当前位置:文档之家› 稀土新材料催化剂材料CATY3技改项目环境影响报告表

稀土新材料催化剂材料CATY3技改项目环境影响报告表

稀土新材料催化剂材料CATY3技改项目环境影响报告表
稀土新材料催化剂材料CATY3技改项目环境影响报告表

稀土新材料催化剂材料CATY3技改项目环境影响报告表

浅谈稀土的应用现状与前景

浅谈稀土的应用现状与前景 12化本 120900017 贺惠苹 摘要:21世纪的发展使稀土工业面临着新的挑战。为了适应时代的脉搏,探索新的产品和用途,必须对各种形式的稀土产物的特性和可能产生的附加值进行广泛、深入的研究。我国有丰富的稀土资源,约占世界己探明储量的80%以上。我国是世界稀土资源大国,我国稀土资源的特点是储量大、类型多、品种全、质量好、开采成本低。除Pm外的16个稀土元素,在我国从南到北分布齐全。北方以包头矿为主,生产轻稀土;南方以江西、四川、湖南、广东等省为主,生产中、重稀土。目前已形成了良好的生产布局,产量稳居世界首位。因此,开发推广稀土应用对充分利用我国富有的稀土资源、推动稀土产业的发展,具有重要的社会意义。 关键字:稀土资源应用前景 引言:稀土在国民经济发展中发挥着愈来愈重要的作用,其作用并不在于其自身的价格,而在于它在其他领域的应用能产生其自身价值数十倍甚至上万倍的经济效益和社会效益。近年来稀土应用领域越来越广泛,新的应用不断出现。以我国为例,稀土应用已遍及国民经济的13个领域40多个行业,经济效益十分显著。另一方面,稀土在高新技术领域的应用前景十分广阔,是高新技术发展的战略材料。稀土元素因其特有的4f层电子结构,而具有很好的光、电、磁性质,成为光、电、磁等新型功能材料的核心。它还可以与其他元素组合成性能优异的功能材料,在新材料发展中起重要作用。稀土材料在高新技术领域中具有十分重要的战略地位,人们都在大力加强稀土新材料的研究和开发,竞争十分激烈。[1] 一稀土在钢铁冶金领域的应用 稀土元素由于其特殊的原子结构和活性,作为微量添加剂用于钢、铸铁、钦、铝、镍、钨、钥等材料中,能产生消除杂质、细化晶粒和改善组成的神奇功效,从而改进合金的机械、物理和加工性能,提高合金的热稳定性和耐腐蚀性。例如,稀土作为添加剂,可以净化钢液,改变钢中夹杂物的形态和分布,细化晶粒,改善钢的组织和性能.稀土在钢铁冶金中的应用是中国稀土的最大消费领域。特别是在铸铁中的应用很普遍,一直占最大的比例。稀土在钢中的用量占的比例相应小一些。稀土在铸铁中的作用主要是作为球化剂、蠕化剂和孕育剂使用;稀土处理的合金铸铁件亦有发展。稀土铸铁主要应用于冶金行业的轧辊、钢锭模,以及汽车和拖拉机行业的曲轴、汽缸体、变速箱、履带,机械行业的各种齿轮、凸轮轴、各种机座,建筑行业的各种口径的输水管线和暖气片等。目前存在的问题是,稀土铸铁的用量还不多,推广面应进一步扩大。在钢中的作用主要是脱硫、脱氧、细化晶粒、去除杂质等作用,从而改善钢的各项力学性能。[2] 二稀土在有色冶金中的应用 稀土金属具有很高的化学活性和较大的原子半径,因此,将其用于有色金属及合金中,一般都可以产生良好的效果,如细化晶粒、防止偏析、去气、除杂、净化和改善金相组织等作用,从而在一定程度上改善合金的力学性能、物理性能、

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

催化裂化产品方案分析

催化裂化产品方案 分析 1

催化裂化产品方案分析 催化裂化是石油炼制过程之一, 是在热和催化剂的作用下使重质油发生裂化反应, 转变为裂化气、汽油和柴油等的过程。 催化裂化原料是原油经过原油蒸馏( 或其它石油炼制过程) 分馏所得的重质馏分油;或在重质馏分油中掺入少量渣油,或经溶剂脱沥青后的脱沥青渣油; 或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上, 缩合为焦炭, 使催化剂活性下降, 需要用空气烧去( 见催化剂再生) , 以恢复催化活性, 并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高( 马达法80左右) , 裂化气( 一种炼厂气) 含丙烯、丁烯、异构烃多。 催化裂化技术由法国 E.J.胡德利研究成功, 于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化, 当时采用固定床反应器, 反应和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油, 催化裂化向移动床( 反应和催化剂再生在移动床反应器中进行) 和流化床( 反应和催化剂再生在流化床反应器中进行) 两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰; 流化床催化裂化设备较简单、处理能力大、较易操作, 得到较大发展。60年代, 出现分子筛催化剂, 因其活性高, 裂化反应改在一个管式反应器( 提升管反应器) 中进行, 称为提升管催化裂化。 2

