当前位置:文档之家› 第 3章 原子结构与元素周期系

第 3章 原子结构与元素周期系

第 3章 原子结构与元素周期系
第 3章 原子结构与元素周期系

第3章原子结构与元素周期系

[ 教学要求 ]

1 .掌握近代理论在解决核外电子运动状态问题上的重要结论:电子云概念,四个量子数的意义, s 、 p 、 d 原子轨道和电子云分布的图象。

2 .了解屏蔽效应和钻穿效应对多电子原子能级的影响,熟练掌握核外电子的排布。

3 .从原子结构与元素周期系的关系,了解元素某些性质的周期性。

[ 教学重点 ]

1 .量子力学对核外电子运动状态的描述。

2 .基态原子电子组态的构造原理。

3 .元素的位置、结构、性质之间的关系。

[ 教学难点 ]

1 .核外电子的运动状态。

2 .元素原子的价电子构型。

[ 教学时数 ] 8 学时

[ 教学内容 ]

1 .核外电子运动的特殊性:核外电子运动的量子化特征(氢原子光谱和玻尔理论)。核外电子运动的波粒二象性(德布罗衣的预言,电子的衍射试验,测不准关系)。

2 .核外电子运动状态的描述:波函数、电子云及其图象表示(径向与角度分布图)。波函数、原子轨道和电子云的区别与联系。四个量子数(主量子数n ,角量子数l ,磁量子数m ,自旋量子数ms )。

3 .核外电子排布和元素周期表;多电子原子的能级(屏蔽效应,钻穿效应,近似能级图,原子能级与原子序数关系图)。核外电子排布原理和电子排布(能量最低原理,保里原理,洪特规则)。原子结构与元素周期性的关系(元素性质呈周期性的原因,电子层结构和周期的划分,电子层结构和族的划分,电子层结构和元素的分区)。

4 .元素某些性质的周期性,原子半径,电离势,电子亲和势,电负性。

3-1 道尔顿原子论

古代自然哲学家对物质之源的臆测:本原论(元素论)和微粒论(原子论)

古希腊哲学家德谟克利特( Democritus, 约 460—370 B C ):宇宙由虚空和原子构成,每一种物质由一种原子构成。

波意耳:第一次给出了化学元素的操作性定义 ---- 化学元素是用物理方法不能再分解的最基本的物质组分,化学相互作用是通过最小微粒进行的,一切元素都是由这样的最小微粒组成的。

1732 年,尤拉(Leonhard Euler, 1707—1783 ):自然界存在多少种原子,就存在多少种元素。

1785 年,法国化学家拉瓦锡(Antoine L. Lavoisier 1743—1794 ):提出了质量守衡定律:化学反应发生了物质组成的变化,但反应前后物质的总质量不变。

1797 年,里希特(J. B. Richter 1762—1807 ):发现了当量定律。

1799 年,法国化学家普鲁斯特(Joseph L. Proust 1754—1826 ):发现定比定律:来源不同的同一种物质中元素的组成是不变的。

1805 年,英国科学家道尔顿(John Dalton 1766—1844 ):把元素和原子两个概念真正联系在一起,创立了化学原子论:每一种化学元素有一种原子;同种原子质量相同,不同种原子质量不同;原子不可再分;一种不会转变为另一种原子;化学反应只是改变了原子的结合方式,使反应前的物质变成反应后的物质。

倍比定律:若两种元素化合得到不止一种化合物,这些化合物中的元素的质量比存在整数倍的比例关系。

瑞典化学家贝采里乌斯(J. J. Berzelius 1779—1848 ):确定了当时已知元素的原子量,发明了元素符号。

3-2 相对原子质量(原子量)

3-2-1 元素、原子序数和元素符号

化学中元素的概念经过两次重大发展,从古代元素概念到近代化学的元素概念。再到现

代化学的包括同位素的元素概念,这些进展对化学这门重要基础科学确有革命性意义。

古代元素的本来意义是物质的基元单位,是世界万物的组成部分,如我国的五行学说;古希腊的四元素说,但这些仅仅是一种天才的猜测。正如恩格斯指出的那样“古代人的天才的自然哲学的直觉”。不是近代的科学概念仅是人类深入物质层次的认识水平的暂时性界限。如四元素说认为物质本原是几种抽象的性质,由这些原始性质组合成元素,再由元素产生万物,这种把本来不存在的脱离物质的抽象性质当做第一性东西,是错误的,唯心的。以此为指导思想,自然会产生“哲人石”的思想。

十七世纪下半叶英国波义耳(Boyle. R. 1627—1691) 批判了上述元素的错误慨念,于1661 年在其名著《怀疑派的化学家》一书中提出了新的元素慨念。“元素是组成复杂物体和分解复杂物体时最后所得的那种最简单的物体”,是用一般化学方法不能再分解为更简单的某些实物”“化学的目的是认识物体的结构。而认识的方法是分析,即把物体分解为元素”。波义耳第一次把物质的最终组成归结为化学元素。他的元素概念是实在的基元物质。波义耳确实为人们研究万物的组成指明了方向,因此,这是化学发展中的一个转折点,对此恩格斯给予了高度的评价,认为“波义耳把化学确立为科学”。但这个概念在很大程度上有主观因素。确认什么是元素往往有个人经验和当时化学方法的局限性问题。当时无法分解的东西不一定是元素。如波义耳本人就认为火是元素。发现氧的英国普列斯特里(Priestley . J . 1733—1804) 和瑞典的舍勒 (K . W . Scheele , 1742 一 l786) 都还相信“燃素”是元素。正是“这种本来可以推翻全部燃素说观点,并使化学发生革命的元素在他们手中没能结出果实来。

十九世纪原子分子论建立后,人们认识到一切物质都是由原子通过不同的方式结合而构成的。在氧气、氧化镁、水、二氧化硫、碳酸钙等性质各不相同的物质中都合有相同的氧原子,于是元素的概念被定义为:“同种的原于叫元素”。元素是在原子水平上表示物质组分的化学分类名称。

原子核组成的奥秘被揭开以后,人们通过科学实验发现:同种元素的原子核里所含的质子数目是一样的,但中子数却可以不同。如自然界中氧元素的原子有 99.759% 是由 8 个质子和 8 个中于组成的168O) ,有 0.037 %是由 8 个质子和 9 个中子组成的 ( 178O) ,0.204% 是由 8 个质子和 10 个中子组成的 ( 188O) 。因为中于数不同,所以同一元素可以有原子质量不同的几种原子,但决定元素化学性质的主要因素不是原于质量而是核外电子数,核外电子数又决定于核内的质子数即核电荷数,所以质子数相同的一类原子,共化学性质基本是相同的。

根据现代化学的观念,元素是原子核里质子数(即核电荷数)相同的一类原子的总称。这样,人们就进一步了解了元素的本质,元素就是以核电荷为标准,对原子进行分类的,也就是说,原子的核电荷是决定元素内在联系的关键。

迄今为止,人们已经发现的化学元素有 109 种 ( 但第 108 号元素尚待最后认定 ) ,它们组成了目前已知的大约五百万种不同物质。宇宙万物都是由这些元素的原子构成的。

由同种元素组成的物质称单质,如氧气、铁、金刚石等。单质相当于同一元素表现为实物时的存在状态。

由不同种元素组成的物质称化合物,如氧化镁、硫酸、氢氧化钠、食盐、水等。

最后,必须注意的是,我们不要把元素、单质、原子三个概念彼此混淆。元素和单质是宏观的概念。单质是元素存在的一种形式 ( 自由态或称游离态 ) 。某些元素可以形成几种单质,譬如碳的同素异性体有金刚石、石墨两种;硫的同素异性体有正交硫、单斜硫、无定形硫和弹性硫等。元素只能存在于具体的物质 ( 单质或化合物 ) 中,脱离具体的物质,抽象的元素是不存在的。从这个角度看,元素和单质既有联系又有区别。

