低压电缆(含插接式母线)沟进出口应进行防火、防小动物封堵。 (3)电缆终端部件及接线端子符合设计要求,电缆终端与引线连接可靠,搭接面清洁、平整、无氧化层,涂有电力复合脂,符合规范要求。变压器与插接式母线连接必须是软连接并应留有裕度。 (4)变压器本体接地线截面不小于中性线截面1/2,最小不能少于70mm2。 (5)油浸变压器箱体保护接地、变压器中性点接地线分别与电房主接地网独立连接,接

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

电力变压器基本型号及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思就是箔式绕组,如果就是R则表示为缠绕式绕组,如果就是L则表示为铝绕组,如果就是Z则表示为有载调压(铜不标)。 10的意示就是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思就是一次额定电压,0.4KV意思就是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕

组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 一、电力变压器型号说明如下:

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

变压器型号及含义

变压器型号及含义

例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压,0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。

变压器安装施工方案

变压器安装施工方案

(一)编制依据 1、《电气装置安装工程电力变压器、油浸电抗器、互感器施工 及验收规范》 GB 50148-2010 2、《建筑电气安装工程施工质量验收规范》GB 50303-2015 3、《电气装置安装工程电气设备交接试验标准》GB 50150-2016 4 、《电气装置安装工程接地装置施工及验收规范》GB 50169-2016 5、《供配电系统设计规范》GB 50052-2009 6、《建设工程施工现场供用电安全规范》GB 50194-2014 7、《城市夜景照明设计规范》 JGJ/T 16-2008 8、《建筑设计防火规范》 GB 50016-2014 9、《低压配电设计规范》 GB 50054-2011 10、《建筑施工高处作业安全技术规范》JGJ 80-2016 11、《建筑工程施工现场环境与卫生标准》JGJ 146-2013 12、《建筑工程项目管理规范》 GB/T 50326-2017 13、《建筑工程施工文件归档规范》GB/T 50328-2014 14、《电气装置安装工程质量检验及评定规程》DL/T 5161-2002 15 、《电气装置安装工程电缆线路施工及验收规范》 GB 50168-2006 16 、《电气装置安装工程母线装置施工及验收规范》 GB 50149-2010 17 、《配电系统电气装置安装工程施工及验收规范》 DL/T 5759-2017 (二)变压器安装 1、施工准备 【1】配电室内的屋顶、楼板施工完毕, 不得渗漏。室内地面的基层施工完毕, 混凝土基础及构架达到允许安装的强度, 焊接构件的质量符合要求。预埋件应牢固且符合设计要求。 【2】变压器与门的距离不得少于1.6m,与墙的距离不应少于 0.8m。变压器之间的净距不应小于 1.0m。

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

变压器型号

SSGB10-1250KVA/2*0.27KV S-三相;S-三线圈。10是设计序号,不是电压 S-三相绕组; SG-三相干式自冷; B-低压箔式线圈; 10-设计序号; 变压器容量是1250KVA; 2*0.27-额定高压电压。 干式变压器;例如,(SCB10-1000KVA/10KV/0.4KV):S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。C的意思表示此变压器的绕组为树脂浇注成形固体。B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。10的意示是设计序号,也叫技术序号。1000KVA 则表示此台变压器的额定容量(1000千伏安)。10KV的意思是一次额定电压,0.4KV意思是二次额定电压。2:电力变压器产品型号其它的字母排列顺序及涵义。(1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 变压器型号 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么? D S J L Z SC SG JMB YD BK(C) DDG D-单相S-三相J-油浸自冷L-绕组为铝线Z-又载调压SC-三相环氧树脂浇注 SG-三相干式自冷JMB-局部照明变压器YD-试验用单相变压器BF(C) -控制变压器(C为C型铁芯结构)DDG-单相干式低压大电流变压器 表1:变压器的型号和符号含义 型号中符号排列顺序 含义 代表符号 内容

相关主题
文本预览
相关文档 最新文档