中国1958年在兰州建成移动床催化裂化装置, 1965年在抚顺建成流化床催化裂化装置, 1974年在玉门建成提升管催化裂化装置。1984年, 中国催化裂化装置共39套, 占原油加工能力23%。 反应机理: 与按自由基反应机理进行的热裂化不同, 催化裂化是按碳正离子机理进行的, 催化剂促进了裂化、异构化和芳构化反应, 裂化产物比热裂化具有更高的经济价值, 气体中C3和C4较多, 异构物多; 汽油中异构烃多, 二烯烃极少, 芳烃较多。其主要反应包括: ①分解, 使重质烃转变为轻质烃; ②异构化; ③氢转移; ④芳构化; ⑤缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。 装置类型: 流化床催化裂化装置有多种类型, 按反应器( 或沉降器) 和再生器布置的相对位置的不同可分为两大类: ①反应器和再生器分开布置的并列式; ②反应器和再生器架叠在一起的同轴式。并列 3

我国稀土产业现状

稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 稀土资源丰富,绝对量很大,但含量偏低,且分布不均匀,可供开采且具有工业利用价值的有轻稀土矿物,主要是氟碳铈矿、独居石、铈铌钙钛矿;重稀土矿物,主要是磷钇矿、褐钇铌矿、离子吸附型稀土矿、钛铀矿等十几种。目前开发利用的稀土矿物主要有五种:氟碳铈矿、离子吸附型稀土矿、独居石矿、磷钇矿和磷灰石矿,前四种矿占世界稀土产量的95%以上。氟碳铈矿与独居石轻稀土含量高,磷钇矿含重稀土,但储量低,离子吸附型稀土矿重稀土含量高,磷灰石主要是轻稀土。 稀土元素独特的物理化学性质,在新材料领域, 稀土元素丰富的光学、电学及磁学特性得到了广泛应用。在高技术领域, 稀土新材料发挥着重要的作用。稀土新材料主要包括稀土永磁材料、稀土发光材料、稀土贮氢材料、稀土催化剂材料、稀土陶瓷材料及其他稀土新材料如稀土超磁致伸缩材料、巨磁阻材料、磁致冷材料、光致冷材料、磁光存储材料等。因而, 稀土元素被称为“21世纪的材料”。

我国是世界上稀土矿资源最为丰富的国家。截至2000 年, 已探明我国稀土矿工业储量4300 万吨, 占世界探明储量的43 %我国稀土矿品种全、质量高、易于开采。其他国家的稀土资源以轻稀土为主, 我国稀土资源轻、中、重稀土齐全, 稀土元素配分有价组分含量高。轻稀土资源主要集中分布在包头白云鄂博(铁稀土共生矿) 和四川冕宁(氟碳铈矿) 一带, 主要含镧、铈、镨、钕和少量钐、铕、钆等元素; 中重稀土资源集中在江西、广东、福建、广西、湖南等地, 以特有的离子态赋存于花岗岩风化壳层中, 富含世界其他现有矿物所短缺的 中重稀土元素钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇和镧、钕等, 其储量占世界中重稀土资源的90 %以上, 这种中重稀土与高新技术产业密切相关, 经济价值极高。另外, 我国稀土资源优势不仅在于储量大, 更重要的是在于矿种齐全和开采成本低。矿种全弥补了由于矿种单一造成的十几种稀土元素配分不平衡问题。开采成本低构成了我国稀土产业明显的技术竞争优势。北方的包头, 稀土资源是以副产品从铁矿中回收, 成本只有国外同类矿种的一半; 南方特产的 离子型稀土资源, 易采、易富集, 成本也相对便宜。因此, 独一无二的稀土资源是我国稀土产业具有较高国际竞争力的重要原因。 1、稀土产业的现状 20 世纪80 年代以来, 我国稀土工业依靠拥有世界最大稀土资 源的优势迅速崛起, 以平均年增长率大于20 %的速度增长。自1986 年起, 我国稀土产量就超过居世界第一的美国, 成为世界上最大的 稀土生产国。目前, 我国已能生产500 多个不同品种、1000 多个不