原子是微观的概念,而元素是一定种类的原子的总称。元素符号既表示一种元素也表示该元素的一个原子。在讨论物质的结构时,原子这个概念又有量的涵义。如氧原子可以论个数,也可以论质量。但元素没有这样的涵义,它指的是同一种类的原子。譬如:水是由氢氧两种元素组成的,水分子中含有两个氢原子和一个氧原子,而绝不能说成水分子中含有两个氢元素和一个氧元素。

1913 年英国科学家莫斯莱 (Moseley , Henry . 1887—1915) 从 X 射线 ( 或称伦琴射线 ) 的研究入手,发现以不同单质作为产生 X 射线的靶子,所产生的特征 X 射线的波长不同。他将各元素按所产生的特征 X 射线的波长排列后 ( 图1—1) ,就发现排列次序

与其在周期表中的次序是一致的。他把这个次序名为原子序数。莫斯莱总结的公式为:

即特征 x 射线波长(λ) 的倒数的平方根与原子序数 (z) 呈直线关系 ( 图1—2) 。式中

a 、

b 对同组谱线来说为常数。这就是莫斯莱定律。

原子序数不仅代表元素在周期系中的位置,而且还有一定的物理意义,它代表着原子的某种特征。卢瑟福在完成他的利用α质点散射测定核电荷的实验工作后,便结合莫斯莱的结果做出普遍的结论:原子核的电荷在数值上等于元素的原子序数。 1920 年英国科学家查德威克 (Chadwick , James . 1891 一 1974) 进一步做了不同元素的α质点散射实验。其实验结果见表1—1 。证明了上述推论的正确,也可以说用实验证明了原子序数是原子的基本参数。

3-2-2 核素、同位素和同位素丰度

具有一定数目的质子和一定数目的中子的一种原子称为核素。

例如原子核里有 6 个质子和 6 个中子的碳原子,它们的质量数是 12 ,称碳—12 核素或写为12C 核素。原于核里有 6 个质子和 7 个中子的碳原子质量数为 13 ,称13C 核素。氧元素有三种核素:16O 、17O 、18O 核素。

具有多种核素的元素称多核素元素。氧元素等都是多核素元素,天然存在的钠元素,只有质子数为 11 ,中于数为 12 的一种钠原子2311Na ,即钠元素只有23Na 一种核素,这样的元素称单一核素元素。

同位素的发现和核化学的发展是二十世纪的事,然而关于同位素的预言则在上一世纪就己提出。人们测量一些元素原子量后,发现测得越精确,就越证明各元素的原子量并不是氢原子量的整数倍。又如门捷列夫排周期表时,把碲 (127.61) 排在碘 (126.91) 前,还有氩(39.95)

排在钾 (39.09) 前,钴 (58.93) 排在银 (58.69) 前,都说明同一元素的原子量并不是“单一的”数值,好象是许多数值的平均结果,不然无法说明门捷列夫的排法,正好符合性质的周期性变化。英国科学家克鲁克斯 (Crookes , w . 1832—1919) ,俄国科学家布特列洛夫( 1828—1886 )为解释上述矛盾先后提出过同一元素的原子可具有不同的原子量,而且可用化学分馏法将它们分开,实际上他已从自发的唯物主义立场提出了同位素的思想。但是在科学上自发的唯物主义思想并不能抵抗唯心主义的袭击。他们二入先后屈服于降神术。正如恩格斯指出的那样“许许多多自然科学家已经给我们证明了,他们在他们自己那门科学的范围内是坚定的唯物主义者,但是在这以外绝不仅是唯心主义者,而且甚至是虔诚的正教徒”。

以后随着天然放射性元素的发现一些元素的蜕变半衰期不同,而于 1910 年由英国科学家索迪 (SoddyJ Frederickl877—1956) 提出同位素的慨念。

质子数相同而中子数不同的同一元素的不同原子互称同位素。即多核素元素中的不同核素互称同位素。同种元素的不同核素,质子数相同,在周期表中占同一位置,这就是同位素的原意。

同位素有的是稳定的,称稳定同位素;有的具有放射性,称放射性同位素。目前已知的天然元素中约有 20 种 ( 氟、钠、铝、磷、金等 ) 仅有单一的稳定同位素,但都有放射性同位素。可以说,大多数天然元素都是由几种同位素组成的混合物。到 1976 年为止,已发现的 107 种元素中,稳定同位素约 300 多种,而放射性同位素达 1500 种以上,但多数是人工制备的。

目前已经发现氢有三种同位素,在自然界有两种稳定同位素:11H( 氕 ) 和21H( 氘 ) ,另有一种31H ( 氚 ) 为人造氢的同位素。氯在自然界中有两种稳定同位索:3517C1 和3717 C1。碳有三种同位索:126C 、136C 为稳定同位素,146C 为放射性同位素。同一元素的各种同位素的原于核虽有差别,但是他们的核外电子数和化学性质基本相同。因此同一元素的各种同位素均匀地混合在一起存在于自然界的各种矿物资源中。在化工冶炼过程中,发生同样的化学反应最后均匀混合,共存于该元素所生成的各种物质中。我们所接触到的就是各种稳定同位素的混合物。

此外,人们也发现存在着质量相同而性质不同的原于,例如3616S 和3618Ar ,质量数都是 36 ,由于它们的质子数不同,分属于不同元素——硫和氩。同样的,6529Cu 和6530 Zn ,质量数都是 65 ,由于它们的质子数不同,也分属于不同元素——铜和锌。这种质量数相同,质子数不同,分属于不同元素的几种原子,互称同量素。同量素的存在,也说明了以核

电荷 ( 质子数 ) 作为划分元素的标准是符合客观规律的,抓住了事物的本质。

3-2-3 原子的质量

同位素发现以后,人们认识到每种元素都有一定数目 ( 一种或一种以上 ) 的核素。某核素一个原子的质量称为该核素的原子质量,简称原子质量。

1973 年国际计量局公布了原子质量的单位,规定一个12 C 核素原子质量的 1 / 12 为“统一的原子质量单位”,用“u”表示。 ( 有的资料中写为“amu”,“mu”) 。因此,12 C 的原子质量等于 12u 。

通过质谱仪可以测定各核素的原子质量及其在自然界的丰度,据此就可以计算出元素的平均原子质量。如汞的平均原子质量为 200.6u 。

根据相对原子质量的定义,某元素一个原子的平均质量 ( 即平均原子质量 ) 对 12 C 原子质量的 1 / 12 之比,即为该元素的相对原子质量:

可见,相对原子质量和平均原于质量是两个有区别的概念,同一元素的相对原子质量和平均原子质量的数值相同,但平均原子质量有单位 (u) ,相对原子质量则是一个没有单位的物理量。根据数学上“比”的道理,同量纲的量比只有比值而没有单位,它仅仅表示对某一基准的倍数。如汞元素的相对原于质量 A r(Hg) = 200.6 表示汞元素平均原子质量是12 C 核素原子质量 1 / 12 的 200.6 倍。相对原子质量与平均原子质量的关系和相对密度与密度的关系很相近。

必须指出,元素的“相对原子质量”和核素的“原子质量”,虽然都是以 12 C 为基准,但是它们是两个不同的概念。现将它们的区别比较如下:

1 .相对原子质量是某元素一个原于的平均质量对12C 核素一个原子的质量的 1 /1

2 之比,而原子质量是某核素一个原子的质量,前者是讨论某元素天然存在的所有核素原子的平均质量,后者只讨论某元素一种核素原子的质量。

2 .从数值看,一种元素只有一个原子量;除单一核素元素外,同种元素各核素原子质量不同。

3 .相对原子质量没有单位,而原子质量有单位 ( 常用 u 表示 ) 。因比对单一核素元素来说,它的相对原子质量和原子质量数值相等但是前者无单位,后者有单位。如钠元素的相对原子质量等于 22.98977 ,23 Na 核素的原子质量等于 22.98977u 。

