当前位置:文档之家› 薄层色谱法

薄层色谱法

薄层色谱法
薄层色谱法

第二部分色谱分析

第一章薄层色谱法(TLC)

一薄层色谱法概述

thin-layer chromatography (TLC);thin layer chromatography

薄层色谱法是一种基于混合物组分在固定相和流动相之间的不均匀分配或保留而将其分离的方法。与HPLC不同,TLC将固定相涂铺在栽板上,使之形成均匀的薄层。被分离的样品溶液点加在薄层板下沿的位置,再把下沿向下放入盛有流动相(深度约5mm)的密闭缸中,进行色谱展开,实现混合组分分离。被展开的组分斑点即色谱谱带,通过适当技术对色谱谱带进行处理可得到定性和定量的检测结果。

薄层色谱法具有技术比较简单,操作容易,分析速度快,高分辨能力,结果直观,不需昂贵仪器设备就可以分离较复杂混合物等特点。

二薄层色谱法中的薄层板、薄层板的涂铺、点样和展开(一)薄层板

TLC分离的选择性主要取决于固定相的化学组成及其表面的化学性质。可通过改变涂层材料的化学组成或对材料表面进行化学改性来实现改变薄层色谱分离的选择性。此外,固定相的物理性质,如比表面积、比空容、平均孔径等也对其色谱行为产生影响。

(1)载体对TLC载体的基本要求为:机械强度好、化学惰性好(对溶剂、显色剂等)、耐一定温度、表面平整、厚度均匀、价格适宜。

(2)固定相TLC固定相包括改性固定相和未改性固定相两类。硅胶和氧化铝是最常用的两种未改性固定相。

(3)粘合剂在制备薄层板时,一般需在吸附剂中加入适量粘合剂,其目的是使吸附剂颗粒之间相互粘附并使吸附剂薄层紧密的附着在载板上。常用的粘合剂可分为无机粘合剂和有机粘合剂两类。

(4)荧光指示剂荧光指示剂是便于在薄层色谱图上对一些基本化合物斑点(无颜色斑点、无特征紫外吸收斑点)定位的试剂。加入荧光指示剂后,可以使这些化合物斑点在激发光波照射下显出清晰的荧光,便于检测。

(二)薄层板的涂铺

涂板方法可以分为涂布法、倾注法、喷洒法及浸渍法四类,其中涂布法是应用最广泛的涂板方法。

TLC固定相薄层涂铺大多采用湿法匀浆,要求薄层均匀、平整、无气泡、不易造成凹坑和龟裂。

薄层板活化处理可以获得适宜活性,提高色谱分离效率和选择性。

(三)点样

点样是TLC分离和精确定量的关键。不同种类的样品常需选用不同的配样溶剂,一般采用易挥发的非极性或弱极性溶剂配样。离子型化合物样品,常需先衍生化成在挥发性强、极性小的溶剂中易溶解的样品衍生物。最适合点样的样品浓度应为(1~5)μg·μL-1,点样体积视点样技术不同而异。TLC定量分析时,样品量的适宜范围为最小检出量的几倍至几十倍。样品原点一般在1mm左右为佳,原点过大或样品量过大,会导致分离变坏。点样步骤一般占TLC全部分析时间的三分之一左右,所以使点样仪器化、自动化,既快又准,获得好的重复性,是TLC工作者所期盼的。

(四)展开

TLC展开就是流动相沿薄层(固定相)运动,以实现样品混合组分分离的过程。这一过程需在具有一定形状的展开室中进行。薄层展开有三种形式,直线式展开方式为实际应用中使用最普遍的展开方式。

三薄层色谱流动相与展开机制

(一)对流动相溶剂选择的基本考虑

薄层色谱溶剂的选择对分离的影响很大。与HPLC同理,对复杂样品的分离能否得到理想的结果,流动相的选择是最重要的因素之一,不同溶质与流动相分子、固定相分子间的作用力不同,因此其移动速度也不同,最终导致样品中各组分的分离。对流动相的选择不仅需考虑极性、选择性等因素,更基本的应注意以下因素的影响:

(1)溶剂纯度,含有杂质影响分离。

(2)溶剂吸收环境水分,会使极性等性质改变。

(3)存放条件不适宜或贮存时间过长,溶剂会变性。

(4)混合流动相之间发生作用会使溶剂性质改变。溶剂极易挥发,流动相组成随时改变。

(二)几种常用薄层色谱分离模式的展开机制

1.液固吸附展开

在TLC分离中,液固展开是一种最经典的展开方式。液固展开常用极性吸附硅胶、氧化铝作固定相。流动相依其极性可在吸附剂表面形成单分子或双分子溶剂吸附层,展开过程中,组分的保留及分离选择性主要有以下三种因素决定:

a.溶剂对样品的溶解能力;

b.溶质和流动相分子对固定相表面活性吸附位点的竞争;

c.溶质分子与吸附剂表面上吸附中心间的特殊作用力。

2.液液分配展开

与液液分配柱色谱分配机理相同,组分在互不相溶的两液相中的溶解度不同,因此迁移速率存在差异,在迁移过程中得到分离。

除以上两种展开机制外,还有化学键合相展开和离子交换展开。

四薄层色谱吸附剂与载体的选择

1.薄层色谱对吸附剂的要求为:

1.具有大的表面积与足够的吸附能力;

2.对不同的组分有不同的吸附性,因而能较好的分离不同的化学组分;

3.在所用的溶剂和展开剂中不溶解;

4.不与试样中各组分、溶剂和展开剂起化学反应或破坏、分解作用

5.颗粒均匀、在使用过程中不会碎裂

6.具有可逆的吸附性,既能吸附样品组分,又易于解吸;

7.为便于观察分离结果,最好是白色固体。

2.分配色谱对所用载体的要求为:

a.表面积大;

b.在展开剂中不溶解,与展开剂和样品组成不起化学反应或分解作用;

c.对样品组分无吸附性或吸附性极弱;

d.对固体液是惰性的。

五薄层色谱扫描仪

(一)仪器结构

TLC扫描仪结构主要包括光学元件组合系统、电子元件组合系统及机械元件组合系统。

(二)主要功能

薄层色谱扫描仪主要用于TLC图被分离斑点和薄层空白的光学相应信号测量。要求仪器光源稳定,光波单色性能好,光波长在(200~800nm)检测器灵敏度高。

六薄层色谱定性定量方法

(一)斑点定位

斑点定位必须采用非破坏性方法。当斑点紫外光显示时,可采用长波长和短波长紫外灯,使用方便、灵活。采用化学试剂显色时,通过手动或电动喷雾器向展开好的薄层板喷洒显色试剂。

(二)定性方法

1.利用保留值定性

在特定的色谱系统中,化合物的R f值一定,比较未知物和标准物的R f值,能够作为鉴定未知物的依据。R f值的准确测定受多方面因素影响,为了增加R f 值定性的可靠性,必须通过改变色谱系统的选择性,重复测定同一化合物的R f 值。如果在分离机理不同的色谱体系中,比较R f值仍能得到肯定的结果,那么其可靠性将更大。

2.板上化学反应定性

板上化学反应定性主要有以下两种方式:

a.反应后生成特征颜色的化合物,借以鉴定反应物;

b.反应后生成复杂的、无法鉴定组分的混和物,但可根据生成物的“指纹”特征加以鉴定;

c.除以上两种定性反方法外,还有板上光谱定性、TLC与其他联用技术间接联用定性、薄层色谱-傅里叶变换红外光谱联用定性以及薄层色谱-质谱联用定性。

(三)定量方法

1.间接定量法

间接定量法就是将TLC已分离的物质斑点洗脱下来,再采用其他方法对该洗脱液进行定量分析。TLC间接定量的关键是斑点组分的定量洗脱。选用怎样的洗脱方法,取决于,组分和薄层吸附剂的性质。用来洗脱组分斑点的溶剂,对下一步定量方法应无影响。

a.分光光度法将下来的洗脱液配制成标准体积,再同样条件下对样品和标准液进行吸光值测量。

b.HPLC法以TLC法斑点洗脱液直接作HPLC分离和定量

c.GC法以TLC法斑点洗脱液直接作GC分离和定量。

d.质谱法采用组分质谱图中的特征离子峰可进行定量。

2.直接定量法

a.斑点面积测量法以半透明纸扫下TLC图上的斑点界限,然后测量其面积。将斑点面积同平行操作的标准样面积相比较进行定量。

b.目测法将被测样品和系列溶液点在同一薄层板上,展开后用适当方法显色,可以得到系列斑点,将被测样品的斑点面积大小和颜色与标准系列的斑点相比较,可推测出样品的含量范围。这种定量法非常适用于对常规大量样品的重复分析。

七应用实例—TLC测定黄曲霉毒素B1

(一)、原理

根据黄曲霉毒素B1能在波长365毫微米紫外光下产生蓝紫色荧光的特性,采取薄层层析法,将样品经提取、浓缩、薄层分离后,利用其在薄层上显示荧光的最低检出量来测定其含量。

(二)、试剂

1.石油醚:沸程 30-60℃

2.正已烷

3.氯仿

4.苯

5.乙腈

6.甲醇

7.无水乙醚:如不是无水乙醚,则应脱水后再用。

8.丙酮

9.无水硫酸钠

10.硅胶G:薄层层析用

11.苯乙腈混合液:取苯98毫升,乙腈2毫升,混匀冰箱存放备用。

12.三氟醋酸

13.黄曲霉毒素消毒剂:5%次氯酸钠溶液,取100克漂粉精,加入500毫升

水,搅匀,另溶解70克碳酸钠(Na

2Co

3

、H

2

O)于500毫升温水中,溶后,倒入

上述溶液中搅匀、澄清、过滤、备用。

14.黄曲霉毒素标准溶液

①标准储备液(1.02微克/毫升):GBW(E)090015严格控制、应加锁于冰箱中避光存放。(每次记录用量、余量,以备复查)。

②稀释液Ⅰ(0.2微克/毫升)取储备液加苯乙腈混合液稀释。

③稀释液Ⅱ(0.04微克/毫升)取稀释液1毫升以苯乙腈混合液稀释。(三)、仪器

1.小型粉碎机

2.分样筛一套

3.电动振荡器

4.电吹风机

5.薄层板涂布器(可以自制)