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

催化裂化工艺催化剂的发展

催化裂化工艺催化剂的发展 近年来,催化裂化产品被广泛使用,石油的催化裂化发展迅猛并取得了很大进步。目前我国对于催化裂化产品的需求量很大,为了满足市场需求,使用催化剂是很有必要的。催化剂可以加快化学反应速率,尽可能达到供等于求,满足工业使用,可以看出催化裂化催化剂对催化裂化的发展具有关键作用,它的使用不仅提高了轻质油的产率、降低了残炭的产率,而且还间接促进了经济的发展。因此应从实际出发对催化裂化工艺技术进行进一步的研究,推动我国石油化工行业的发展。 标签:催化裂化;催化剂;发展 在社会不断发展的进程中,石油资源的使用量也随之增大,但是在很大程度上也给自然环境带来不利的影响,将油品与催化剂进行有效的结合,可以提升轻质油的产量,进一步促进催化裂化技术、工艺及装置的发展。 1 催化裂化工艺技术 催化裂化工艺的发展经历了固定床、移动床、流化床及提升管技术的发展阶段,每种工艺技术均具有自身的特点,结合渣油炼制的实际情况,优选最佳的生产工艺技术,能够降低催化裂化的成本,提高产品质量,创造最佳经济效益。由于催化裂化工艺的特点,选择最佳的催化裂化工艺技术措施,获得更高的轻质油产率,得到更高辛烷值的汽油,满足市场对汽油品质的要求。催化裂化生产的柴油的十六烷值也比较高,达到设计的标准,是催化裂化工艺的另一种合格的轻质油产品。催化裂化生产工艺不仅生产出合格的汽油和柴油产品,同时能够得到液化气和重要的丙烯原料。石油化工催化裂化工艺使用的原材料为馏分油或渣油,经过催化裂化处理后,得到高品质的轻质油品,达到石油化工生产的技术标准。 2 催化裂化工艺技术进展 2.1 移动床催化裂化技术 移动床催化裂化技术是采用移动床反应器和蒸汽进行催化裂化的硅铝催化剂。催化剂在反应器与再生器之间循环移动,含碳催化剂在再生器烧焦后送入反应器,在反应器和原料油接触后发生反应,生成的轻质产物自反应器顶端逸出被送去分馏塔,生成的焦炭附于催化剂被送到再生器燃烧,最终催化剂再生。移动床反应器可以实现气固相反应过程中或液固相反应过程的反应器,一般在移动床反应器的顶部接连加入颗粒状、块状固体反应物和催化剂,反应进行的时候物料也会逐渐下移,最终通过底部连续被卸出,流体以自上而下或自下而上的方式通过床层进行反应。 2.2 双提升管FCC工艺技术

对于三效催化剂的制备与研究的开题报告

对于三效催化剂的制备与研究的开题报告 对于三效催化剂的制备与研究的开题报告 一、综述: 汽车作为现代社会的交通工具,给人们的工作和生活都带来了极大的便利,但同时也对大气环境造成了严重污染。由于汽车保有量的急剧增加,且我国的汽车检查和维修系统不完善,及汽车尾气污染控制水平低等原因,致使汽车尾气污染日益严重。大量汽车尾气污染物集中在城市,造成城市中汽车污染源的污染分担率明显增加。汽车排出的污染物主要有碳氢化合物、一氧化碳、氮氧化合物、铅、二氧化硫等有害物质。这些污染物危害人类健康,影响动植物的生长;另外氮氧化合物与碳氢化合物在强日光的作用吓,遇到不利于扩散的气候和地理环境时可形成光化学烟雾,造成眼中的二次污染和生态环境的破坏。因此,限制和治理汽车排气污染已迫在眉睫。20世纪80年代中期出现了第三代的Pt/Rh/Pd三金属三效催化剂。该技术充分利用了Pd的耐高温性能和Rh优异的NOx催化净化能力,大大提高了三效催化剂的活性。它的净化原理是:将贵金属三效催化剂制成净化装置后装入汽车内,使催化剂与尾气中的CO、NOX和有机物起氧化还原作用而生成无害物质排出,从而达到消除有害气体的目的。 二、思路及方法: 三效催化剂一般由四部分组成,包括:载体、涂层、活性催化剂、催化剂助剂。三效催化净化法,对一氧化碳、碳氢化合物和氮氧化物都有催化作用。本实验准备制备以γ-Al2O3及其他金属物质或陶瓷为载体,用La和Ce作为催化剂助剂的三效催化剂,并初步研究其催化性能。 三、主要内容:

采用浸渍法、机械混合法、离子交换法等制备三效催化剂 改变不同条件和助剂,改良单钯三效催化剂的性能 探讨改良三效催化剂的催化作用 四、工作计划: 1、2021年12月至2021年2月:查阅相关文献资料,初步确定论文题目; 2、2021年3月:拟定实验方案; 3、2021年4月:进行实验研究; 4、2021年5月:撰写毕业论文,进行毕业答辩。