4 .某些元素的相对原于质量与核素的丰度有关;原于质量与核素的丰度无关。

最后指出:原子质量和质量数也是两个不同的概念,前者表示某核素原子的质量,后者表示某核素原子核中质子数与中于数之和,虽然质子和中子的质量接近于 1u ,但不等于 1 ,再加上静质量亏损的原因,除12 C 核素的原子质量是整数,其数值恰好等于质量数之外,其余核素的原子质量都有小数,质量数则全是整数。

3-2-4 元素的相对原子质量

国际原子量与同位素丰度委员会给原子量下的最新定义 (1979 年 ) 是:一种元素的相对原子质量是该元素 1 摩尔质量对核素12 C 的 1 摩尔质量 1 / 12 的比值。

由于 1mol 任何元素都含有相同的原子数,因此,相对原子质量也就是一种元素的一个原于的平均质量对12 C 核素一个原子的质量的 1 / 12 之比。所谓一个原子的平均质量,是对一种元素含有多种天然同位素说的,平均质量可由这些同位素的原子质量和丰度来计算。相对原子质量用符号 A r(E) 表示,A 代表原子质量,下标 r 表示相对, E 代表某元素。如氯元素的相对原子质量等于 35.453 ,可表示为A r(Cl)=35.453 ,它表示 1mol 氯原子的质量是核素12 C 的 1 摩尔质量 1 / 12 的 35.453 倍。亦即 1 个氯原子的平均质量是12 C 原子质量 1/12的 35.453 倍。可见相对原子质量仅是一种相对比值,它没有单位。

自 1803 年道尔顿发表原子论以来,人们自然要考虑这样的问题,一个原子有多重?从那时起,就有人开始致力于原子量的研究工作。由于原子很小,质量很轻 ( 最轻的原子约重 1.6 × 10 -24 g ,而最重的原子也不够此重的 250 倍 ) 。一般情况下,又不能独立存在,因比人们不仅无法取出单个的原子,更没有这样精密的天平能够称出原子的真实质量。但是,我们可以称取 1mol 某元素的原子,用摩尔质量除以阿佛加德罗数.从而得到以克为单位的某元素原子的质量。以克为单位的原子质量,数字极小,使用极不方便,只好选取某元素的原子质量为标准,令其它元素的原子质量与之比较,这样求得元素的相对原子质量。道尔顿首先提出以最轻的氢元素 H = 1 为相对原子质量标准 ( 当时尚未发现同位素,因而认为同种元素的原子具有相同的质量 ) 。某元素一个原子比氢原子重几倍,则原子量就

是几。后来由于很多种元素都能与氧化合生成氧化物,它们的化合量可与氧直接比较, 1826 年改用 O = 100 为标准。 1860 年又改 O = 16 作标准,这样可使相对原子质量数值小些,同时保持氢元素原子量约等于 1 。而所有元素原子量都大于 1 。

到 1929 年发现了氧的同位素。随后人们通过实验证明氧的同位素丰度在自然界的分布是不均匀的,因而认识到用天然氧作相对原子质量标准不够妥当。物理学界随即采用 16 O 等于 16 作为相对原于质量标准,但是化学界仍然保持了天然氧相对原子质量等于 16 的标准。从这时起就有了所谓化学相对原子质量和物理相对原子质量并行的两种标度。这两种标度之间的差别约为万分之三。 1940 年国际原于量与同位素丰度委员会确定以 1.000275 为两种标度的换算因数:物理相对原子质量= 1.000275 ×化学相对原子质量实际上,由于天然氧的丰度是略有变化的,规定换算因数也不是一种妥善办法,由于两种相对原子质量标准并存所引起的矛盾,自然就促进了统一“原子量标淮的要求。在化学工作中使用相对原于质量的地方很多,因此,化学界希望选择一个新标度,并希望这个新标度对原有的相对原子质量数值改变越小越好。经过反复的讨论 1 H 、4 He 、19 F 、12 C 、

16 O 等均曾被考虑过作为新的相对原子质量标堆,最后认定以12 C 作标准有许多好处:12

C 在碳的天然同位素中所占的相对百分数比较固定,受地点影响不大,而且对12 C 的质量测定比较精确,最重要的是,采用12 C 作为相对原子质量的新标准,各元素的相对原子质量变动不大,仅比过去降低了 0.0043% ,对大多数元素来说变动不大。实际上,除氧之外,只有五种元素 (Ag 、 C1 、 Br 、 K 、 Ar) 的相对原子质量稍有变动。于是在 1960 年和 1961 年,国际物理学会和国际化学会先后正式采用以12 C 的原子质量= 12 作为相对原子质量的新标准。从此,相对原子质量有了统一的新标准,不再存在所谓化学相对原子质量和物理相对原子质量的区别,而统一改称为国际原子量了。

3-3 原子的起源和演化

公元前约四百年,哲学家对万物之原作了种种推测。希腊最卓越的唯物论者德模克利特( 公元前 460~370 年 ) 提出了万物由“原子”产生的思想。其后世界各国的哲学家,包括中国战国时期《庄子》一书中,均对物质可分与否争论不休,延续时间很久。 1741 年俄国的罗蒙诺索夫 (1711~1763) 曾提出了物质构造的粒子学说,但由于实验基础不够,未曾被世人重视。人类对原子结构的认识由臆测发展到科学,主要是依据科学实验的结果。

到了十八世纪末,欧洲已进入资本主义上升时期,生产的迅速发展推动了科学的进展。在实验室里开始有了较精密的天平,使化学科学从对物质变化的简单定性研究进入到定量研究,从而陆续发现一些元素互相化合时质量关系的基本定律,为化学新理论的诞生打下了基础。这些定律是:

1 .质量守恒定律: 1756 年,罗蒙诺索夫经过反复实验,总结出第一个关于化学反应的质量定律,即质量守衡定律—参加化学反应的全部物质的质量,等于反应后的全部产物的质量。

2 .定组成定律: 1779 年法国化学家普劳斯特 (l754~1826) 证明一种纯净的化合物不论来源如何,各组分元素的质量间都有一定的比例,这个结论称为定比定律。

3 .倍比定律: 1803 年英国的中学教师道尔顿发现,当甲乙两种元素互相化合生成两种以上化合物时,则在这些化合物中,与同一质量甲元素化合的乙元素的质量间互成简单的整数比。这个结论称为倍比定律。例如氢和氧互相化合生成水和过氧化氢两种化合物:在这两种化合物中,氢和氧的质量比分别是 1 : 7.9

4 和 1 : 15.88 ,即与 1 份质量的氢相化合的氧的质量比为 7.9:15.88 = 1:2 。

这些基本定律都是经验规律,是在对大量实验材料进行分析和归纳的基础上得出的结论。究竟是什么原因形成了这些质量关系的规律 ? 这样的新问题摆在化学家面前,迫使他们必须进一步探求新的理论,从而用统一的观点去阐明各个规律的本质。

1787 年,年轻的道尔顿首先开始对大气的物理性质进行了研究,从中逐渐形成了他的化学原子论思想。当时,他继承了古代希腊的原子论,认为大气中的氧气和氮气之所以能互相扩散并均匀混合,原因就在于它们都是由微粒状的原子构成的,不连续而有空隙,因此,才能相互渗透而扩散。 19 世纪初,为了解释元素互相化合的质量关系的各个规律.道尔顿把他的原子论思想引进了化学,他认为物质都是由原子组成的,不同元素的化合就是不同原子间的结合。例如碳的两种氧化物碳和氧的质量比分别是 3 : 4 和 3 : 8 ,和一定质量的碳相化合的氧的质量比恰好是 1 : 2 。这不正是原子个数比的一种表现吗 ? 这使他确