6.玻璃板:5×20厘米

7.展开槽:(层析)内长25厘米,宽6厘米,高4厘米

8.1-10毫升刻度吸管

9.紫外光灯:365nm,220v,125w,启动电流1.8A

10.微量进样器:20微升,10微升

11.分液漏斗:125毫升

12.蒸发器:60毫升

13.玻璃漏斗

14.样液瓶:具塞2毫升

15.脱脂棉:在索氏脂肪提取器以氯仿提取2小时挥干备用

16.电热恒温水浴

(四)、操作方法

1.提取

①适用于大米、玉米、麦类、面粉、薯干、豆类、花生、花生酱等。称取经过粉碎(20目筛)的样品20克于250毫升具塞三角烧瓶中,加正已烷30毫升,甲醇水(55∶45)100毫升,加塞后加水少许,盖严防漏,振荡30分钟,静置片刻,以脱脂棉过滤于分液漏斗中,待分层,放出下层的甲醇水溶液20毫升(相当于样品4克)于另一分漏斗中,加氯仿20毫升,振摇二分钟,静止分层。另备一漏斗底部铺脱脂棉少许,再加无水硫酸钠10克,下接60毫升蒸发皿,漏斗中的无水硫酸钠先用氯仿湿润。将分层后的氯仿放入已备好的具有无水硫酸钠的漏斗中,过滤,再加5毫升氯仿于分液漏斗中,分层后一并滤于同一蒸发皿中,最后用少量氯仿洗涤滤器,洗液并入以上蒸发皿中。将蒸发皿放入通风橱内于65℃水浴上通风挥干,然后放在水浴上冷却2-3分钟,准确加入苯乙腈1毫升。用带橡皮头的滴管的尖端将残渣充分混合,若有结晶析出(苯),将蒸发皿从水浴上取下,继续溶解,混合,晶体消失,再用此管吸取上清液,转移于2毫升样液瓶中,若溶液不够澄清,应离心,或放置等候澄清,取上清液供薄层点板用。

[注]加入氯仿振摇2分钟如出现乳化现象,可滴加甲醇促使分层或用电吹风机吹热风促使分层。

含油脂较多的样品如花生等也可采用脱油提取,即称取粉碎样品20克移于滤纸筒内,筒内塞以少量脱脂棉,置于250毫升脂肪提取器内,在75-85℃水浴上以石油醚提取脱油8小时,然后将滤纸筒挥干。将脱油后的样品移于250毫升具塞三角烧瓶内,进行检验。

如样品是玉米、大米、小麦时亦可采用下法提取:称取粉碎过筛样品20克

于250毫升具塞三角烧瓶内,用滴管滴加6毫升水,使样品湿润,并准确加入氯仿60毫升,振荡30分,加无水硫酸钠12克,振摇静止30分;以脱脂棉过滤取滤液12毫升(相当于样品4克)于蒸发皿,以下步骤与①同。

②适用于花生油、香油、芽籽油等。

称取样品4克于小烧杯中,用正已烷20毫升转移于125毫升分液漏斗中,再用甲醇水(55+45)20毫升分数次洗涤小烧杯,洗液一并移入分液漏斗中,振摇2分钟,静止分层后,将下层甲醇水溶液移于第二个分液漏斗中,原分液漏斗中再加甲醇水5毫升,振荡提取一次,甲醇水溶液一并移入第二个分液漏斗中,在第二个分液漏斗中加入氯仿20毫升,振摇二分静止分层以后按①操作。

③适用于酱油、醋,方法有二:

第一法:称取样品10克于小烧杯中,为防止提取时乳化,加氯化钠4克,移于分液漏斗中,烧杯用氯仿15毫升分次洗涤,洗液一并移于分液漏斗中,以下自振摇2分钟,静止分层后按第①操作。最后加入2.5毫升苯乙腈溶解,此液每毫升相当于样品4克。

第二法:称取样品10克移于分液漏斗中,加甲醇12毫升(以酱油代替水,故甲醇与水体积比仍约为55+45)加氯仿20毫升提取,以下自振摇2分钟起,按①操作,最后加苯乙腈2.5毫升,每毫升相当于样品4克。

④适用于酱类(包括豆乳制品)

称取样品20克于250毫升具塞三角烧瓶中,加正已烷20毫升与甲醇水50毫升,振荡30分钟,静止片刻,以脱脂棉过滤,滤液静止分层后,取甲醇水24毫升于分液漏斗中加入氯仿20毫升振荡2分静止分层下以按①操作,最后加入苯乙腈2毫升,每毫升相当于样品4克。

注:以上检品极易乳化,实在分不开层时,可采用离心分层的办法。

⑤适用于发酵酒类

称取样品10克于小烧杯中,以氯仿15毫升分次洗于分液漏斗中,振摇2分钟,静置分层后按①操作,最后加入苯乙腈2.5毫升,此溶液每毫升相当于样品4克。

⑥适用发酵用曲种及菌株

称取样品10克于具塞三角烧瓶中,加入正已烷30毫升与甲醇水(55+45)80毫升,振荡半小时,用脱脂棉过滤于分液漏斗中,取出甲醇水溶液32毫升(相

当于样品4克)于另一分液漏斗中,加入30毫升氯仿提取。振摇2分静止分层。以下按①操作。

2.薄层色谱分析和计算

(1)单向展开法

a.薄层板的制备:一般现在用成品硅胶板。如需自己制板,方法如下:

称取硅胶G约3克(或称取硅胶85克与石膏粉15克,充分混合均匀后称取3克)加相当于硅胶2-3倍的水在玻璃乳钵中研磨1-2分钟,至成均匀的糊状后立即倒入涂布器内,推成5×12厘米,厚约0.25毫米的薄层板3块。在空气中干燥15分钟后,放入烘箱内100℃活化2小时取出放入干燥器内保存,一般在干燥器内可保存2-3天,若放置时间较长,则应重新活化。

b.点样

将薄层板边缘上附着的吸附剂刮净,在距薄层板下端3厘米的基线上,用进样器滴加样液,一块可以滴加四个点,点距边缘和点间距离约为1厘米,点直径应掌握在3毫米以内为好,在同一板上滴加的点应大小一致,在滴加样液的时候,可以吹风机吹冷风边吹边点。

滴加试样如下:

第一点:黄曲霉毒素标准液(0.04微克/毫升)10微升。

第二点:样液20微升(如样液8克/毫升)时也可点10微升。

第三点:样液20微升加黄曲霉毒素B

1

标准液(0.04微克/毫升)10微升。

第四点:样液20微升加黄曲霉毒素B

1

标准液(0.2微克/毫升)10微升。

C.展开与观察

在展开槽(层析槽)内加无水乙醚10毫升,予展12厘米,取出挥干,再于另一展开槽内加丙酮氯仿液(8+92)展开10-12厘米取出在紫外光(365毫微米)下观察,结果如下:

样液点上加黄曲霉毒素B

1标准溶液,可使黄曲霉毒素B

1

标准点与样液中的

黄曲霉毒素B

1萤光点重叠。如样液为阴性,薄层板上的第三点黄曲霉毒素B

1

0.0004微克,可用作检查在样液内黄曲霉毒素B

1

最低检出量是否正常出现;如

为阳性,则起定位作用,薄层板上的第四点中黄曲霉毒素B

1

为0.002微克,主

要起定位作用,若第二点在与黄曲霉毒素B

1

标准点的相应位置上,无蓝色荧光

点,表示样品中黄曲霉毒素B

1

含量在5微克/公斤以下,如在相应位置上有蓝紫色荧光点,则需要确证试验。

D.确证试验

为了证实薄层板上样液荧光系由黄曲霉毒素B

1

产生的,滴加三氟乙酸产生黄曲霉毒素B1的衍生物,展开后,这种衍生物的比移值,约在0.1左右。其方法是:

在薄层板左边依次滴加两个点:

第一点:样液20微升。

第二点:黄曲霉毒素B

1

标准溶液(0.2微克/毫升)10微升,以上两点各加三氟醋酸一小滴盖于样点上,反应五分钟后,用吹风机吹热风2分钟,使热风吹到薄层板上的温度不高于40℃,再于薄层板上滴加2个点。

第三点:样液20微升。

第四点:黄曲霉毒素B

1

标准溶液(0.2微克/毫升)10微升。

再展开同前,在紫外灯光下,观察样液是否产生与黄曲霉毒素B

1

相同的衍生物,未加三氟乙酸与3、4两点,可依次作为样液与标准的衍生物空白对照。

E.稀释定量

样液中的黄曲霉毒素B

1荧光点的荧光强度如与黄曲霉毒素B

1

标准点的最低

检出量(0.0004微克)的荧光强度一致,则样品中的黄曲霉毒素定量即为5微克/公斤,如样品中的荧光强度比最低检量强,则根据强度估计减少滴加微升数或将样液稀释后,再滴加不同的微升数,如10微升、15微升,直至样液点的荧光强度与最低检出量点的荧光强度一致为止。

滴加试样如下:

第一点:黄曲霉毒素标准液(0.04微克/毫升)

第二点

第三点根据情况滴加样液

第四点

(五)、结果计算

黄曲霉毒素B

1(微克/公斤)

W

D

V1000

2

1

0004

.01?

?

?