催化裂化催化剂的种类

催化裂化催化剂--渣油裂化催化剂 ORBIT系列 产品性能和技术特点简介: ORBIT-3000催化剂着重于提高目的产物中汽油和柴油的产率。在该催化剂制备过程中采取了如下技术措施:采用复合的分子筛活性组份,使该催化剂既具有优异的焦炭选择性,又具有良好的活性稳定性;在超稳分子筛生产过程中,通过改性技术处理,注重开发超稳分子筛的中孔,使其适应于重油大分子的裂化反应;在改进分子筛性能的同时,采用活性氧化铝技术对担体进行改性处理,有效地提高了担体的大分子裂化能力。 ORBIT-3300催化剂是在ORBIT-3000催化剂所具备的大分子裂化活性高、焦炭选择性好、适合重油加工的基本性能的基础上,通过改变活性组份开发成功的新型重油裂化催化剂。该剂主要适合于加工量较大但剂油比较低的重油催化裂化装置,在装置分馏稳定、气压机系统等的弹性工作范围内,不需改造即可使用。ORBIT-3300催化剂在制备过程中通过对活性组份的调整,增加了产品的抗重金属污染能力,可在原料性质较差和多变的情况下使用。 ORBIT-3600催化剂是针对加工中东进口高钒原料油和增加总液体收率的要求,在ORBIT-3300催化剂的基础上,通过优化活性组元和担体改性处理,开发成功的新型重油裂化催化剂。该剂在制备过程中为满足加工重质原料油需要,在改进分子筛性能的同时,对担体进行改性处理,增加了抗重金属污染组分,有效地提高了催化剂抗重金属(特别是钒)污染性能;添加了择型分子筛组元,可适当增加液态烃产率。 ORBIT-3600B催化剂是以抗钒催化剂ORBIT-3600为基础开发的抗钒降烯烃催化剂。工业应用结果表明该剂具有重油裂化能力强、轻质油收率高、汽油辛烷值高、降烯烃能力强等特点。 为了实现在抗钒重油裂化催化剂ORBIT-3600基础上达到降低汽油烯烃含量的目的,ORBIT-3600B催化剂具有以下特点:通过Y型分子筛的改性处理和活性组分的复配,在维持产品重油裂化活性的基础上增强氢转移活性,达到降低汽油烯烃含量的目的;合理调节催化剂的酸性分布,减少焦炭和干气的产生。 生产单位:催化剂齐鲁分公司 应用单位:中石化荆门分公司、湛江东兴炼厂,大连西太平洋等 ZC系列

稀土新材料

稀土新材料 介绍了稀土新材料在电动汽车、燃料电车等领域的应用及其对低碳技术的贡献。 0 引言 全球气候变暖所引起的日益恶劣的气候变化在近年来已成为不争的事实,人类已清楚地认识到自己对大气的破坏所带来的严重后果,大气中二氧化碳浓度升高带来的全球气候变化所造成的后果已逐年加重。在此背景下,“低碳经济”、“低碳技术”、“低碳发展”、“低碳生活方式”等一系列新概念应运而生。在电动汽车、燃料电车等多个重大低碳技术应用领域所必需的稀土新材料的发展变得迫切需要。论述了稀土新材料在电动汽车、燃料电车等领域的应用及其对低碳技术的贡献。 1 低碳技术与低碳经济 低碳技术是指涉及电力、交通、建筑、冶金、化工、石化等部门在可再生能源及新能源、煤的清洁高效利用、油气资源和煤层气的勘探开发、二氧化碳捕获与埋存等领域开发的有效控制温室气体排放的新技术。“低碳经济”是以低能耗低污染为基础的经济。在全球气候恶化的背景下,“低碳经济”、“低碳技术”日益受到世界各国的重视。 2 稀土概述 我国是稀土资源最丰富的国家,稀土矿物种类齐全,稀土储量和产量均居世界首位。开发推广稀土应用不但有利于充分利用我国丰富的稀土资源、推动稀土产业的发展,而且有利于培育出具有中国特色的优势新产业。稀土的结构特性决定了其是低碳技术发展所必需的重要新材料。由于稀土所在的镧系元素具有不满的f 亚层,决定了它蕴含着许多特殊性质,这是其它元素不可替代的。 稀土是磁、光、电等功能材料的最佳载体,稀土的特殊性能也决定了它是低碳技术发展的重要动力。 3 稀土新材料的发展及其对低碳技术的推动作用