信.物质都是由原子结合而成,不同元素的原子不同,因而相互结合后就产生出不同物质。为了充分证明他的观点.精确区分出不同元素的原子,他认为关键是区分出不同原子的相对质量,即相对原子质量,于是他着手进行测定相对原子质量的工作。他把氢的相对原子质量定为 1 ,并假定了元素化合时需要的不同原子数目。依照当量定律和定组成定律提供的大量数据,初步测出了氢、氧、氮、硫、磷、碳等元素的原子量,为他的原子论提供了依据并形成了完整的理论体系。

道尔顿原子论的主要内容有三点

1 .一切物质都是由不可见的、不可再分割的原子组成。原子不能自生自灭。

2 .同种类的原子在质量、形状和性质上都完全相同,不同种类的原子则不同。

3 .每一种物质都是由它自己的原子组成。单质是由简单原子组成的,化合物是由复杂原子组成的,而复杂原子又是由为数不多的简单原子所组成。复杂原子的质量等于组成它的简单原子的质量的总和。他还第一次列出了一些元素的原子量。

道尔顿的原子论合理地解释了当时的各个化学基本定律。根据原子论的论点,原子是物质参加化学反应的最小单位物质在发生化学反应时原子的种类和总数并没有变化,各原子又有自己确定的质量,因而反应前后质量不变 ( 质量守恒定律 ) 。化合物的复杂原子是由为数不多的简单原子组成。在复杂原子中所含不同的简单原子的数目和质量都是确定不变的,故复杂原子的质量组成一定 ( 定组成定律 ) 。如果甲元素的一个原子能与乙元素的一个、两个或几个原子化合形成多种化合物,乙元素原子量都相同,则与相同质量甲元素化合的乙元素质量之比必成简单整数比 ( 倍比定律 ) 等等。由于道尔顿的原子论简明而深刻地说明了上述化学定律,一经提出就得到科学界的承认和重视。

由上面的说明可见,元素互相化合的质量关系是原子学说的感性基础,而原子论则是上述各定律推理的必然结果。原子论阐明了各质量定律的内在联系,从微观的物质结构角度揭示了宏观化学现象的本质,总结了这个阶段的化学知识。同时,原子论引入了原子量的概念,开创了研究原子量的测定工作。原子量的测定又为元素周期律的发现打下了基础。但是道尔顿的原子论是很不完善的。随着化学实验工作的不断发展,在许多新的实验现象面前原子论碰到的矛盾越来越多。

19 世纪初,法国化学家盖?吕萨克 (1778~1850) 开始了对气体反应体积的研究。他通过各种不同气体反应实验发现,参加反应的气体和反应后产生的气体的体积都有简单整数比关系。例如一体积氮气和一体积氢气化合生成成两体积氯化氢:

一体积氯气和两体积氢化合生成两体积水蒸气:

3-4 原子结构的玻尔行星模型

3-4-1 氢原子光谱

1. 连续光谱 (continuous spectrum)

2. 线状光谱 ( 原子光谱 )(line spectrum)

3. 氢原子可见光谱

4 .巴尔麦( J. Balmer) 经验公式 (1885)

: 谱线波长的倒数 , 波数 (cm-1).

n : 大于 2 的正整数, R H :常数 , 1.09677576 × 10 7 m -1

n = 3, 4 , 5, 6 分别对应氢光谱 Balmer 系中 H a 、 H b 、 H g 、 H d 、

里得堡 (Rydberg) ------ 瑞典 1913

n 2 :大于n 1 的正整数 , :谱线的频率 (s -1 ), R :里得堡 (Rydberg) 常数 3.289 × 10 15 s -1

3-4-2 玻尔理论

( 1 )行星模型

( 2 )定态假设

( 3 )量子化条件

( 4 )跃迁规则

3-5 氢原子结构(核外电子运动)的量子力学模型

3-5-1 波粒二象性

1. 光的波粒二象性

对于光:P = mc = h n / c = h / l

对于微观粒子:l = h / P = h /m u

2. 微粒的波粒二象性(Louis de Broglie,1924)

3-5-2 德布罗意关系式

P = h / l = h / m u

3-5-3 海森堡不确定原理

微观粒子,不能同时准确测量其位置和动量测不准关系式:

Δx -粒子的位置不确定量

Δ u -粒子的运动速度不确定量

3-5-4 氢原子的量子力学模型

1 .电子云

2 .电子的自旋

3 .核外电子的可能运动状态

4 . 4 个量子数

(1) 主量子数n ,n = 1, 2, 3…正整数,它决定电子离核的远近和能级。

(2) 角量子数l ,l = 0, 1, 2, 3…n- 1 ,以s , p , d , f 对应的能级表示亚层,它决定了原子轨道或电子云的形状

(3) 磁量子数m ,原子轨道在空间的不同取向,m = 0, ± 1, ± 2, ± 3... ± l, 一种取向相当于一个轨道,共可取 2 l + 1 个数值。m 值反应了波函数 ( 原子轨道 ) 或电子云在空间的伸展方向

(4) 自旋量子数m s ,m s = ± 1/2, 表示同一轨道中电子的二种自旋状态

5 .描述核外电子空间运动状态的波函数及其图象

3-6 基态原子电子组态(电子排布)

3-6-1 构造原理

( 1 )泡利原理

每个原子轨道至多只能容纳两个电子;而且,这两个电子自旋方向必须相反。或者是说,在同一个原于中,不可能有两个电子处于完全相同的状态,即原子中两个电子所处状态的四个量子数不可能完全相同。

( 2 )洪特规则

在n 和l 相同的简并轨道上分布的电子,将尽可能分占不同的轨道,且自旋平行。( 3 )能量最低原理

就是电子在原子轨道上的分布,要尽可能的使电子的能量为最低。

3-6-2 基态原子电子组态

3-7 元素周期系

门捷列夫 Mendeleev (1834-1907) ,俄罗斯化学家。 1834 年 2 月 8 日生于西伯里亚的托波尔斯克城, 1858 年从彼得堡的中央师范学院毕业,获得硕士学位。 1859 年被派往法国巴黎和德国海德尔堡大学化学实验室进行研究工作。 1865 年,彼得堡大学授予他科学博士学位。 1869 年发现化学元素周期律。 1907 年 2 月 2 日逝世。

3-7-1 .元素周期表概述

门捷列夫元素周期律:化学元素的物理性质和化学性质随着元素原子量的递增呈现周期性的变化。元素周期表是化学元素周期律的具体表现,是化学元素性质的总结。

元素周期表中的三角关系:

门捷列夫预言: (1) 镓、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹和稀有气体等多种元素的存在。 (2) 有机硅化合物的性质。

元素周期表的应用:

3-7-2 .元素周期律理论的发展过程

(1) 1869 年门捷列夫提出元素周期律,并预言了钪、镓、锗的存在。

(2) 1894-1898 年稀有气体的发现,使元素周期律理论经受了一次考验。

(3) 1913 年莫斯莱的叙述:“化学元素的性质是它们原子序数(而不再是原子量)的周期性函数”。

(4) 20 世纪初期,认识到了元素周期律的本质原因:“化学元素性质的周期性来源于原子电子层结构的周期性”。

(5) 1940 — 1974 年提出并证实了第二个稀土族──锕系元素的存在。

(6) 人类对元素周期律理论的认识到目前并未完结,客观世界是不可穷尽的,人类的认识也是不可穷尽的。

3-7-3. 元素在周期表中的位置与元素原子电子层结构的关系

3-7-3-1 元素的分区与原子的电子层结构

根据原子的电子层结构的特征,可以把周期表中的元素所在的位置分为五个区。

(1) s 区元素,最外电子层结构是ns 1和ns 2,包括 IA 、 IIA 族元素。

(2) p 区元素,最外电子层结构是ns 2np 1-6,从第Ⅲ A 族到第 0 族元素。

(3) d 区元素,电子层结构是 ( n -1) d 1-9ns 1-2 , 从第Ⅲ B 族到第Ⅷ类元素。

(4) ds 区元素,电子层结构是 ( n -1) d 10ns 1和 ( n -1) d 10ns 2,包括第 IB 、 IIB 族。

(5) f 区元素,电子层结构是 ( n -2) f 0-14 ( n -1) d 0-2ns 2,包括镧系和锕系元素。

3-7-3-2 周期与原子的电子层结构

周期与能级组的关系

周期能级组能级组内各原子轨道能级组内轨道所能容纳的电子数各周期中元素

1 一 1 s

2 2

2 二 2 s 2 p 8 8

3 三 3 s 3 p 8 8

4 四 4 s 3 d 4 p 18 18

5 五 5 s 4 d 5 p 18 18

6 六 6 s 4 f 5 d 6 p 32 32

7 七7 s 5 f 6 d 7 p 32 32

(1) 周期数 = 电子层数 = 最外电子层的主量子数n 。

(2) 各周期元素的数目 = 相应能级组中原子轨道所能容纳的电子总数。

3-7-3-3 族与原子的电子层结构

元素周期表中共有 16 个族: 7 个 A 族(主族)和 7 个 B 族(副族),还有 1 个零族和 1 个第Ⅷ族。现在国外把元素周期表划分为 18 个族,不区分主族或副族,按长周期表从左向右依次排列。各区内所属元素的族数与原子核外电子分布的关系见表 2 。