=

式中:

——加入苯乙腈混合液的毫升数,毫升;

V

1

——出现最低荧光时滴加样液的毫升数,毫升;

V

2

——样液的总稀释倍数;

D

1

——苯乙腈溶解时相当试样重量克数,克;

W

1

的最低检出量,微克。

0.0004——黄曲霉毒素B

1

如用单向展开法展开后,薄层板上由于杂质的干扰,掩盖了黄曲霉毒素B

1

的荧光强度时,需采用双向展开法。薄层板先用无水乙醚作横向展开,把干扰的

不动,然后再用丙酮氯仿混合液进行杂质推到样液点的旁边,而黄曲霉毒素B

1

纵展,这样试样里在黄曲霉毒素B

相应处的杂质的颜色将大量减少,因而就提

1

高了方法的灵敏度,如用双向展开法中的滴加两点法展开后仍有杂质时则可改用

滴加一点法,现将两种方法分别介绍于后面。

A.滴加两点法

标首先是滴样,取薄层板三块,在距下端三厘米基线上滴加黄曲霉毒素B

1

准溶液与样液,其具体作法是:在三块板距左边缘0.8厘米处各滴加黄曲霉毒素

标准溶液(0.04微克/毫升)10微升,在距左边缘2.8厘米各滴加样液20微B

1

标准溶液(0.04微克/毫升)10升;然后在第二块板的样液点上加黄曲霉毒素B

1

微升。在第三块板的样液点上加滴黄曲霉毒素B

标准溶液(0.2微克/毫升)10

1

微升。第二步展开。先进行横展,在展开槽内的长边置一玻璃支架,加无水乙醚

10毫升,将点好的板靠标准点的长边置于层析槽内展开,展至板端后继续展开1

分钟,取出挥干再进行纵展。挥干的薄层板以丙酮氯仿(8+92)展开至12厘米

为止(丙酮、氯仿比例也可根据不同条件自行调节)。然后进行观察和评定结果。

在紫外灯光下,观察第一、二板,若第二板的第二点在B

标准点的相应处出现

1

最低检出量,而第一板在第二板的相同位置上未出现荧光点,则试样中黄曲霉毒

素B

含量在5微克/公斤以下。若第一板与第二板的相同位置上出现荧光点,则1

将第一板与第三板比较,看第三板上第二点与第一板上第二点的相同位置的荧光

点是与B

的标准重叠,如果重叠,再进行以下衍生物确证试验。在具体测定中1

第一、二、三板可以同时作,亦可按照顺序作,当第一板出现阴性时第三板可以

省略。如第一板为阳性,第二板可省略,直接作第三板。

标准液如果需要作确证试验,于第四、五两板距边缘0.8厘米处各滴加B

1

(0.2微克/毫升)10微升,再于其上滴加三氟醋酸一小滴,距左边缘2.8厘米

处,第四板滴加样液20微升,三氟醋酸一小滴,第五板滴加样液20微升,黄曲霉毒素标准溶液(0.2微克/毫升)10微升,三氟乙醋一小滴,产生衍生物的步骤同单相展开法。再用双向展开法,展开后,观察样液点是否产生与B

1

标准点重叠的产物,观察时可将第一板作为样液的衍生物后的板。

如样液黄曲霉毒素B

1

含量高时,则将样液稀释后,按单向展开法D项作确证试验。并按照单向展开法进行稀释定量,如含毒素低稀释倍数小,在定量的纵板上仍有干扰,并影响结果判断,可将板上需要判断的样液点再分别作双向展开观察,以确定含量,结果计算,同单向展开法。

B.滴加一点法(多用于杂质干扰严重的样液)

滴样:取薄层板三块,在距下缘3厘米的基线上滴加黄曲霉毒素B

1

标准液与样液。作法是在三块板的左边缘0.8厘米处各滴加样液20微升。第二板的点

上滴加黄曲霉毒素B

1

标准液(0.04微克/毫升)10微升,在第三板的点上滴加

黄曲霉毒素B

1

标准溶液(0.2微克/毫升)10微升。

展开:同滴加两点中的横展和纵向展开。

观察与评定结果:在紫外光灯下,观察一、二板,如第二板出现最低检出量

的B

1标准点,而第一板与其相同位置未出现荧光点,样品中黄曲霉毒素B

1

含量

在5微克/公斤以下,如第一板在与第二板B

1

标点相同位置出现荧光点,则应将

第一板与第二板比较,看第三板上与第一板相同位置的荧光点,是否与B

1

标准点重叠,如果重叠,再进行确证试验。滴加以下二板,距左边缘0.8厘米处第四板滴加样液20微升,三氟醋酸一小滴,第五板滴加样液20微升,黄曲霉毒素

B

1

标准液(0.2微克/毫升)10微升及三氟醋酸一小滴,产生衍生物的步骤同单向展开法,再用双向展开法展开后,将以上两板在此外光灯下观察,以确定样液

是否产生与黄曲霉毒素B

1

标准点重叠的衍生物,观察时可将第一板作为样液的衍生物空白板。经过以上确证试验定为阳性后,再进行稀释定量。如含黄曲霉毒

素B

1

低不需稀释或稀释倍数小,杂质仍有严重干扰,可根据样液中黄曲霉毒素

B

1

荧光的强弱,直接用双向展开法定量。或者与单向展开法结合使用,方法同上。

其计算同单向展开法。

注意事项:

(1)黄曲霉菌所产生的代谢产物,具有较强毒性,自然界中易被污染的有

玉米、花生等,其中以黄曲霉毒素B

1最多,B

2

、G

1

、G

2

较少。故我们一般仅作黄

曲霉毒素B1测定。

在测定中黄曲霉毒素高的霉粒,一粒就可以左右测定结果,而有毒霉粒在整个检品中占比例是小的,而分布又不均匀,为避免采样带来的误差,取样量应尽量多一些,(1000克)并将取样充分均合尽多的粉碎,使尽量取得相对可靠一些的结果,因而在取样时应注意:

①根据规定检取有代表性样品。

②对局部霉变样,应单独取样检验。

③每份分析测定用样品,应将大样经粗碎后连续多次用四分法分样至1-2斤再全部粉碎粮食样品,通过20目筛,花生不易过筛。但应磨到一定程度并充分混合均匀。

(2)据以上实验条件黄曲霉毒素B

1

的最低检出量是0.0004微克,方法的灵敏度为5微克/公斤,回收率约为75%以上。

(3)展开剂丙酮与氯仿比例可随比移值大小,与分离情况而调节,如果比移值太大,可减少丙酮体积反之则增加。

(4)对杂质少含毒量又高的样品可不予展,直接用丙氯液(8+92)展开。

(5)在气候潮湿的条件下,薄层板的活性容易降低,影响检出量,因此在使用薄层板时,当日活化为好,滴加样液和标准液时,可将板放在盛有干燥剂(硅胶)的层析槽内进行。

(6)玉米、大米、小麦、面粉、花生等试样按方法提取后,用上述单向展开法测定,薯干用双向展开法测定。

(7)在具体测定条件下,有时用无水乙醚作薄层板的横展后,标准B

1

点仍有稍微移动,这并不影响测定结果。

(8)在80-200目硅胶中加热盐酸水溶液(1+4)浸没硅胶,搅拌15分钟后,倾去上液,再用水洗至无氯离子为止,于100℃干燥,磨碎,过250目筛,

此种硅胶的性能较为满意。于空白样液点上滴加黄曲霉毒素B

1

最低检出量时,

经展开后,能使黄曲霉毒素B

1

点与杂质分离,没有拖尾现象,而且在暗的条件下,其点形十几小时内不消失。

第二章气相色谱法

一气相色谱法概述

色谱或层析是一种分离技术,色谱法是利用色谱技术进行分离分析的方法。最早色谱法是由俄国植物学家茨维特于1906年首先提出来的。他把植物色素的石油醚提取液倒入装有碳酸钙吸附剂的直立玻璃管内,再加入石油醚使其自由流出,结果不同色素组分相互分离而形成不同颜色的谱带,由此得名为“色谱“。该法后来虽广泛用于无色物质的分离,但“色谱“一词却被沿袭使用.

流动相为气体的色谱方法称为气相色谱法。

二气相色谱法的基本原理和气相色谱术语

1色谱过程

气相色谱对多组分的分离依赖于核心装置——色谱柱。色谱柱主要分为两种类型,填充柱与毛细管柱,其内均填充具有一定特性的固定相物质。色谱分离过程实际上是不同组分与固定相和流动想(载气)发生相互作用的结果。现以填充柱中的两类固定相为例说明气-固色谱分离的原理。

其固定相是一种具有较大面积的多孔性的颗粒吸附剂。试样被载气带进柱子里。立即被这种颗粒吸附剂所吸附。载气不断流过颗粒时,被吸附的组分又被洗脱下来。洗脱的组分随着载气继续前进时,又可被前面的吸附颗粒所吸附。随着载气的流动,被测组分在吸附剂表面进行反复的吸附洗脱。由于被测物质中各个组分的性质不同,他们在吸附剂上的吸附能力就不一样,较难被吸附的组分就容易被洗脱,较快地移向前面。容易被吸附的组分就不易被洗脱,向前移动地慢些。经过一定时间,试样中的各个组分就彼此分离而先后流出色谱柱。

2气相色谱术语

试样中各组分经色谱柱分离后,经检测、记录仪得到反映组分浓度信号与流出时间关系流出曲线色谱图。色谱法的测定结果是通过对色谱图的分析完成的。1关于基线

a基线

当色谱过程没有组分进入检测器,在实验操作条件下,反映检测器系统噪声随时间变化的记录线称为基线。稳定的基线是一条直线。

b基线漂移

指基线随时间定向的缓慢变化。

c基线噪声

指由各种因素所引起的基线起伏。

2保留值

表示各组分在色谱柱中的滞留时间的数值。通常用时间来表示。

a死时间(t M)

指不被固定相吸附或溶解的气体,从进样开始到柱后出现浓度最大值时所需要的时间。

b保留时间(t R)

指被测组分从进样开始到柱后出现浓度最大值时所需要的时间。

c调整保留时间(t’R)

指扣除死时间后的保留时间。

t’R=t R-t M

d相对保留时间(r12)

指某组分1的调整保留时间与另一组分2的调整保留时间之比。

r12= t’R2/t’R1

3色谱峰区域宽度

色谱流出曲线中一个重要参数.从色谱分离角度看,希望区域宽度越窄越好.通常度量色谱峰区域宽度有两种方法:

a半峰宽度(W h/2)

又称半宽度或区域宽度,即峰高一半处的宽度。

b峰底宽度(W)

自色谱峰两侧的转折点所作的切线在基线上的截距。

三气相色谱仪器结构

气相色谱法是采用惰性气体(或称载气)作为流动相的色谱方法。色谱过程是通过气相色谱仪来完成的。气相色谱仪一般有5个基本部分组成:

1 气路系统包括载气、燃烧气、助燃气、气体净化器流速控制和测量器

2进样系统进样器、气化室;温度控制装置

3 分离系统色谱柱和柱箱、柱温控制装置

4检测系统检测器、检测器的电源及控温装置

5记录系统放大器、记录仪以及数据处理装置

四气相色谱法的特点和适用范围

(一)气相色谱法的特点

气相色谱法具有人们公认的优点、特点:

1分离效率高,分析速度快

2选择性能好

3样品用量少和检测灵敏度高

4操作简单,费用低少,应用广泛

(二)气相色谱法的适用范围

气相色谱分析操作简单,分析快速,选择性好,柱效能高,可以应用于分析气体试样,也可以分析易挥发或可转化为易挥发的液体和固体,不仅可分析有机物,也可分析部分无机物。一般,只要沸点在500o C以下,热稳定性良好,相对分子质量在400以下的物质,原则上都可采用气相色谱法。目前气相色谱法所能分析的有机物,约占全部有机物的15%~20%,而这些有机物都是目前应用很广的那一部分,因而气相色谱法的应用是十分广泛的。