目前,稀土在冶金、高温超导材料、航空工业、轻工、纺织和建材工业、医疗等领域中都已得到普遍的应用,稀土的特殊性能使其成为国民经济发展所必需的重要新材料,稀土新材料对低碳技术的发展及对低碳经济的巨大贡献已成为不争的事实,如稀土催化剂、镧铈混合稀土金属-储氢合金-镍氢电池、氢燃料电池-动力车、电动工具、通讯工具等都存在稀土新材料的开发应用。 3.1 稀土新材料对汽车尾气净化作用 3.1.1 稀土汽车尾气净化催化剂的出现是低碳技术发展的必然要求 汽车作为现代文明的标志,极大促进了人类社会的进步与发展,但同时也给人类带来了许多严重的问题,如噪音、有害废气排放以及大量固态废弃物堆积等。随着汽车的普及和人们对汽车尾气污染危害认识的加深,要求控制汽车尾气污染的呼声越来越高。 汽车尾气净化催化剂是控制汽车尾气排放、减少污染的最直接有效手段。汽车尾气净化催化剂有多种,早期使用的是普通金属Cu、Cr、Ni 催化剂,这种催化剂的催化活性差,起燃温度高,易中毒,后来采用贵金属Pt、Pd、Rh 等作催化剂,这样提高了催化剂的催化活性和净化效果,但贵金属普遍存在价格昂贵的现象,有时净化催化装置达整车造价的十分之一,汽车成本增加太多,因此很难广泛推广,而且为防止贵金属催化剂铅中毒,汽车需使用无铅汽油。而含稀土的汽车尾气净化催化剂其特点是价格低、热稳定性好、催化活性高、使用寿命长,特别是这种催化剂具有抗铅中毒的特征,因此,越来越受到人们的重视,在汽车尾气净化领域备受青睐。 3.1.2 稀土汽车尾气净化剂的作用原理 汽车尾气中的有害成分主要有CO、HC、NO x。稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,稀土汽车尾气净化催化剂由稀土与钴、锰、铅的复合氧化物组成,是一类三元催化剂,具有钙钛矿、尖晶石型结构,氧化还原活性较高,其中氧化铈是关键成分。由于氧化铈的氧化还原特性,能有效地控制排放尾气的组分。净化汽车尾气的催化剂在汽车排气管内,借助于排气温度和空气中氧的浓度,对尾气中的CO、HC 和NO x同时起氧化还原作用,使其转化成无害物质CO2、H2O、N2。大量试验表明,稀土材料可以

催化裂化催化剂

催化裂化催化剂 一、关于催化剂 所谓催化剂就是能够将有可能发生的化学在其存在的条件下加速反应的物质。而自身的组成和质量在反应后保持不变。因此,它不能使不可能发生的化学反应在其存在的条件下变为可能。另外,不同的催化剂会产生不同的反应加速,同各催化剂也是如此。这些都取决于催化剂的化学组成和物理结构。也就是说催化剂具有选择性。 催化剂的种类繁多,但就催化裂化而言,应大致分为三种:即天然白土催化剂、合成硅铝催化剂和分子筛催化剂。催化剂的发展历史也是按这个顺序走到今天的,性能也变的越来越好。 天然白土催化剂的主要成份也是硅酸铝,因为化学组成中的与物理结构上的不规则无定型,使应用效果较后两种较差。现已不再作为催化裂化剂使用。 合成硅酸铝催化剂的主要成份也是硅酸铝,应用较为广泛,现仍是多数固定床反应器应用的首选。由于是合成催化剂,化学组成中的杂质得到清除,物理结构也被优化筛分,使质量得到很大改善。 分子筛催化裂化催化剂是今后催化剂发展的必然方向,因为它是在合成催化裂化催化剂的基础上改进提高的,所以是在起点更高的基础上研究发展起来的。主要改进方面是将具有规整结晶的硅铝“分子筛”均匀分布在催化剂担体上,从而实现了对催化裂化催化剂的要求(约占10~15%)。 二、催化剂的化学组成与物理结构 催化剂的化学组成,它是由SiO2、Al2O3、H2O为主要成份组成的。上述厂部份占其总量的97.5~99.5%。二氧化(SiO2)、三氧化二铝(Al2O3)以及结构水(H2O)

的结合,形成了结构复杂的硅、铝氧化物。其中含量很少的水是必要的活性组份。而其它1%不是化合物而是催化裂化催化剂的,制造中应尽力除去。 纯粹的SiO2和Al2O3是没有明显活性的,只有按一定比例结合方能显示其活性,并且有少量结构水存在情况下会使活性大大提高。工业上合成分为低铝(SiO2 /Al2O3分子比为12)和高铝(SiO2 /Al2O3分子比为5)两种,区别主要是高铝较低铝在热稳定性及耐磨性上占优,但价格要高出低铝成本的10%。 分子筛催化剂是上世纪六十年代发展起来的高活性催化剂,它使催化裂化装置无论是产品收率、产品质量、加工能力都有很大提高。因此成为当今催化裂化催化剂的最佳选择。 具有结晶形的天然或人造硅酸名句本来名称叫“泡沸石”,由于其具有规则的晶型结构,使孔排列得非常整齐,孔径大小也很均匀。当吸附分子时,只有孔径小的分子方可进入孔内,而直径大于孔陉的分子则不能进入。这种选择性,恰似筛子把大小不同分子分开。因此被形象的称作“分子筛”,而它的真名则渐渐被陌生起来。 分子筛与前面讲到的无定型硅酸铝同样属硅氧和铝氧四面体。并其规则的排列方式和经共用顶点的氧联接在一起的特殊结构,使其经稀土离子交换后,化学性质发生了极大变化,在晶格结构中产生了很强的静电并具有酸性。这种酸的酸度比普通硅酸铝的酸度高百倍甚至千倍,也使活性大大增强。 三、分子筛催化裂化催化剂活性的来源 分子筛催化剂在经过稀土离子交换后,使化合状态的铝原子外围有缺一对电子的空位,形成了酸性中心的边缘组成无水酸,又因铝氧四面体的化合结构使四个Al—O交点中有一配价电存在,就使铝原子带上负电,和配价电上的氧结