各区内所属元素的族数与原子核外电子分布的关系

元素区域元素族数

s 、p 、ds 区元素等于最外电子层的电子数 ( ns + np )

d 区元素(其中第Ⅷ族只适用于 F

e 、Ru 和 Os )等于最外层电子数与次外层 d 电子数之和 ( n -1) d + ns

f 区元素均为第Ⅲ B 族元素3-7-4. 现代各式元素周期表

短式周期表

宝塔式周期表

环形和扇形周期表

长式周期表

未来的元素周期表

具有双幻数的核素

核素名称符号质子数中子数核素质量

氦 -4 He 2 2 4

氧 -6 O 8 8 16

钙 -40 Ca 20 20 40

铅 -208 Pb 82 126 208

类铅 -298 EKPb 114 184 298

超铅 -482 SpPb 164 318 482

周期与相对应的核外电子排布的关系

周期电子充填状态电子数目元素种类数目

2

1 1 s 2

2 2 s 2 p 8 8

3 3 s 3 p 8 8

4 4 s 3 d 4 p 18 18

5 5 s 4 d 5 p 18 18

6 6 s 4 f 5 d 6 p 32 32

7 7 s 5 f 6 d 7 p 32 32

8 8 s 5 g 6 f 7 d 8 p 50 50

9 9 s 6 g 7 f 8 d 9 p 50 50

3-8 元素周期性

3-8-1 原子半径

原子的大小以原子半径来表示,在讨论原子半径的变化规律时,我们采用的是原子的共价半径,但稀有气体的原子半径只能用范德华半径代替。

⑴短周期内原子半径的变化( 1 、 2 、 3 周期)

在短周期中,从左到右随着原子序数的增加,核电荷数在增大,原子半径在逐渐缩小。但最后到稀有气体时,原子半径突然变大,这主要是因为稀有气体的原子半径不是共价半径,而是范德华半径。

⑵长周期内原子半径的变化( 4 、 5 周期)

在长周期中,从左向右,主族元素原子半径变化的趋势与短周期基本一致,原子半径逐渐缩小;副族中的 d 区过渡元素,自左向右,由于新增加的电子填入了次外层的(n- 1 )d 轨道上,对于决定原子半径大小的最外电子层上的电子来说,次外层的 d 电子部分地抵消了核电荷对外层 ns 电子的引力,使有效核电荷增大得比较缓慢。因此, d 区过渡元素从左向右,原子半径只是略有减小,缩小程度不大;到了 ds 区元素,由于次外层的(n-1 )d轨道已经全充满,d电子对核电荷的抵消作用较大,超过了核电荷数增加的影响,造成原子半径反而有所增大。同短周期一样,末尾稀有气体的原子半径又突然增大。

⑶特长周期内原子半径的变化( 6 、 7 周期)

在特长周期中,不仅包含有 d 区过渡元素,还包含有 f 区内过渡元素(镧系元素、锕系元素),由于新增加的电子填入外数第三层的(n- 2 ) f 轨道上,对核电荷的抵消作用比填入次外层的(n- 1 )

d 轨道更大,有效核电荷的变化更小。因此 f 区元素从左向右原子半径减小的幅度更小。这就是镧系收缩。由于镧系收缩的影响,使镧系后面的各过渡元素的原子半径都相应缩小,致使同一副族的第 5 、

6 周期过渡元素的原子半径非常接近。这就决定了 Zr 与 Hf 、 Nb 与 Ta 、 Mo 与 W 等在性质上极为相似,难以分离。

在特长周期中,主族元素、 d 区元素、 ds 区元素的原子半径的变化规律同长周期的类似。

⑷同族元素原子半径的变化

在主族元素区内,从上往下,尽管核电荷数增多,但由于电子层数增多的因素起主导作

用,因此原子半径显著增大。

副族元素区内,从上到下,原子半径一般只是稍有增大。其中第 5 与第 6 周期的同族元素之间原子半径非常接近,这主要是镧系收缩所造成的结果。

3-8-2 电离能

元素的第一电离势越小,表示它越容易失去电子,即该元素的金属性越强。因此,元素的第一电离势是该元素金属活泼性的一种衡量尺度。

电离势的大小,主要取决于原子核电荷、原子半径和原子的电子层结构。由上图可见元素第一电离势的周期性变化。

⑴在每一周期中,在曲线各最高点的是稀有气体元素,它的原子具有稳定的 8 电子结构,所以它的电离势最高。而在曲线各最低点的是碱金属元素,它们的电离势在同一周期中是最低的,表明它们是最活泼的金属元素。各周期其它元素的电离势则介于这两者之间。在同一周期中由左至右,随着原子序数增加、核电荷增多、原子半径变小,原子核对外层电子的引力变大,元素的电离势变大。元素的金属性慢慢减弱,由活泼的金属元素过渡到非金属元素。

⑵在每一族中自上而下,元素电子层数不同,但最外层电子数相同,随着原子半径增大,电离势变小,金属性增强。在ⅠA族中最下方的铯有最小的第一电离势,它是周期系中最活泼的金属元素。而稀有气体氦则有最大的第一电离势。

⑶某些元素其电离势比同周期中相邻元素的高,是由于它具有全充满或半充满的电子层结构,稳定性较高。例如 N 、 P 、 As (具有半充满的轨道), Zn 、 Cd 、 Hg (具有全充满的 (n-1)dns 轨道)。

3-8-3 电子亲合能

当元素处于基态的气态原子得到一个电子成为负一价阴离子时所放出的能量,称为该元素的电子亲合势。元素的电子亲合势越大,表示它的原子越容易获得电子,非金属性也就越强。活泼的非金属元素一般都具有较高的电子亲合势。

由于电子亲合势的测定比较困难,目前元素的电子亲合势数据不如电离势数据完整,但从上面已有的数据仍不难看出,活泼的非金属具有较高的电子亲合势,而金属元素的电子亲合势都比较小,说明金属在通常情况下难于获得电子形成负价阴离子。

在周期中由左向右,元素的电子亲合势随原子半径的减小而增大,在族中自上而下随原子半径的增大而减小。但由上表可知,ⅥA和ⅦA族的头一个元素(氧和氟)的电子亲合势并非最大,而分别比第二个元素(硫和氧)的电子亲合势要小。这一反常现象是由于氧、氟原子半径最小,电子密度最大,电子间排斥力很强,以致当加合一个电子形成负离子时,放出的能量减小。

3-8-4 电负性

元素的电离势和电子亲合势都是只从一个方面反映了某原子得失电子的能力,只从电离势或电子亲合势的大小来衡量金属、非金属的活泼性是有一定局限性的。实际上元素在形成化合物时,有的元素的原子既难于失去电子,又难于获得电子,如碳、氢元素等。因此在原子相互化合时,必须把该原子失去电子的难易程度和结合电子的难易程度统一起来考虑。因此把原子在分子中吸引电子的能力叫做元素的电负性。