五气相色谱条件的选择

(一)一般选择载气的依据及气相色谱常用的载气

作为气相色谱载气的气体,要求要化学稳定性好;纯度高;价格便宜并易取得;能适合于所用的检测器。常用的载气有氢气、氮气、氩气、氦气、二氧化碳气等等。

(二)载气的净化

所谓净化,就是除去载气中的一些有机物、微量氧,水分等杂质,以提高载气的纯度。不纯净的气体作载气,可导致柱失效,样品变化,氢焰色谱可导致基流噪音增大,热导色谱可导致鉴定器线性变劣等,所以载气必须经过净化。一般均采用化学处理的方法除氧,如用活性铜除氧;采用分子筛、活性碳等吸附剂除

有机杂质;采用矽胶,分子筛等吸附剂除水分。

(三)试样的进样方法

色谱分离要求在最短的时间内,以“塞子”形式打进一定量的试样,进样方法可分为:

1、气体试样:大致进样方法有四种:

(1)注射器进样,(2)量管进样,(3)定体积进样,(4)气体自动进样。一般常用注射器进样及气体自动进样。注射器进样的优点是使用灵活,方法简便,但进样量重复性较差。气体自动进样是用定量阀进样,重复性好,且可自动操作。

2、液体试样:一般用微量注射器进样,方法简便,进样迅速。也可采用定量自动进样,此法进行重复性良好。

3、固体试样:通常用溶剂将试样溶解,然后采用和液体进样同样方法进样。也有用固体进样器进样的。

(四)在气相色谱分析中柱长、柱内径、柱温、载气流速、固定相、进样等操作条件对分离的影响

操作条件对于色谱分离有很大影响。

1、柱长,柱内径:一般讲,柱管增长,可改善分离能力,短则组分馏出的快些;柱内径小分离效果好,柱内径大处理量大,但柱内径过大,将导致担体不能均匀地分布在色谱柱中。分析用柱管一般内径为3-6毫米,柱长为1-4米。

2、柱温:是一个重要的操作变数,直接影响分离效能和分析速度。选择柱温的根据是混合物的沸点范围,固定液的配比和鉴定器的灵敏度。提高柱温可缩短分析时间;降低柱温可使色谱柱选择性增大,有利于组分的分离和色谱柱稳定性提高,柱寿命延长。一般采用等于或高于数十度于样品的平均沸点的柱温为较合适,对易挥发样用低柱温,不易挥发的样品采用高柱温。

3、载气流速:载气流速是决定色谱分离的重要原因之一。一般讲流速高色谱峰狭,反之则宽些,但流速过高或过低对分离都有不利的影响。流速要求要平稳,常用的流速范围每分钟在10-100亳升之间。

4、固定相:固定相是由固体吸附剂或涂有固定液的担体构成。

(1)固体吸附剂或担体粗细:一般采用40-60目、60-80目、80

-100目。当用同等长度的柱子,颗粒细的分离效率就要比粗的好些。(2)固定液含量:固定液含量对分离效率的影响很大,它与担体的重量比一般用15%-25%。比例过大有损于分离,比例过小会使色谱峰拖尾。

5、进样:一般讲进样快,进样量小,进样温度高其分离效果好。对进液体样,速度要快,汽化温度要高于样品中高沸点组分的沸点值,一次汽化,保证色谱峰形不致展宽、使柱效高。当进样量在一定限度时,色谱峰的半峰宽是不变的。若进样量过多就会造成色谱柱超载。一般讲柱长增加四倍,样品的许可量增加一倍。对于常规分析,液体进样量为1-20微升;气体进样量为0.1-5毫升。(五)色谱柱管材料选择原则及常用的柱管材质

对色谱柱管材质,应按如下要求选择:

1、应与固定相、试样、载气不起化学反应。

2、要易于加工成型。

3、管内壁应光滑,横截面应均匀呈圆形。一般色谱柱管形状呈U型或螺旋形,大多由铜、不锈钢,玻璃等材质制成。

(六)新的色谱柱管(铜或不锈钢管)应处理后方能使用

新柱管应先用稀酸或稀碱(1:1盐酸或氢氧化钠)洗涤,以除去油污等脏垢,而后用自来水冲洗,继而用蒸馏水冲洗至中性,再用干净的空气吹洗并烘干后,即可使用了。

(七)对担体的要求

担体是一种多孔性化学惰性固体,在气相色谱中用来支撑固定液。对担体有如下几点要求:

1、表面积较大,一般应在0.5-2米2/克之间;

2、具有化学惰性和热稳定性;

3、有一定的机械强度,使涂渍和填充过程不引起粉碎;

4、有适当的孔隙结构,利于两相间快速传质;

5、能制成均匀的球状颗粒,利于气相渗透和填充均匀性好;

6、有很好的浸润性,便于固定液的均匀分布。完全满足上述要求的担体是困难的,人们在实践中只能找出性能比较优良的担体。

(八)担体分类及其特点

通常分为硅藻土和非硅藻土两大类,每一类又有种种小类。

1、硅藻土类型:

(1)白色的:表面积小,疏松,质脆,吸附性能小,经适当处理,可分析强极性组分;

(2)红色的:有较大的表面积和较好的机械强度,但吸附性较大。

2、非硅藻土类型:

(1)氟担体:表面惰性好,可用来分析高极性和腐蚀性物质,但装柱不易,柱效率低些。

(2)玻璃微球:表面积小,用它做担体柱温可以大大降低,而分离完全且快速。但涂渍困难,柱效低。

(3)多孔性高聚物小球:机械强度高,热稳定性好,吸附性低,耐腐蚀,分离效率高,是一种性能优良的新型色谱固定相。

(4)炭分子筛:中性,表面积大,强度高,祛寿命长,在微量分析上有无比的优越性。

(5)活性炭:可以单独做为固定相。

(6)沙:主要用于分离金属。

(九)常用的担体

101担体:为白色硅藻土担体;

102担体:为白色硅藻土担体;

celite545:为白色硅藻土担体;

201担体:为红色硅藻土担体;

6201担体:为红色硅藻土担体;

C-22保温砖:为红色硅藻土担体;

chromosorb:为红色硅藻土担体。

(十)担体进行处理的一般方法

常用的担体表面并非惰性,它具有不同程度的催化作用和吸附性(特别是固定液含量低时和分离极性物质时)造成峰拖尾和柱效下降,保留值改变等影响,因而需要预处理。现将一般处理方法简述如下:

1、酸洗法:用浓盐酸加热处理担体20-30分钟,然后用自来水冲洗至

中性,再用甲醇漂洗,烘干备用。此法主要除去担体表面的铁等无机物杂质。

2、碱洗法:用10%的氢氧化钠或5%的氢氧化钾-甲醇溶液浸泡或回流担体,然后用水冲洗至中性,再用甲醇漂洗,烘干备用。碱洗的目的是除去表面的三氧化二铝等酸性作用点,但往往在表面上残留微量的游离碱,它能分解或吸附一些非碱性物质,使用时要注意。

3、硅烷化:用硅烷化试剂和担体表面的硅醇、硅醚基团起反应,除去表面的氢键结合能力,可以改进担体的性能。常用的硅烷化试剂有二甲基二氯硅烷和六甲基二硅胺。

4、釉化:把欲处理的担体在2、3%的碳酸钠-碳酸钾(1:1)水溶液中浸泡一天,烘干后先在870度下煅烧3、5小时,然后升温到980度煅烧约40分钟。经过这样处理,担体表面形成一层玻璃化的釉质,故称“釉化担体”。这种担体的吸附性能小,强度大,当固定液中加入少量的去尾剂后,能分析如醇、酸等极性较强的物质。但对非极性物质柱效能则稍有下降。此外甲醇和甲酸等物质在釉化担体上有一定的不可逆化学吸附,在定量分析时应予以注意。

5、其他纯化方法:凡是用化学反应来除去活性作用点或用物理复盖以达到纯化担体表面性质的方法都可以使用。

(十一)常用的担体目数

常用的4-6毫米内径的色谱柱:对于较长色谱柱,选用担体目数一般

为40-80目;对于较短色谱柱选用担体目数一般为80-100目(每英寸内的筛孔数目为目)。

(十二)常用担体的选择

各种担体,名目繁多。在常用硅藻土担体中:

红色担体(如6201、201),可用于非极性或弱极性物质的分离。

白色担体(如101)可用于极性物质或碱性物质。

釉化红色担体(如301)可用于中等极性物质。

硅烷化白色担体可用于强极性氢键型物质如废水测定。

分离酸性物质,如酚类,要用酸洗处理的担体。

分离碱性物质,如乙醇胺,要用碱洗处理的担体。

微量分析要用硅烷化的担体。

薄层色谱法详解

薄层色谱法是一种吸附薄层色谱分离法,它利用各成分对同一吸附剂吸附能力不同,使在流动相(溶剂)流过固定相(吸附剂)的过程中,连续的产生吸附、解吸附、再吸附、再解吸附,从而达到各成分的互相分离的目的。 薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。 物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法加以定量。 仪器与材料 编辑 ⑴载板 变色硅胶 用以涂布薄层用的载板有玻璃板、铝箔及塑料板,对薄层板的要求是:需要有一定的机械强度及化学惰性,且厚度均匀、表面平整,因此玻璃板是最常用的。载板可以有不同规格,但最大不得超过20×20,玻璃板在使用前必须洗净、干燥备用。玻板除另有规定外,用5cm ×20cm,10cm×20cm或20cm×20cm的规格,要求光滑、平整,洗净后不附水珠,晾干。 ⑵固定相(吸附剂)或载体 薄层层析硅胶薄层层析硅胶最常用的有硅胶G、硅胶GF〈[254]〉、硅胶H、硅胶HF〈[254]〉,其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤维素、微晶纤维素F〈[254]〉等。其颗粒大小,一般要求直径为10~40μm。薄层涂布,一般可分无粘合剂和含粘合剂两种;前者系将固定相直接涂布于玻璃板上,后者系在固定相中加入一定量的粘合剂,一般常用