浅谈催化裂化工艺及催化剂的技术进展

浅谈催化裂化工艺及催化剂的技术进展 催化裂化工艺及催化剂的技术发展至今经过了几十年的时间,该种技术在工业领域中得到了广泛的应用,并且在未来的发展前景客观。基于此本文结合国内外催化裂化工艺及催化剂的技术进展,阐述当代催化裂化工艺及催化剂的特点和具体技术应用。 标签:催化裂化工艺;催化剂;能源开发 石油化学工业作为化学工业的重要组成部分是近代发达国家的重要工业,然而20世纪70年代后由于原油价格的上涨而导致石油的发展速度急剧下降,而催化裂化工艺由于其拥有着较低的投资操作成本、高转化率以及原材料适应性强发展成为了实际炼油过程中的核心工艺,而且经过数十年的发展其技术比较成熟稳定,成为了炼化重油的一种较为重要的手段。 1 催化裂化工艺的技术进展 1.1 当代催化裂化工艺的特点分析 当代化工催化裂化工艺的特点如下:①技术稳定,可持续性应用;催化裂化工艺(英文缩写RFCC)一般由再生系统、分馏系统、吸收-稳定系统三部分组成,是石油二次加工的主要方法之一。在高温和催化剂的作用下,使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。虽然目前世界对于重油提炼的工艺趋于成熟稳定,但就目前环境问题来讲各项技术仍有待提高,重油提炼出现了原材料的价格问题、环境问题、规格问题、石油化工的发展问题。但是,催化裂化工艺对于环境保护法律规定的要求已经基本满足,使得此项技术未来可以取得长足的发展空间;②应用广泛;石油仍然是目前世界所需的重要能源,对于石油加工的新工艺就显得尤为重要,发达国家对于石油工业的生产水平已经占据前列,我国从20世纪60年代开始着手钻研石油工業也逐步迈入世界顶尖行列,目前我国自主研制的石油催化裂化工艺基本全方位覆盖本国石油行业,排入世界前列。MGD和MIP工艺、催化汽油改制技术、催化裂化组合工艺、用添加剂强化的催化裂化工艺等已经被我国灵活运用到生产、生活等各个领域。随着我国自主研究人员的不断努力,我国开发的催化裂化工艺可以有效的为各个企业取得优秀的经济效益,以及减轻原有重油炼制手段对于环境的危害。 1.2 催化裂化工艺的技术应用 19世纪20年代石油炼制的开始促成石油化工的产生,20世纪20年代后随着汽车行业等的发展汽油等轻质油行业也随之迅速发展,后由于石油原油价格的上涨,重油的提炼俨然成为21世纪能源发展的重要课题,随着新技术的发展,美、欧、日等发达国家对于国际市场的领导地位逐渐受到以中国为首的发展中国家的冲击,新工艺逐步成为各国之间相互竞争的资本。随着国际、国内市场的飞速发展,石油工业对汽车制造业、农业、机械工作等行业的影响逐渐加深。汽油

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.doczj.com/doc/2211663595.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