由上表可见元素的电负性呈现周期性变化。在同一周期中,从左到右,随着原子序数增大,电负性递增,元素的非金属性逐渐增强。在同一主族中,从上到下电负性递减,元素的非金属性依次减弱。副族元素的电负性没有明显的变化规律。

在周期表中,右上方氟的电负性最大,非金属性最强,左下方铯的电负性最小,金属性最强。一般来说,金属元素的电负性在 ~2.0 以下,非金属元素的电负性在 ~2.0 以上。根据元素电负性的大小,可以衡量元素的金属性和非金属性的强弱,但应注意,元素的金属性和非金属性之间并没有严格的界限。

3-8-5 氧化态

元素的氧化数与原子的价层电子构型或者说与价电子数有关。

⑴主族元素的氧化数

在主族元素原子中,仅最外层的电子(即价电子)能参与成键,因此主族元素(氧、氟除外)的最高氧化数等于其原子的全部价电子数,还等于相应的族数。主族元素的氧化数随着原子核电荷数递增而递增。呈现周期性的变化。

⑵过渡元素的氧化数

从ⅢB~ⅦB族元素原子的价电子,包括最外层的 s 电子和次外层的 d 电子都能参与成键,因此元素的最高氧化数也等于全部价电子数,亦等于族数。下面以第 4 周期的元素为例:从ⅢB~ⅦB族过渡元素的最高氧化数,随着原子核电荷数递增而递增,呈现周期性变化。ⅡB族元素的最高氧化数为 +2 ,ⅠB族和第Ⅷ族元素的氧化数变化不很规律。

原子结构与元素周期表试卷及答案

原子结构与元素周期表试卷及答案 一、选择题(本题只有一个正确选项) 1、(奉贤二模,2)下列化学用语正确的是 A .硫的原子结构示意图: B .2-丁烯的结构式: C .乙酸的化学式:C 2H 4O 2 D .原子核内有8个中子的氧原子:188O 2、(奉贤二模,3)3He 可以作为核聚变材料,以下关于3He 的说法正确的是 A .比4He 少一个电子 B .比4He 少一个质子 C .与4He 的同分异构体 D .是4He 的同位素 3.(静安二模,1)在日本核电站附近检测到放射性原子131I 。关于131I 原子和127I 原子的 叙述错误的是 C A.它们互称为同位素 B.它们的化学性质几乎完全相同 C.它们相差4个质子 D.它们的电子数相同 4.(静安二模,2)下列氮原子结构的表述中,对电子运动状态描述正确且能表明同一电子 层电子能量有差异的是 C A . B. C.1s 22s 22p 3 D. 5.(静安二模,15)氯元素的相对原子质量为35.5,由23Na 、35Cl 、37Cl 构成的11.7g 氯化 钠中,37Cl 的质量为 B A. 1.75g B. 1.85 g C.5.25 g D. 5.85g 6.(卢湾二模,2)下列化学用语正确的是 C A .聚丙烯的结构简式: B .丙烷分子的比例模型: C .磷原子最外层电子排布式:3s 23P 3 D .羟基的电子式为: 7. (卢湾二模,3)下列各项说法或比较中正确的是 C A .氧化性:Ag + >Cu 2+ >Fe 3+ B .热稳定性:HF >H 2Se >H 2O C .酸性:CH 3COOH>H 2CO 3 >H 2SiO 3 D .离子半径:Cl ->S 2->Mg 2+ 8 (卢湾二模,6)右表为元素周期表前四周期的一部分,下列有关X 、W 、Y 、R 、Z 五种 元素的叙述中,正确的是 B A .常温常压下,五种元素的单质中只有一种是气态 B .Y 的阴离子的还原性大于Z 的阴离子的还原性 C .W 的氢化物比X 的氢化物稳定 D .Y 与W 元素的最高价氧化物对应水化物的酸性比较,前者弱 于后者 9. (卢湾二模,8)下列各选项所述的两个量,前者一定大于后者的是 B A .F 2和Br 2的沸点 B .纯水在25℃和80℃时的pH X W Y R Z

高考化学培优专题复习原子结构与元素周期表练习题

高考化学培优专题复习原子结构与元素周期表练习题 一、原子结构与元素周期表练习题(含详细答案解析) 1.下表是元素周期表的一部分,回答相关的问题。 (1)写出④的元素符号__。 (2)在这些元素中,最活泼的金属元素与水反应的离子方程式:__。 (3)在这些元素中,最高价氧化物的水化物酸性最强的是__(填相应化学式,下同),碱性最强的是__。 (4)这些元素中(除⑨外),原子半径最小的是__(填元素符号,下同),原子半径最大的是__。 (5)②的单质与③的最高价氧化物的水化物的溶液反应,其产物之一是OX2,(O、X分别表示氧和②的元素符号,即OX2代表该化学式),该反应的离子方程式为(方程式中用具体元素符号表示)__。 (6)⑦的低价氧化物通入足量Ba(NO3)2溶液中的离子方程式__。 【答案】Mg 2Na+2H2O=2Na++2OH-+H2↑ HClO4 NaOH F Na 2F2+2OH-=OF2+2F-+H2O 3SO2+2NO3-+3Ba2++2H2O=3BaSO4↓+2NO+4H+ 【解析】 【分析】 根据元素在元素周期表正的位置可以得出,①为N元素,②为F元素,③为Na元素,④为Mg元素,⑤为Al元素,⑥Si元素,⑦为S元素,⑧为Cl元素,⑨为Ar元素,据此分析。 【详解】 (1)④为Mg元素,则④的元素符号为Mg; (2)这些元素中最活泼的金属元素为Na,Na与水发生的反应的离子方程式为 2Na+2H2O=2Na++2OH-+H2↑; (3)这些元素中非金属性最强的是Cl元素,则最高价氧化物对应的水化物为HClO4,这些元素中金属性最强的元素是Na元素,则最高价氧化物对应的水化物为NaOH; (4)根据元素半径大小比较规律,同一周期原子半径随原子序数的增大而减小,同一主族原子半径随原子序数的增大而增大,可以做得出,原子半径最小的是F元素,原子半径最大的是Na元素; (5)F2与NaOH反应生成OF2,离子方程式为2F2+2OH-=OF2+2F-+H2O; (6)⑦为S元素,⑦的低价氧化物为SO2,SO2在Ba(NO3)2溶液中发生氧化还原反应,SO2变成SO42-,NO3-变成NO,方程式为3SO2+2NO3-+3Ba2++2H2O=3BaSO4↓+2NO+4H+。

第一章原子结构和元素周期系

第一章 原子结构和元素周期系 1、原子核外电子运动有什么特性 解:原子核外电子的运动和光子的运动一样,具有波粒二象性。不能同时准确测定它的位置和速度,即服从测不准关系,因而电子的运动不遵循经典力学,无确定的运动轨道,而是服从量子力学,需用统计规律来描述。也就是说量子力学研究的只是电子在核外空间某地方出现的可能性,即出现的几率大小。 2、氢光谱为什么可以得到线状光谱谱线的波长与能级间能量差有什么关系求电子从第四轨道跳回第二轨道时,H β谱线之长。 解:在通常情况下,氢原子的电子在特定的稳定轨道上运动不会放出能量。因此在通常条件下氢原子是不会发光的。但是当氢原子受到激发(如在高温或电场下)时,核外电子获得能量就可以从较底的能级跃迁到较高的能级,电子处于激发态,处于激发态的电子不稳定,它会迅速地跳回到能量较底的能级,并将多余的能量以光的形式放出,放出光的频率(或波长)大小决定于电子跃迁时两个能级的能量差,即: νh E E E =-=?21 由于轨道能量的量子化,即不连续的,所以激发态的电子由较高能级跳回到较低能级时,放出光的频率(或波长)也是不连续的,这是氢原子光谱是线状光谱的原因。 谱线的波长和能量的关系为: h E E C 12-==νλ =×1015(22 211 1n n -) 电子从第四轨道跳回第二轨道时,H B 谱线的波长为: 114221510167.6)4 1 21(10289.3-?=-?=S ν ν λC = nm m s s m 4861086.410167.61037 1 1418=?=????=---λ 3、当氢原子的一个电子从第二能级跃迁至第一能级,发射出光子的的波长为,当电子从第三能级跃迁至第二能级,发射出光子的的波长为。试通过计算回答: (1) 哪一种光子的能量大 (2) 求氢原子中电子的第三与第二能级的能量差,以及第二与第一能级的能量差。