高效液相色谱分析法在各领域的应用及发展前景

高效液相色谱分析法在各领域的应用及发展前景 摘要:高效液相色谱分析是一种高效、快速、准确的分离分析方法,在石油化工、生命科学、环境、医药及食品安全等领域有着广泛的应用。本文旨在简要介绍液相色谱分析法在不同领域的应用情况,并从使用频度、应用范围、检测效率、检测准确度及在本领域分析方法中的重要性等角度进行阐述。 关键词:高效液相色谱仪;石油化工;食品安全 中图分类号: O657.7+2 文献标识码:A 高效液相色谱在20世纪70年代获得迅猛的发展,是一种常规的分离技术色品分析仪的应用最广是在化学领域上,食品与环境的领域上也出现多方面的应用。其中,化合物的分析就包括高分子化合物,离子型化合物,热不稳定化合物以及生活性的化合物等都可以用不同的方式进行离子交换色谱和离子色谱,体积排除法,亲和色谱法等,进行离子分析。 一、高液相色谱分析仪发展现状 随着高效液相色谱分析仪的转换,高效液相色谱仪器成为国际分析化学界发展较快的学科,高效液相色谱是由液相系统组成,分别是检测器,色谱柱,记录仪等三个方面的部分组成,为了取得更好的效果,科研工作者需要提升准确度以及精确度和灵敏度显示科研工作的重要性。 经常采用薄层色谱法(TLC)和气相色谱法(OC)进行含量测定,而液相色谱法(LC)只是用于对组分标样的测定和分离的可能性研究。色谱法是一

种分类和混合的开发技术,是在1913年由俄国植物学家在实验中发现并且命名的技术,将植物的叶色素和石油醚,通过装有白色的碳酸钠颗粒的玻璃管,再用石油醚进行全面的冲洗,玻璃管的内壁出现不同颜色的色带,随着冲洗剂的不断转变,色带以不同的颜色进行冲洗,不同的色带以不同的速度向下移动并且分离,色谱法由此得名。 二、色谱分析仪的使用及工作原理 色谱柱通称为不锈钢柱,内装填充剂,常用的是硅胶作为填料,用于正相色谱,化学键固定相,根据色谱化学键的固定相,可以用来作为反相或者是反高的要求。输液系统要为 HPLC仪器提供流量恒定、准确、无脉冲的流动相,同时还要提供精度好、准确度高的多元溶剂梯度。早在2003年国家标准中就已经规定了液相色谱法检测食品中糖精钠和安赛蜜的检测方法,在质检机构中已经将之作为一种常规检验项目的基本检测方法来进行操作。近几年随着色谱柱填充制备技术的高速发展,已经可以一次性分离糖精钠、安赛蜜、苯甲酸、山梨酸、脱氢乙酸、柠檬黄、日落黄、胭脂红。 (一)、高效液相色谱仪的工作原理 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附- 解吸的分配过程高的要求。 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相

实验一气相色谱法测定混合醇

实验一 气相色谱法测定混合醇 一、实验目的 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习归一化法定量方法。 3.了解气相色谱仪的基本结构、性能和操作方法。 二、实验原理 色谱法具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 常用的定量方法有好多种,本实验采用归一法。 归一法就是分别求出样品中所有组分的峰面积和校正因子,然后依次求各组分的百分含量。10000?'?=∑ f A f Ai Wi i 归一法优点:简洁;进样量无需准确;条件变化时对结果影响不大。 缺点:混合物中所有组分必须全出峰;必须测出所有峰面积。 [仪器试剂] 三、实验仪器与试剂 气相色谱仪;微量注射器1μL 乙醇、正丙醇、正丁醇,均为色谱纯 四、实验步骤 1. 色谱条件 色谱柱 OV-101弹性石英毛细管柱 25m×0.32mm

柱温150℃;检测器200℃;汽化室200℃ 载气氮气,流速1.0cm/s。 2. 实验内容 开启气源(高压钢瓶或气体发生器),接通载气、燃气、助燃气。打开气相色谱仪主机电源,打开色谱工作站、计算机电源开关,联机。按上述色谱条件进行条件设置。温度升至一定数值后,进行自动或手动点火。待基线稳定后,用1μL 微量注射器取0.5μL含有混合醇的水样注入色谱仪,同时按下数据采集键。 五、数据处理 1. 面积归一化法定量 组分乙醇正丙醇正丁醇 峰高(mm) 半峰宽 (mm) 峰面积 (mm2) 含量(%) 将计算结果与计算机打印结果比较。 【思考题】 1. 本实验中是否需要准确进样?为什么? 2. FID检测器是否对任何物质都有响应?

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 R f 原点至层析斑点中心的距离原点至溶剂前沿的距离 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图

“浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤 (1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离,然后计算各样品的比移值并定性确定混合物中各物质名称。

实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm 时要及时将板取出,用铅笔标示出展开剂前沿的位置。 讨论: 七、思考题

薄层色谱法标准操作规程

SOP-02-QC-014/0.0 薄层色谱法标准操作规程第 2 页 共 8 页 薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品所含成分分离,所得色谱图与适宜的标准物质按同法所得的色谱图对比,亦可用薄层色谱扫描仪进行扫描,用于鉴别、检查或含量测定。 4.1.仪器与材料 4.1.1.薄层板 按支持物的材质分为玻璃板、塑料板或铝板;按固定相种类分为硅胶薄层板、键合硅胶板、微晶纤维素薄层板、聚酰胺薄层板、氧化铝薄层板等。固定相中可加入黏合剂、荧光剂。硅胶薄层板常用的有硅胶G 、硅胶、硅胶H 、硅胶、G 、H 表示含或 254GF 254HF 不含石膏黏合剂。为在紫外光254nm 波长下显绿色背景的荧光剂。 254F 按固定相粒径大小分为普通薄层板(10?40μm)和髙效薄层板(5?10μm)。 在保证色谱质量的前提下,可对薄层板进行特别处理和化学改性以适应分离的要求,可用实验室自制的薄层板。固定相颗粒大小一般要求粒径为10?40μm 。玻璃板应光滑、平整,洗净后不附水珠。 4.1.2.点样器 一般采用微升毛细管或手动、半自动、全自动点样器材。 4.1.3.展开容器 上行展开一般可用适合薄层板大小的专用平底或双槽展开缸,展开时需能密闭。水平展开用专用的水平展开槽。 4.1.4.显色装置 喷雾显色应使用玻璃喷雾瓶或专用喷雾器,要求用压缩气体使显色剂呈均匀细雾状喷出;浸渍显色可用专用玻璃器械或者适宜的展开缸代用;蒸汽熏蒸显色可用双槽展开缸或适宜大小的干燥器代替。

4.1.5检视装置为装有可见光、254nm、365nm紫外光光源及相应的滤光片的暗箱,可附加摄像设备供拍摄图像用。暗箱内光源应有足够的光照度。 4.1.6.薄层色谱扫描仪系指用一定波长的光对薄层板上有吸收的斑点,或经激发后能发射出荧光的斑点,进行扫描,将扫描得到的谱图和积分数据用于物质定性或定量的分析仪器。 4.2.操作方法 4.2.1.薄层板制备 市售薄层板临用一般应在110°C活化30分钟。聚酰胺薄膜不需活化。铝基片薄层板、塑料薄层板可根据需要剪裁,但须注意裁后的薄层板底边的固定相层不得有破损。如在存放期间空气中杂质污染,用三氯甲烷、甲醇或二者的混合溶剂在展开缸中上行展开预洗,晾干,110℃活化,置干燥器中备用。 自制薄层板除另有规定外,将1份固定相和3份水(或加有黏合剂的水溶液,如0.2%?0.5%羟甲基纤维素钠水溶液,或规定度的改性剂溶液)在研钵中按同一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布进行涂布(厚度为0.2?0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干后,在110℃烘30分钟,随即置于有干燥剂的干燥箱中备用。使用前检查其均匀度,在反射光及透视光下检视,表面应均匀、平整、光滑,并且无麻点、无气泡、无破损及污染。 4.2.2.点样 除另有规定外,在洁净干燥的环境中,用专用的毛细管点样于薄SOP-02-QC-014/0.0 薄层色谱法标准操作规程第3 页共8 页

药物分析方法进展

药物分析方法进展 摘要: 药物分析的发展已从一种专门技术逐步发展成为一门日臻成熟的科学,所涉及的研究范围包括药品质量控制、临床药学、中药与天然药物分析、药物代谢分析、法医毒物分析、兴奋剂检测和药物制剂分析等。随着药物科学的迅猛发展,各相关学科对药物分析不断提出新的要求,它已不再仅仅局限于对药物进行静态的质量控制,而是发展到对制药过程、生物体内和代谢过程进行综合评价和动态分析研究。 关键词药物分析研究进展 药物是预防、治疗、诊断疾病和帮助机体恢复正常机能的物质。药品质量的优劣直接影响到药品的安全性和有效性,关系到用药者的健康与生命安危。虽然药品也属于商品,但由于其特殊性,对它的质量控制远较其他商品严格。因此,必须运用各种有效手段,包括物理、化学、物理化学、生物学以及微生物学的方法,通过各个环节全面保证、控制与提高药品的质量。传统的药物分析,大多是应用化学方法分析药物分子,控制药品质量。然而,现代药物分析无论是分析领域,还是分析技术都已经大大拓展。从静态发展到动态分析,从体外发展到体内分析,从品质分析发展到生物活性分析,从单一技术发展到联用技术,从小样本分析发展到高通量分析,从人工分析发展到计算机辅助分析。 具体一点的讲,药物分析是分析化学技术在药学领域中的具体应用。分析化学的进步,尤其是近年仪器分析和计算机技术的进展,为药物分析的发展提供了坚实的基础。药物分析的任务是在药学各个领域中,对出于不同的目的和要求, 不同来源和组成的样品中的某些成分进行检出、鉴别和测定。药物分析发展的主要趋向就是如何能够简便、快速地从复杂组成的样品中,灵敏、可靠地检测一些微量成分。 药物分析学的研究范围包括药物质量控制、临床药学、中药与天然药物分析、药物代谢分析、法医毒物分析、兴奋剂检测和药物制剂分析、创新药物研究,以及药品上市后的再评价等,哪里有药物,哪里就有药物分析。 1、药物分析技术的发展 光谱法如紫外分光光度法、核磁共振光谱法、质谱法、拉曼光谱法、红外光谱法、荧光、磷光及化学发光光谱法、原子吸收和原子发射光谱法以及X 2射线衍射谱法等,方法较多。近年来发展虽不如色谱那么迅速,在药典中所占的比重有下降的趋势,但是仍出现了很多新方法,如二维核磁共振谱法、近红外光谱法、激光拉曼光谱以及色谱光谱联用技术等。在新的世纪中,这些方法会有更快的发展,并广泛地应用于药学科学各领域中。电化学部分分别为化学传感器、离子选择性电极和动力电化学方法与应用。近几年生物传感器的发展,成为电分析化学中活跃的研究领域。微电极技术是一种新的电化学测试技术,在活体分析中,微电极用作电化学微探针,检测动物神经传递物质的扩散过程,成为微柱液相色谱和高效毛细管电泳的电化学检测器。在将来药物分析的发展中,将会显示出光辉的应用前景。 复杂样品中微量成分的检测是在药物分析工作中比较困难的问题。色谱法对复杂样品具有较高的分离能力,是药物分析中常用的分析技术。 薄层色谱法主要用于药物及制剂的鉴别、杂质检查以及中药成分分析,已成为当今药