稀土行业大数据分析

稀土行业大数据分析 由于稀土原料价格持续上涨,近日有下游企业发出通知,将上调稀土新材料价格或提高预付款比例。据业内人士提供的书面文件,山东某稀土新材料公司称由于库存耗尽,将以镨钕实时价格为基准,上调稀土新材料价格。山西某永磁材料公司则只接收预付款比例达50%的订单,且报价仅当天有效。稀土行业人士表示,正在等待下游大型企业的最新价格,由此确定稀土原材料价格是否真正传导至下游。 什么是稀土? 稀土有“工业维生素”的美称。现如今已成为极其重要的战略资源。稀土元素氧化物是指元素周期表中原子序数为57到71的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17种元素的氧化物。 稀土相关政策 另据《稀土行业发展规划(2016-2020年)》提出,到2020年稀土年度开采量控制在14万吨以内。形成合理开发、有序生产、高效利用、科技创新、协同发展的稀土行业新格局,行业整体迈入以中高端应用、高附加值为主的发展阶段,充分发挥稀土应用功能的战略价值。 “十三五”期间稀土行业发展主要目标 数据来源:中商产业研究院整理 稀土大数据 数据显示,2016年全球稀土产量为12.6万吨。其中,中国生产了10.5万吨,占比高达83%。除中国外,澳大利亚、俄罗斯、印度和巴西也有一些产量。由于中国占据了全球稀土产量的绝对大头,且中国又对稀土开采进行了总量控制。全球的稀土产量长期保持在10-14万吨区间内。从我国的稀土开采配额来看,轻稀土占据了稀土产量的大头,近年来占比稳定在83%,中重稀土占比则稳定在17%。 海关最新数据显示,2017年6月中国出口稀土4290吨,同比增长111%。1-6月中国出口稀土26219吨,与去年同期相比增长15.3%;6月中国稀土出口金额34710千美元,同比增长21.4%。1-6月,我国稀土出口金额达203690亿美元,同比增长20.8%。 2016-2017年中国稀土出口情况一览表 数据来源:中商产业研究院整理 十三五期间,国家将加强稀土供给侧结构性改革,稳定供需关系,引导价格预期,促进和扩大稀土在节能、环保和家电等下游领域的应用需求,实现上下游利益共享、协同发展。以资本和技术为纽带,通过上市、增资、并购等手段整合中高端应用产业链,培育新的应用市场。引导具备条件的稀土企业开展军民两用稀土新材料的研制和生产,推动稀土新材料领域军民资源共享。加大对品牌稀土产品宣传推广力度,引导企业增强品牌意识,支持企业争创着名商标和国际品牌。围绕“互联网+”发展战略,加强稀土产品电子商务平台建设。本次稀土下游行业是否提价,仍需等待下游大型企业的最新价格。 中商产业研究院简介 中商产业研究院是深圳中商情大数据股份有限公司下辖的研究机构,研究范围涵盖智

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化裂化催化剂新材料的应用现状与发展趋势_杨一青

2011年第1期 摘要:阐述了催化裂化(FCC )工艺技术及其新型催化剂的应用进展。对FCC 催化剂新材料及工艺进行了评述;对于具有高裂化活性和低结焦性能的催化剂新材料的发展趋势和应用前景进行了展望,为我国开展FCC 催化剂新材料的研究和开发提供参考。关键词:催化裂化催化剂;新材料;现状;发展趋势中图分类号:TQ426.95 文献标识码:B 文章编号:1671-4962(2011)01-0001-05 催化裂化催化剂新材料的应用现状与发展趋势 杨一青,张海涛,王智峰,王亚红,潘志爽 (兰州化工研究中心,甘肃兰州730060) 催化裂化催化剂的研究是随着催化裂化工艺的发展及环保法规的日益严格而不断发展的。世界三大催化剂生产商(Grace Davison 公司、Akzo 公司和Engelhard 公司)占据着流化催化裂化(FCC )催化剂市场的绝对优势,它们开发的催化剂也代表着FCC 催化剂的发展方向。在国内,北京石油化工科学研究院在催化裂化催化剂的开发方面占据优势,兰州石化公司、洛阳工程公司等在特定领域也取得了较好的业绩[1]。 1催化裂化催化剂技术进展1.1重油转化催化剂 Grace Davison 公司新近推出创新型渣油催化裂化催化剂IMPACT 家族技术。它组合了突出的钒捕集能力、沸石分子筛良好的稳定性和基质对金属优异的钝化能力等技术,达到很好的焦炭选择性。新催化剂体系可改进渣油裂化,焦炭选择性提高近30%,对钒的允许度也高于常规催化剂。IMPACT 催化剂是基于Davison 公司专有的氧化铝溶胶催化剂平台,该体系可高度耐铁和其它金属的毒害,并阻止沸石分子筛减活。在788℃、Ni ∶V 比为0.5情况下,进行的减活实验表明, IMPACT 催化剂的MAT 活性高于其它催化剂。Engelhard 公司先后开发出了Pyrochem-Plus 分子筛技术和MaxiMet 基质技术,尤其是DMS 基质技术的推出,使催化剂的性能得到大幅改善,以原 位晶化技术为基础,采用DMS 技术推出的Converter 助剂,可以使装置的重油转化能力和生焦率得到大幅改善。Rescue 是Engelhard 公司新推 出的另外一种渣油裂化催化剂,它是在Millenium 催化剂基础上进一步改进和优化金属捕集基质材料开发出来的。比Millenium 活性更高,在有钒存 在时活性保持能力提高约15%。由于改进了金属钝化能力和焦炭选择性,在相同的产焦率下,渣油产率降低了1.5%~2.0%。Advantage 是融合了Rescue 催化剂耐金属技术和NaphthaMax 催化剂分散基质结构(DMS )的渣油裂化催化剂,可用于高 活性、高渣油转化率和耐高金属含量的短接触时间催化裂化装置。Rescue 和Advantage 催化剂都进行了工业化验证,正在推广应用。 Akzo Nobel 最新开发的Centurion 渣油催化剂 具有活性高、选择性和抗金属性好,采用专用ADZ 沸石,其催化剂表面结构可接近性好,具有优良的活性中心利用率,具有汽提性好和钝化重金属能力强的优点,同时该公司开发出了新的基质材料ADM ,ADM 与ADZ 技术相结合,在加工重质原料油方面具有突出性能。目前ADZ 分子筛技术和ADM 基质技术已有多个型号,根据需求可以灵活 组合,满足不同的工艺需求。 近几年国内开发的重油转化催化剂有北京石油化工科学研究院的Orbit 系列、MLC 系列及兰州石化公司开发的LB-5,这些催化剂都具有较强的重油转换能力及抗重金属污染能力。LB-5催化剂尤其在降低汽油烯烃方面具有较好的性能。 1.2生产清洁燃料的催化裂化催化剂 加工重油面临着环保法规的日益严格和重油日益劣质化之间的矛盾。Grace Davison 公司开发的FCC 汽油降烯烃RFG 家族催化剂与其它几项技术相结合,目的是降低汽油中的烯烃含量,同时保持LPG 烯烃和汽油辛烷值不变。RFG 催化剂的工业应用结果表明,可以降低25%~40%的烯烃,同时还能保持辛烷值和轻烯烃(C 3、C 4)产率不会下降。在平衡催化剂上Ni+V 达8mg/g 时,仍可保持很好 炼油与化工 REFINING AND CHEMICAL INDUSTRY 1 DOI:10.16049/https://www.doczj.com/doc/2211663595.html,ki.lyyhg.2011.01.007