原子结构与元素周期律(精)

第10章原子结构与元素周期律 思考题 1.量子力学原子模型是如何描述核外电子运动状态的? 解:用四个量子数:主量子数——描述原子轨道的能级; 角量子数——描述原子轨道的形状, 并与主量子数共同决定原子轨道的能级; 磁量子数——描述原子轨道的伸展方向; 自旋量子数——描述电子的自旋方向。 2.区别下列概念:(1)Ψ与∣Ψ∣2,(2)电子云和原子轨道,(3)几率和几率密度。解:(1)Ψ是量子力学中用来描述原子中电子运动状态的波函数,是薛定谔方程的解; ∣Ψ∣2反映了电子在核外空间出现的几率密度。 (2)∣Ψ∣2 在空间分布的形象化描述叫电子云,而原子轨道与波函数Ψ为同义词。 (3)∣Ψ∣2表示原子核外空间某点附近单位体积内电子出现的几率,即称几率密度,而某一微小体积dV内电子出现的几率为∣Ψ∣2·dV。 3.比较波函数角度分布图与电子云角度分布图,它们有哪些不同之处? 解:不同之处为 (1)原子轨道的角度分布一般都有正负号之分,而电子云角度分布图均为正值,因为Y 平方后便无正负号了。 (2)除s轨道的电子云以外,电子云角度分布图比原子轨道的角度分布图要稍“瘦”一些,这是因为︱Y︱≤ 1,除1不变外,其平方后Y2的其他值更小。 4.科顿原子轨道能级图与鲍林近似能级图的主要区别是什么? 解:Pauling近似能级图是按能级高低顺序排列的,把能量相近的能级组成能级组,依1、2、3…能级组的顺序,能量依次增高。按照科顿能级图中各轨道能量高低的顺序来填充电子,所得结果与光谱实验得到的各元素原子中电子排布情况大致相符合。 科顿的原子轨道能级图指出了原子轨道能量与原子序数的关系,定性地表明了原子序数改变时,原子轨道能量的相对变化。从科顿原子轨道能级图中可看出:原子轨道的能量随原子序数的增大而降低,不同原子轨道能量下降的幅度不同,因而产生能级交错现象。但氢原子轨道是简并的,即氢原子轨道的能量只与主量子数n有关,与角量子数l无关。 5.判断题: (1)当原子中电子从高能级跃迁至低能级时,两能级间的能量相差越大,则辐射出的电磁波波长越大。

原子结构与元素周期表

原子结构与元素周期表 1、写出第三周期中所有元素的电子排布式和轨道排布式。 2、写出下列微粒的电子排布式。 ①19K+②26Fe3+③35Br- 3、写出原子序数为42号、43号、47号元素的电子排布式 4、前三周期的元素中,核外电子数不成对的数目和它的电子层数相等的元素共有多少种?请写出这几种元素的电子构型。第四周期有没有这类原子? 5、根据下列微粒的最外层电子排布(即“外围电子层排布”或“外围电子构型”),能够确定该元素在元素周期表中的位置的是() A、1s2 B、3s23p1 C、3s23P6 D、4s2 6、具有下列电子排布的微粒不能肯定是原子还是离子的是() A、1s2 B、1s22s22p4 C、[Ne]3s2 D、[Kr]4d105s2 7、具有下列电子构型的元素位于周期表的哪一区?是金属元素还是非金属元素。A、ns2(n≠1) B、ns2np4C、(n-1)d5ns2D、(n-1)d8ns2 8、据2004年2月9日《参考消息》报道,来自俄罗斯和美国的科学家已发现了115号和113号两种新元素。方法是用4820Ca原子撞击24395Am原子,即可从产物中分离出115号元素;115号经一次衰变,又可生成113号。这一发现扩大了元素周期表的范围。试写出这两种新元素的电子排布式,并判断它所在元素周期表中的位置。 9、下列离子中最外层电子数为8的是() A、Ga3+ B、Ti4+ C、Cu+ D、Li+ 10、电子构型为[Xe]4f145d76s2的元素是() A、稀有气体 B、过渡元素 C、主族元素 D、稀土元素 11、讨论题:(1)观察元素周期表,每相邻周期中的元素数目存在什么规律?这一规律与周期数有什么关系?导致产生这一规律的深层原因是什么?(提示:考虑周期表中第一种轨道类型的出现) (2)按现代原子结构理论,在每个电子层上可以有一个或几个原子轨道。现假设每个原子轨道上只能容纳1个电子(假设电子排布仍遵循原有电子排布的原理),请重新将1-27号元素排列成元素周期表,观察该“元素周期表”中的族数有何变化?

2020-2021高考化学 原子结构与元素周期表 综合题

2020-2021高考化学原子结构与元素周期表综合题 一、原子结构与元素周期表练习题(含详细答案解析) 1.完成下列问题: (1)氮和磷氢化物热稳定性的比较:NH3______PH3(填“>”或“<”)。 (2)PH3和NH3与卤化氢的反应相似,产物的结构和性质也相似。下列对PH3与HI反应产物的推断正确的是_________(填序号)。 a.不能与NaOH反应 b.含离子键、共价键 c.受热可分解 (3)已知H2与O2反应放热,断开1 mol H-H键、1 mol O=O键、1 mol O-H键所需要吸收的能量分别为Q1 kJ、Q2 kJ、Q3 kJ,由此可以推知下列关系正确的是______。 ①Q1+Q2>Q3②2Q1+Q2<4Q3③2Q1+Q2<2Q3 (4)高铁电池总反应为:3Zn+2K2FeO4+8H2O=3Zn(OH)2+2Fe(OH)3+4KOH,写出电池的正极反应:__________,负极反应 ________________。 【答案】> bc ② FeO42-+3e-+4H2O=Fe(OH)3+5OH- Zn+2OH--2e-=Zn(OH)2 【解析】 【分析】 (1)根据元素的非金属性越强,其相应的简单氢化物越稳定分析; (2)PH3与HI反应产生PH4I,相当于铵盐,具有铵盐的性质; (3)根据旧键断裂吸收的能量减去新键生成释放的能量的差值即为反应热,结合燃烧反应为放热反应分析解答; (4)根据在原电池中,负极失去电子发生氧化反应,正极上得到电子发生还原反应,结合物质中元素化合价及溶液酸碱性书写电极反应式。 【详解】 (1)由于元素的非金属性:N>P,所以简单氢化物的稳定性:NH3>PH3; (2) a.铵盐都能与NaOH发生复分解反应,所以PH4I也能与NaOH发生反应,a错误;b.铵盐中含有离子键和极性共价键,所以PH4I也含离子键、共价键,b正确; c.铵盐不稳定,受热以分解,故PH4I受热也会发生分解反应,c正确; 故合理选项是bc; (3)1 mol H2O中含2 mol H-O键,断开1 mol H-H、1 mol O=O、1 mol O-H键需吸收的能量分 别为Q1、Q2、Q3 kJ,则形成1 mol O-H键放出Q3 kJ热量,对于反应H2(g)+1 2 O2(g)=H2O(g), 断开1 mol H-H键和1 2 mol O=O键所吸收的能量(Q1+ 1 2 Q2) kJ,生成2 mol H-O新键释放的 能量为2Q3 kJ,由于该反应是放热反应,所以2Q3-(Q1+1 2 Q2)>0,2Q1+Q2<4Q3,故合理选项 是②; (4)在原电池中负极失去电子发生氧化反应,正极上得到电子发生还原反应。根据高铁电池总反应为:3Zn+2K2FeO4+8H2O=3Zn(OH)2+2Fe(OH)3+4KOH可知:Fe元素的化合价由反应前K2FeO4中的+6价变为反应后Fe(OH)3中的+3价,化合价降低,发生还原反应,所以正极的电极反应式为:FeO42-+3e-+4H2O=Fe(OH)3+5OH-;Zn元素化合价由反应前Zn单质中的0价