气相色谱法测定环氧乙烷.doc

气相色谱法测定 明胶空心胶囊中环氧乙烷 摘要: 目的:对生产的明胶空心胶囊中环氧乙烷测定气相色谱法进行方法验证;方法:定性除了采用传统的对照品保留时间定性又采用了供试品加标定性和双柱定性,定量采用加标回收率验证方法准确性,方法精密度采用RSD%验证;结论:定性采用保留时间定性、DB-624色谱柱和PLOT/Q色谱柱双柱定性和加标定性,方法定性互相验证正确。定量加标回收率为98.44~99.98%,方法准确。方法精密度RSD%为3.6~4.1,方精密度好可靠。 引言: 依据《中国药典》(2010版)正文第二部分1204页明胶空心胶囊中环氧乙烷的测定气相色谱法,实验人员照残留溶剂测定法(附录ⅧP第二法附录61页)实验。采用了HP-5、DB-W AX、DB-624和PLOT/Q色谱柱实验(都是方法规定的色谱柱)。其中HP-5和DB-W AX均难以有效分离广生生产的供试品中的干扰峰,改用固定液为(6%)氰丙基苯基(94%)二甲基聚硅氧烷DB-624毛细管柱实现了基线分离,试验了供试品加标定性,加标回收率,加标RSD%。之后,依照残留溶剂测定法“附注(3)干扰峰的排除”又在另一根截然不同的气-固色谱柱做了实验。PLOT/Q色谱柱固定相为聚苯乙烯—二乙烯基苯型的高分子多孔小球。两者检验结果一致,排除了测定中有共出峰的干扰。 1 实验部分 1.1仪器与试剂 Agilent 7890A GC/FID ; GC Chemstation (B.04.01) 工作站;Agilent 7694E顶空进样 器。对照品:环氧乙烷(浓度5mg/ml,美国Accustandard);溶剂:水(实验室超纯水);供试品:明胶空心胶囊(广生胶囊提供)。 1.2色谱条件 ①色谱条件 色谱柱:DB-624毛细管柱(30m*0.53mm*3.0um),固定相:(6%)氰丙基苯基(94%)二甲基聚硅氧烷;柱温:40℃保持5min,升温速率25℃/min,上升到150℃终止程序升温,后运行温度230℃,后运行时间3 min;载气流速:5mL/min。 汽化室:汽化室110℃,分流比1:1。 检测器:260℃,氢气40mL/min,空气400mL/min,尾吹33 mL/min。

如何建立薄层色谱法测定有关物质的方法

如何建立薄层色谱法测定有关物质的方法 谢沐风 (上海市药品检验所上海200233) 摘要本文就如何建立TLC法测定有关物质的方法进行论述,系统地阐述了薄层色谱法各条件确定的原理,并列举了质量标准制订中存在的某些问题。 关键词薄层色谱法(TLC法)有关物质方法建立 有关物质是研究药品中除主成分以外的杂质,它可能是原料药合成过程中带入的原料、中间体、试剂、降解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程中产生的降解物,或是在贮藏、运输、使用过程中产生的降解物等[1]。这些杂质的存在直接反映药品的有效性和安全性,故要对其进行研究,特别是在药品申报的质量研究资料中需建立其检测方法,并根据生产、稳定性考核等实际情况考虑是否在质量标准中制订该检查项,规定其限度。目前,有关物质的常用测定方法有高效液相色谱法(HPLC法)和薄层色谱法(TLC法)。 TLC的特点是快速、简便,尤其是对无紫外吸收的杂质测定,更具有其应用价值。如能将TLC法与HPLC法有机地结合、或彼此间进行比对研究,便可得到更多、更为准确的有关杂质信息,做到两方法间的相辅相成,相益得彰!本文将着重讨论如何建立薄层色谱法测定有关物质的方法。 1.测定方法类型 常用的方法有杂质对照品法(适用于已知杂质)和自身(稀释)对照法(适用于一般杂质检查,杂质成分少且尚不能取得杂质对照品)。目前国内由于难以获得杂质对照品、故一般均采用自身对照法。 2.展开剂的确定(即专属性试验) 专属性的研究是提供被分析物在杂质和辅料存在时能被区分的证明,该点是色谱条件建立的关键。通常采用在被分析物的对照品或精制品中加入一定量的杂质或辅料,证明色谱条件可将各杂质与被分析物分离[1]。这里的关键是:将多少量的杂质加入到多少量的主成分中。正确的作法是将1%(w/w)浓度量的各杂质加入到100%浓度的主成分中,配制这样的溶液来

薄层色谱法试题

姓名:科室分数: 中国药典2010年版薄层色谱法试题 一、填空(43分) 1、市售薄层板分()和(),如硅胶薄层板、硅胶GF254薄层板、聚酰胺薄膜等。 2、薄层板如在存放期间被空气中杂质污染,使用前可用()、()或二者的混合溶剂在展开缸中上行展开预洗,()活化,置干燥器中备用。 3、薄层板在使用前检査其均匀度,在反射光及透视光下检视,表面应()、()、(),()、()、()及()。 4、薄层点样除另有规定外,在洁净干燥的环境,用专用毛细管或配合相应的半自动、自动点样器械点样于薄层板上,一般为()或(),点样基线距底边(),高效板一般基线离底边()。圆点状直径一般不大于(),高效板一般不大于()。 5、薄层点样,可用专用半自动或自动点样器械喷雾法点样。()宽度一般为5?10mm。高效板条带宽度一般为()。点间距离可视斑点扩散情况以()互不干扰为宜,一般不少于8mm,高效板供试品间隔不少于5mm。 6、薄层色谱法的系统适应性试验包括()、()和()三个方面。 7、薄层扫描定量时,除另有规定外,含量测定应使用()簿层板。 8、薄层扫描定量测定应保证供试品斑点的量在()内,必要时可适当调整供试品溶液的(),供试品与对照品同板点样、展开、扫描、测

定和计算。 二、单选题(10分) 1、薄层色谱常用的固定相其颗粒大小,一般要求粒径为() A、10~40um B、20~40um C、5~50um D、40~60um 2、自制薄层板的厚度为() A、0. 2?0.3mm B、0.1?0.3mm C、0. 3?0.5mm D、不得过0. 5 3、供试品溶液和对照品溶液应交叉点于同一薄层板上,供试品点样不得少于2个,对照品每一浓度不得少于()个。扫描时,应沿展开方向扫描,不可横向扫描。 A、1 B、2 C、3 D、4 三、多选题(21分) 1、薄层色谱中,最常用的固定相有() A、硅胶G、硅胶GF254、 B、微晶纤维素 C、硅胶H、硅胶HF254、 D、氧化铝。 2、制备薄层板时,用羧甲基纤维素钠水溶液适量调成糊状,均匀涂布于玻板上。羧甲基纤维素钠水溶液的浓度可为()。 A、0. 2% B、0.5% C、0.7% D、0.3% 3、薄层色谱所用的仪器与装置有() A、薄层板 B、点样器 C、展开容器 D、显色装置 E、检视装置 F、薄层色谱扫描仪 4、薄层显色有以下()几种方式。 A、喷雾显 B、浸渍显色 C、蒸气熏蒸显色 D、紫外光显色 5、薄层检视装置中应装有以下设备:()

薄层色谱分析步骤及注意事项经典.doc

薄层色谱分析步骤及注意事项 薄层色谱法(thin layer chromatography简写TLC)是物理化学的分离技术,常用于药物的分离与分析现对此方法的分析步骤及注意事项提点建议。 薄层色谱分析步骤[最新*#~新@] 完成TLC分析通常需经制板、点样、展开、检出4步操作。[最新版%新&@] ⑴制板 在一平面支持物(通常玻璃)上,均匀地涂制硅胶、氧化铝或其他吸附剂薄层、样品的分离、检测就在此薄层色谱板上进行。 一般选用适当规格的表面光滑平整的玻璃板。常用的薄层板规格有:10cm×20cm、5cm ×20cm、20cm×20cm等。称取适量硅胶,加入0.2%~0.5%羧甲基纤维素钠溶液(CMC-Na),充分搅拌均匀,进行制板。一般来说10cm×20cm的玻璃板,3~5g硅胶/块;硅胶与羧甲基纤维素钠的比例一般为1:2~1:4。制好的玻璃板放于水平台上,注意防尘。在空气中自然干燥后,置1l0℃烘箱中烘0.5~lh,取出,放凉,并将其放于紫外光灯(254nm)下检视,薄层板应无花斑、水印,方可备用。 ⑵点样 用微量进样器进行点样。点样,先用铅笔在层析上距末端lcm 处轻轻画一横线,然后用毛细管吸取样液在横线上轻轻点样,如果要重新点样,一定要等前一次点样残余的溶剂挥发后再点样,以免点样斑点过。一般斑点直径大于2mm,不宜超过5mm.底线距基线1~2.5cm,点间距离为lcm左右,样点与玻璃边缘距离至少lcm,为防止边缘效应,可将薄层板两边刮去1~2cm,再进行点样。 ⑶展开 将点了样的薄层板放在盛在有展开剂的展开槽中,由于毛细管作用,展开溶剂在薄层板上缓慢前进,前进至一定距离后,取出薄层板,样品组分固移动速度不同而彼此分离。 [最新@&新#*]