稀土发光材料及其应用(精)

稀土发光材料及其应用 1、概述稀土离子的发光特性,主要取决于稀土离子4f壳层电子的性质。随着稀土离子4f壳层电子数量的变化,表现出不同的跃迁形式和极其丰富的能级跃迁。研究表明,稀土离子的4fN电子组态中,有1639个能级,能级之间的可跃迁数目高达199177个,可观察到的谱线达30000多条,如果再涉及到4f—5d的能级跃迁,则数目更多。因而,稀土离子可以吸收或发射从紫外到红外区的各种波长的光,形成多种多样的发光材料。由于稀土离子特有的发光特性,为其作为高效发光材料奠定了基础,并在发光学和发光材料的发展过程中起着里程碑的作用。如1964年Y2O3∶Eu和Y2O3S∶Eu等彩电红粉的出现,使彩电的亮度提高到一个新的水平;20世纪70年代出现的红外变可见上转换发光材料,从理论上提出反Stokes效应;1974年报道的稀土三基色荧光粉为新一代荧光灯奠定了基础。近30年来,稀土发光材料正在逐渐取代非稀土发光材料,已经在光致发光、电致发光、阴极射线发光和X射线发光材料方面获得重要而广泛的应用,稀土发光材料的研究也成为发光材料的研究重点和前沿,国内外的竞争非常激烈。 2、国内本 行业的发展现状及未来发展趋势(1)阴极射线发光材料主要应用于电视机、计算机、示波器、雷达等各种荧光屏和显示器,其中在彩色阴极射线管(CRT)的发展最快,在彩色电视的发展过程中,稀土荧光粉起到了里程碑的作用。在20世纪60年代中期,成功地合成了YVO4∶Eu、Y2O3∶Eu和Y2O3S∶Eu等稀土红色荧光粉,突破了红粉亮度上不去的障碍,使彩电的亮度提高到一个新的水平。目前,国内普通彩电中使用的蓝粉和绿粉仍然是硫化锌系列荧光粉,但由于硫化锌型绿粉的光衰比蓝粉和红粉的大,需要增加电视机的色彩调节,因此需要开发新的绿色荧光粉。近几年随着国外新型稀土蓝色荧光粉和绿色荧光粉的开发成功,正在取代传统的荧光粉,使高清晰度大屏幕彩电开始大批量投放市场,进入平常百姓家庭。对于彩色电视飞点扫描管、束电子引示管、扫描电子显微镜探测镜等所需的超短余辉荧光粉(τ≤μs),目前都是Ce3+激活的,其寿命非常短,一般在30~100ns。(2)电致发光材料固体平板显示技术是显示技术领域的主要发展趋势之一,液晶显示、电致发光显示、等离子体显示是三种主要的平板显示技术。电致发光平板化微机终端显示器用于便携式微机,已经在美国、日本、芬兰有商品生产,预计在今后将迅速发展,与阴极射线发光分庭抗争。目前已商品生产的电致发光材料是ZnS∶Mn。为实现彩色电致发光平板显示,国内外许多实验室正在大力研究掺杂稀土的薄膜材料。(3)X射线发光材料以稀土荧光粉为主的新的X射线增感屏作为X射线发光材料已日益受到人们的重视,并得到不断的发展,近年来新发现的几种荧光粉,不仅具有与CaWO4同样的照

相关主题
文本预览
相关文档 最新文档