薄层色谱法

薄层色谱法 薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品所含成分分离,所得色谱图与适宜的对照物按同法所得的色谱图对比,并可用薄层扫描仪进行扫描,用于鉴别、检查或含量测定。 1.仪器与材料 (1)薄层板 按支持物的材质分为玻璃板、塑料板或铝板等;按固定相种类分为硅胶薄层板、键合硅胶板、微晶纤维素薄层板、聚酰胺薄层板、氧化铝薄层板等。固定相中可加入黏合剂、荧光剂。硅胶薄层板常用的有硅胶G、硅胶GF254、硅胶H、硅胶HF254,G、H表示含或不含石膏黏合剂。F254为在紫外光254nm 波长下显绿色背景的荧光剂。按固定相粒径大小分为普通薄层板(10~40μm)和高效薄层板(5~10μm). 在保证色谱质量的前提下,可对薄层板进行特别处理和化学改性以适应分离的要求,可用实验室自制的薄层板。固定相颗粒大小一般要求粒径为10~40μm。玻板应光滑、平整,洗净后不附水珠。 (2)点样器一般采用微升毛细管或手动、半自动、全自动点样器材。 (3)展开容器上行展开一般可用适合薄层板大小的专用平底或双槽展开缸,展开时须能密闭。水平展开用专用的水平展开缸。 (4)显色装置喷雾显色应使用玻璃喷雾瓶或专用喷雾器,要求用压缩气体使显色剂呈均匀细雾状喷出;浸渍显色可用专用玻璃器械或用适宜的展开缸代用;蒸气熏蒸显色可用双槽展开缸或适宜大小的干燥器代替。 (5)检视装置为装有可见光、254nm及365nm紫外光光源及相应的滤光片的暗箱,可附加摄像设备供拍摄图像用,暗箱内光源应有足够的光照度。 (6)薄层色谱扫描仪系指用一定波长的光对薄层板上有吸收的斑点,或

经激发后能发射出荧光的斑点,进行扫描,将扫描得到的谱图和积分数据用于物质定性或定量的分析仪器。 2.操作方法 (1)薄层板制备 市售薄层板临用前一般应在110℃活化30分钟。聚酰胺薄膜不需活化。铝基片薄层板可根据需要剪裁,但须注意剪裁后的薄层板底边的硅胶层不得有破损。如在存放期间被空气中杂质污染,使用前可用三氯甲烷、甲醇或二者的混合溶剂在展开缸中上行展开预洗,110℃活化,置干燥器中备用。 自制薄层板除另有规定外,将1份固定相和3份水(或加有黏合剂的水溶液)在研钵中按同一方向研磨混合,去除表面的气泡后,倒入涂布器中,在玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3mm),取下涂好薄层的玻板,置水平台上于室温下晾干后,在110℃烘30分钟,即置有干燥剂的干燥箱中备用。使用前检查其均匀度,在反射光及透视光下检视,表面应均匀、平整、光滑,无麻点、无气泡、无破损及污染。 (2)点样除另有规定外,在洁净干燥的环境,用专用毛细管或配合相应的半自动、自动点样器械点样于薄层板上,一般为圆点状或窄细的条带状,点样基线距底边10~15mm,高效板一般基线离底边8~10mm。圆点状直径一般不大于4mm,高效板一般不大于2mm;接触点样时注意勿损伤薄层表面。条带状宽度一般为5~10mm。高效板条带宽度一般为4~8mm,可用专用半自动或自动点样器械喷雾法点样。点间距离可视斑点扩散情况以相邻斑点互不干扰为宜,一般不少于8mm,高效板供试品间隔不少于5mm。 (3)展开将点好供试品的薄层板放入展开缸中,浸入展开剂的深度为距原点5mm为宜,密闭。除另有规定外,一般上行展开8~15cm,高效薄层板上

色谱分析分离方法概述

色谱分析分离方法概述 本书是色谱世界《色谱技术丛书》的第一分册。全书共四章,主要说明了色谱法的发展及其在分析化学中的地位和作用,色谱法的特点、分类及性能比较,色谱法的原理,色谱模型理论等方面的内容。 第一章色谱法的发展及其在分析化学中的地位和作用 第一节色谱法发展简史 一、色谱法的出现 二、色谱法的发展 三、色谱法的现状和未来 第二节色谱法在工业生产和科学研究中的作用 一、色谱法在经济建设和科学研究中的作用 二、色谱法在分析化学中的地位和作用 第三节色谱法与其他方法的比较和配合 一、色谱法的特点和优点 二、色谱法和其他方法的配合 第二章色谱法的特点、分类及性能比较 第一节色谱法的定义与分类 一、按流动相和固定相的状态分类 二、按使用领域不同对色谱仪的分类 第二节现代色谱法的应用领域和性能比较 一、色谱法的应用领域

二、各种色谱方法的性能比较 第三章色谱法的原理 第一节色谱分析的基本原理 一、色谱分离的本质 二、色谱分离的塔板理论 第二节色谱法中常用的术语和参数 一、气相色谱中常用的术语和参数 二、液相色谱中常用的术语和参数 第三节色谱的速率理论 一、气相色谱速率理论 二、液相色谱速率理论 第四章色谱模型理论 第一节色谱模型概述 一、色谱模型理论的意义 二、色谱模型的建立 三、色谱模型的求解 第二节线性色谱 一、理想过程 二、反应色谱 三、扩散的影响 四、相间传质阻力的影响 五、同时含扩散与相同传质阻力的情形

第三节单组分理想非线性色谱 一、理想非线性色谱数学模型分析 二、谱带发展与流出曲线 三、理想非线性色谱间断解的数学意义———弱解 四、非线性反应色谱 第四节双组分理想非线性色谱 一、数学模型分析 二、情形 三、简单波的传播 四、激波 五、谱带的发展与保留值的计算 第一节色谱法发展简史 俄国植物学家茨维特于1903年在波兰华沙大学研究植物叶子的组成时,用碳酸钙作吸附剂,分离植物干燥叶子的石油醚萃取物。他把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物叶子的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙里,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的6个色带。当时茨维特把这种色带叫作“色谱”.茨维特于1906年发表在德国植物学杂志上用此名,在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。把茨

薄层色谱展开剂选择(仅供参考)

薄层色谱展开剂选择 选择展开剂,要依据溶剂极性和他们的混溶性,溶剂对被分析物的溶解性,以及被分析物的结构。这里只讨论药典里通常使用的以硅胶为固定相主体的正相薄层,也不考虑板的活性。 关于溶剂混溶性,一般根据相似相溶原则,需要注意,极性相差大的不混溶,比如正己烷与甲醇。多元展开剂,主体的两种溶剂不能混溶,就需要通过第三种溶剂来调和。比如:石油醚、正庚烷、正已烷、戊烷、环已烷和甲醇、水之类的。一般正相色谱,固定相为极性,被分析物质的极性越大,需要极性更大的展开剂。 了解被分析物的极性可以通过分析其结构获得,很难获得它的极性指数。物质分子化学结构中,通常由较极性部分和非极性部分两部分。例如下面以苯丙烷为极性小部分,随着极性基团部分的增加,总体的极性就增加,展开剂极性也增加了。 ,依次为肉桂酸、阿魏酸、咖啡酸、菊苣酸、绿原酸。 相应展开剂分别为:正己烷—乙醚—冰醋酸 (5:5:0.1)、苯-冰醋酸-甲醇(30:1:3)、氯仿-甲醇-甲酸(9:1: 0.5)、石油醚-乙酸乙酯-甲酸(3:6: 1)、醋酸丁酯-甲酸-水(7:2.5:2.5)。(由于薄层板、比移值不同的原因,展开剂极性比较是相对的,并非绝对的后者大于前者)。 现在最重要的问题是,不同化合物,怎么定它的极性,又用什么标准来定它对应的展开剂呢?以下分开讨论不同化合物极性情况及其对应的展开剂。 首先是极性较小的挥发性物质。比如:冰片:石油醚 (30~60℃)—醋酸乙酯(17:3)、厚朴酚:苯-醋酸乙酯(9:1.5)、α-香附酮:苯-醋酯乙酯-冰醋酸(92:5:5)、丹皮酚:环己烷-醋酸乙酯(3:1),这类化合物,以石油醚、正构烷和苯为体积百分数比较大的溶剂,通常起溶解和分离化合物的作用,而用醋酸乙酯为调节Rf(比移值)的溶剂。为了减少拖尾之类其他相似相溶原则以外的影响,适当加入添加剂,如有机酸或者有机碱。 极性较小的不挥发性物质。比如:β-谷甾醇:环己烷-醋酸乙酯-甲醇(6:2.5:1)或者环己烷-丙酮(5:2) 、熊果酸:甲苯-醋酸乙酯-冰醋酸(12:4:0.5)、齐墩果酸:氯仿-甲醇(40:1)、猪去氧胆酸:氯仿-乙醚-冰醋酸(2:2:1)、大黄素:苯—醋酸乙酯—甲醇(15:2:0.2)或者苯—乙醇 (8:1)、丹参酮ⅡA:苯-醋酸乙酯-甲酸(40:25:4) 、穿心莲内酯:氯仿-无水乙醇(9:1)、靛玉红、靛蓝氯仿-乙醇(9:1)或者苯-氯仿-丙酮(5:4:1)。这类物质展开剂极性比极性较小的挥发性物质洗脱力强一些,因为这类物质极性小的母核大,而极性大的基团通常可以形成氢键,比如羧酸、羟基。以上物质,母核分子量减小、母核结构中不饱和健的增加(尤其是出现苯环),极性基团的增加,都使极性增加,展开剂极性也增大。这个范围内的物质很多,一般展开剂大百分数的溶剂可以从环己烷—〉甲苯—〉二甲苯—〉苯—〉氯仿的顺序,按照极性要求选择。这里注意,异丙醇、正丁醇极性指数也比较小,在这范围的化合物很少用,因为粘性大、展开慢,造成斑点扩散;另外,羟基的氢键作用力也有不利。调节Rf值的溶剂,从醋酸乙酯—〉甲醇—〉丙酮—〉乙醇。挥发性物质也有很多带羰基、羟基的,但从它的挥发性就可以明白,分子间作用力不强,另外,母核与石油醚、正构烷和苯的结构差异小,估计更容易脱离硅胶吸附,更快进入溶剂中,而不需要通过提高展开剂的极性。 皂苷类。人参皂苷:氯仿-甲醇-水 (65:35:10)10℃以下放置的下层溶液或正

如何建立薄层色谱法测定有关物质的方法

摘要本文就如何建立TLC法测定有关物质的方法进行论述,系统地阐述了薄层色谱法各条件确定的原理,并列举了质量标准制订中存在的某些问题。 关键词薄层色谱法(TLC法)有关物质方法建立 有关物质是研究药品中除主成分以外的杂质,它可能是原料药合成过程中带入的原料、中间体、试剂、降解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程中产生的降解物,或是在贮藏、运输、使用过程中产生的降解物等[1]。这些杂质的存在直接反映药品的有效性和安全性,故要对其进行研究,特别是在药品申报的质量研究资料中需建立其检测方法,并根据生产、稳定性考核等实际情况考虑是否在质量标准中制订该检查项,规定其限度。目前,有关物质的常用测定方法有高效液相色谱法(HPLC法)和薄层色谱法(TLC法)。 TLC的特点是快速、简便,尤其是对无紫外吸收的杂质测定,更具有其应用价值。如能将TLC法与HPLC法有机地结合、或彼此间进行比对研究,便可得到更多、更为准确的有关杂质信息,做到两方法间的相辅相成,相益得彰!本文将着重讨论如何建立薄层色谱法测定有关物质的方法。 1.测定方法类型 常用的方法有杂质对照品法(适用于已知杂质)和自身(稀释)对照法(适用于一般杂质检查,杂质成分少且尚不能取得杂质对照品)。目前国内由于难以获得杂质对照品、故一般均采用自身对照法。 2.展开剂的确定(即专属性试验) 专属性的研究是提供被分析物在杂质和辅料存在时能被区分的证明,该点是色谱条件建立的关键。通常采用在被分析物的对照品或精制品中加入一定量的杂质或辅料,证明色谱条件可将各杂质与被分析物分离[1]。这里的关键是:将多少量的杂质加入到多少量的主成分中。正确的作法是将1%(w/w)浓度量的各杂质加入到100%浓度的主成分中,配制这样的溶液来验证系统适用性。之所以如此配制,目的是模仿样品中有可能存在的状态,即有少量(1%左右)杂质存在时是否能与主成分达到完全分离,只有这样才能比较客观、科学地反映样品中实际存在情况的(见图1);而不应把该溶液配制成:主成分与中间体相同浓度的。因为一者实际检测时样品中不可能存在此种情况;二者该浓度不易确定,目前国内申报资料中一般的作法均是配制成较低的一致浓度,这样各斑点当然易于完全分离了(见图2),但在实际测定时,由于主斑点急剧增大,很易将相邻杂质包含于主成分斑点中。同样,质量标准中的系统适用性试验用溶液的配制方法亦如此。

薄层色谱法操作规程

1.目的 建立薄层色谱法检测操作规程。 2.适用范围 本规程适用于薄层色谱法。 3.编制依据 《药品生产质量管理规范(1998年修订)》国家药品监督管理局(1999) 4.责任 4.1 QC质检员对本规程的实施负责。 4.2 QC主管对本规程的有效执行承担监督检查责任。 5.正文 5.1简述 ,经展开、检视所得的色谱图,与适宜的对照物按同法所行的色谱图作对比,用以进行药品的鉴别或杂质检查的方法。 5.2仪器与材料 除另有规定外,玻板要求光滑、平整、洗净后不附珠,晾干。最常用的固定相有硅胶G、 硅胶GF 254、硅胶H和硅胶HF 254 ,其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤 维素、微晶纤维素F 254 等。其颗粒大小,一般要求直径为5~40μm。 薄层涂布,一般可分无黏合剂和含黏合剂两种;前者系将固定相直接涂布于玻板上, 后者系在固定相中加入一定量黏合剂,一般常用10%~15%煅石膏(CaSO 4·2H 2 O在140℃ 加热4小时),混匀后加水适量使用,或用0.2%~0.5%羧甲基纤维素钠水溶液(取羧甲基纤维素适量,加水适量,加热煮沸至完全溶解)适量,调成糊状,均匀涂布于玻板上。使用涂布器应能使固定相在玻板上涂成一层符合厚度要求的均匀薄层。 分普通薄层板和高效薄层板,如硅胶薄层板、硅胶GF 254 薄层板、聚酰胺薄膜和铝基片薄层板等。 有手动、半自动或自动点样器,一般采用微量注射器或定量毛细管。 应使用适合薄层板大小的专用薄层色谱展开缸,并有严密的盖子,底部应平整光滑,或有双槽。 按各品种项下规定。可采用喷雾显色、浸渍显色或置碘蒸气中显色,检查斑点。 喷雾显色可使用玻璃喷雾瓶或专用喷雾器,要求用压缩气体使显色剂呈均匀细雾状喷出;浸渍显色可使用专用玻璃器皿或适宜的玻璃缸代替;碘汽熏碘显色可用双槽玻璃缸

仪器分析的发展与应用

仪器分的发展与应用 仪器分析的发展历程: 经过19世纪的发展,到20世纪20~30年代,分析化学已基本成熟,它不再是各种分析方法的简单堆砌,已经从经验上升到了理论认识阶段,建立了分析化学的基本理论,如分析化学中的滴定曲线、滴定误差、指示剂的作用原理、沉淀的生成和溶解等基本理论。 20世纪40年代以后,一方面由于生产和科学技术发展的需要,另一方面由于物理学革命使人们的认识进一步深化,分析化学也发生了变革,从传统的化学分析发展为仪器分析。现代仪器分析涉及的范围很广,其中常用的有光学分析法、电化学分析法和色谱法。光学分析法是基于人们对物质光谱特性的认识而发展起来的一种分析测定方法。17世纪牛顿将白光分成了光谱以后,科学家对光谱进行了研究。19世纪前半期,人们已经把某一特征谱线和某种物质联系了起来,并提出了光谱定性分析的概念。在此基础上,德国化学家本生和物理学家基尔霍夫合作设计并制造了第一台用于光谱分析的光谱仪,实现了从光谱学原理到光谱分析的过渡,产生了一种新的分析方法即光谱分析法。19世纪后半期,人们又对光谱定量分析的可能性进行了探讨。1874年,洛克厄通过大量实验得出结论,认为光谱定量分析只能依据光谱线的强弱。 到20世纪,用光电量度法测定了光谱线的强度,后来,光电倍增管被应用于光谱定量分析。与此同时,利用物质的吸收光谱的吸收光度法,也得到了发展。电化学分析法是利用物质的电化学性质发展起来的一种分析方法。首先兴起的是电重量分析法。美国化学家吉布斯把电化学反应应用于分析化学中,用电解法测定铜,后来这种方法被广泛应用于生产中。电重量分析法存在着耗时长、易氧化等缺点,化学家在研究中把物质的电化学性质与容量分析法结合起来,发展了一种新方法,这就是电容量分析法。电容量分析法中发展较早的是电位滴定法,其后,极谱分析法和库仑分析法也相继发展起来。色谱分析法是基于色谱现象而发展起来的一种分析方法。1906年,俄国植物学家茨维特认识到所谓色谱现象和分离方法有密切联系,而且对分离有重大意义。他用这种方法分离了植物色素,并系统地研究了上百种吸附剂,奠定了色谱分析法的基础。20世纪30年代,具有离子交换性能的合成树脂问世,解决了一系列疑难问题,提高了色谱分离技术。由于单纯的分离意义不大,20世纪50年代,人们开始将分离方法和各种检测系统联接起来,分离分析同时进行,于是人们设计和制造了大型色谱分析仪。除了上述的方法以外,现代仪器分析法还有磁共振法、射线分析法、电子能谱法、质谱法等等。仪器分析是根据被测组分的某些物理的或物理化学的特性,如光学的、电学的性质,进行分析检测的方法,因此,它实际上已经超出了化学分析的范围和局限,成为生产和科学各个领域的工具。分析化学中的分析是分离和测定的结合,分离和测定是构成分析方法的两个既独立又相联系的基本环节。分离是使物质纯化的一种手段,而纯化的背后是物质的混合性。化学家所说的物质,是某种单质或化合物。是以纯粹的形式存在的物质。可是,无论是天然存在的还是人工制造的物质,都不是绝对纯的。因此,在化学分析中,首先遇到的矛盾就是纯与不纯的矛盾。分离是纯化物质的一种手段。分离一般有两条基本途径:一条是将所要分析的物质从混合物中提取出来,另一条则是将杂质提取出来。在分析化学发展的历史中,产生了许多分离方法。在古代,在酿造业中应用了蒸馏、结晶等分离手段;在近代,产生了各种各样的分离方法,如沉淀分离、溶剂萃取分离、离子交换分离、电解分离等。分离是有限度的。有些混合物由于性质非常相似,分离非常困难,如果不分离,共存的组分又互相干扰。在化学分析中,常常从分离操作中演变出其他方法,如掩蔽方法。在仪器分析的发展史上,试样和试剂有不同的发展形式和内容。在早期,需要分析的是自然物,与其发生作用,从而进行鉴别的主要是火。后来,被分析的是溶液,与之发生变化的也是溶液。人们最早使用的试剂是五倍子的植物浸液。随着实践和认识的发展,大量植物浸液应用于化学分析之中,形成了天然植物试剂系列。在应用天然试剂的过程中,人们也在研究如何制备化学试剂。第一个人工制备的分析化学试剂是黄血盐溶液,由此开创了化学试剂的新领域,拓宽了分析化学的研究范围。随着生产、生活和科学的发展,作为被分析的试样,其外延扩大了,从

气相色谱法测定苯系物..

093858 张亚辉 气相色谱法测定苯系物 一. 实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二. 实验仪器与试剂 1. GC-2000型气相色谱仪,4台 2. 医用注射器,1支 3. 苯、甲苯、二甲苯混合物 三.实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下: (1) 式中x i 代表待测样品中组分i 的含量,Ai 代表组分i 的峰面积,fi 代表组分i 的校正因子。 因为所测样品为同系物,我们可以简单地认为各组分校正因子相同,则(1)式可化简为 %100??= ∑i i i i i A f A f x % 100?=∑i i i A A x

载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。(2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器(TCD)、氢火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,主要根据不同的气体有不同的热导系数,对待侧物进行检测。热导检测器包括:池体(一般用不锈钢制成);热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成;参考臂:仅允许纯载气通过,通常连接在进样装置之前;测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。四、实验条件 色谱柱:长2m,102白色担体60~80目,涂渍角鲨烷或PEG为固定液,液担比为5﹕100 柱温:80,气化室温度:100,检测器温度120,载气:氢气 五、实验内容 (1)配制苯、甲苯、二甲苯标准混合液(各取1,5,5)取1μL,测谱图,归一

相关主题
文本预览
相关文档 最新文档