《原子结构与元素周期表》教案

《原子结构与元素周期表》教案 第二节原子结构与元素周期表 【教学目标】 . 理解能量最低原则、泡利不相容原理、洪特规则,能用以上规则解释1~36号元素基态原子的核外电子排布; 2. 能根据基态原子的核外电子排布规则和基态原子的核外电子排布顺序图完成1~36号元素基态原子的核外电子排布和价电子排布; 【教学重难点】 解释1~36号元素基态原子的核外电子排布; 【教师具备】 多媒体 【教学方法】 引导式 启发式教学 【教学过程】 【知识回顾】 .原子核外空间由里向外划分为不同的电子层? 2.同一电子层的电子也可以在不同的轨道上运动? 3.比较下列轨道能量的高低(幻灯片展示)

【联想质疑】 为什么第一层最多只能容纳两个电子,第二层最多只能容纳八个电子而不能容纳更多的电子呢?第三、四、五层及其他电子层最多可以容纳多少个电子?原子核外电子的排布与原子轨道有什么关系? 【引入新课】通过上一节的学习,我们知道:电子在原子核外是按能量高低分层排布的,同一个能层的电子,能量也可能不同,还可以把它们分成能级,就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。原子中的电子在各原子轨道上按能级分层排布,在化学上我们称为构造原理。下面我们要通过探究知道基态原子的核外电子的排布。 【板书】一、基态原子的核外电子排布 【交流与讨论】(幻灯片展示) 【讲授】通过前面的学习我们知道了核外电子在原子轨道上的排布是从能量最低开始的,然后到能量较高的电子层,逐层递增的。也就是说要遵循能量最低原则的。比如氢原子的原子轨道有1s、2s、2px、2py、2pz等,其核外的惟一电子在通常情况下只能分布在能量最低的1s原子轨道上,电子排布式为1s1。也就是说用轨道符号前的数字表示该轨道属于第几电子层,用轨道符号右上角的数字表示该轨道中的电子数(通式为:nlx)。例如,原子c的电子排布式为1s2s22p2。

元素周期表各原子结构示意图

第1周期各原子核外电子排布情况 [1] K氢核外电子数依次是:1 [2]He氦核外电子数依次是:2 第2周期各原子核外电子排布情况 [3Li锂核外电子数依次是:2 1 [4Be铍核外电子数依次是:2 2 [5] B硼核外电子数依次是:2 3 [6] C碳核外电子数依次是:2 4 [8] O氧核外电子数依次是:2 6 [9] F氟核外电子数依次是:2 7 [10]Ne氖核外电子数依次是:2 8 第3周期各原子核外电子排布情况 [11]Na钠核外电子数依次是:2 8 1 [12]Mg镁核外电子数依次是:2 8 2 [13]Al铝核外电子数依次是:2 8 3 [14]Si硅核外电子数依次是:2 8 4 [15] P磷核外电子数依次是:2 8 5 [16] S硫核外电子数依次是:2 8 6 [17]Cl氯核外电子数依次是:2 8 7 [18]Ar氩核外电子数依次是:2 8 8 第4周期各原子核外电子排布情况

[20]Ca钙核外电子数依次是:2 8 8 2 [21]Sc钪核外电子数依次是:2 8 9 2 [22]Ti钛核外电子数依次是:2 8 10 2 [23]V钒核外电子数依次是:2 8 11 2 *[24]Cr铬核外电子数依次是:2 8 13 1 [25]Mn锰核外电子数依次是:2 8 13 2 [26]Fe铁核外电子数依次是:2 8 14 2 [27]Co钴核外电子数依次是:2 8 15 2 [28]Ni镍核外电子数依次是:2 8 16 2 *[29]Cu铜核外电子数依次是:2 8 18 1 [30]Zn锌核外电子数依次是:2 8 18 2 [31]Ga镓核外电子数依次是:2 8 18 3 [32]Ge锗核外电子数依次是:2 8 18 4 [33]As砷核外电子数依次是:2 8 18 5 [34]Se硒核外电子数依次是:2 8 18 6 [35]Br溴核外电子数依次是:2 8 18 7 [36]Kr氪核外电子数依次是:2 8 18 8 第5周期各原子核外电子排布情况 [37]Rb铷核外电子数依次是:2 8 18 8 1 [38]Sr锶核外电子数依次是:2 8 18 8 2

原子结构与元素周期表教(学)案

原子结构与元素周期表教案 一教学目标 1.知识与技能目标: ①使学生理解能量最低原则,泡利不相容原理,洪特规则等核外电子排布的原则。 ②使学生能完成1-36号元素基态原子的核外电子排布和价电子排布。 ③使学生知道核外电子排布与周期表中周期,族划分的关系。 ④使学生了解原子半径的周期性变化,并能用原子结构知识解释主族元素原子半径周期性变化的原因 2.过程与方法目标: 通过学习,使学生明确原子结构的量子力学模型的建立使元素周期表的建立有了理论基础。 3.情感态度与价值观 通过微观世界中核外电子所奉行的“法律”---电子排布原则的认识,发展学生学习化学的兴趣,感受微观世界的奇妙与和谐。 二教学重点和难点: 原子核外电子排布三原则,核外电子排布与原子半径,周期表中周期,族划分的关系。核外电子排布式,价电子排布式,轨道表示式的书写。 三教学方法: 活动·探究法,学案导学法,联想对比法,自学阅读法,图表法等 四教学过程 (第1课时) [新课引入]俗话说,没有规矩不成方圆,不管是自然界还是人类社会,都有自己的规律和规则,我们可以简单看这几图片,交通有交通规则,停车场有停车场的规矩,就连一个小小的鞋盒,也有自己的规矩。通过第一节“原子结构模型”的学习,我们知道原子核外有不同的原子轨道,那么电子在这些原子轨道上是如何排布的呢?有没有自己的规则和规矩呢?当然有,是什么呢?通过我们教材第二节《原子结构与元素周期表》,大

家就会了解这一微观世界的“法律”。 [活动探究] 1-18号元素的基态原子的电子排布 [提问]为什么你的基态原子的核外电子是这样排布的,排布原则是什么? [自学阅读]阅读基态原子的核外电子排布三原则5分钟。 [学案导学]见附页 [设问]为什么基态原子的核外电子排布要符合此三原则呢 [师讲]自然界有一普遍规律:能量越低越稳定,不管是能量最低原理还是泡利不相容原理,洪特规则,它们的基本要求还是稳定。 [投影]耸入云天的浮天阁 [师讲]通过这图片,我们可以很清楚的看出生活中随处都有类似的例子,和我们微观世界的规则不谋而合。浮天阁台阶对应能量最低原理,想休息,想稳定,在这高高的楼梯上,你最愿意选择什么地方呢?当然是最低处的台阶。基态原子的电子同样也是能量越低越稳定,为了稳定它们总是尽可能把原子排在能量低的电子层里。如氢原子的电子排布式为1s1.那多电子原子的电子如何排布呢? [生答]按能量由低到高的顺序排布 [师讲]那么原子轨道的能量高低顺序是什么呢? [投影]展示原子轨道能量高低顺序图,并指出能级交错现象。 [师讲]装有鞋子的鞋盒可以直观的看为泡利不相容原理,一个鞋盒最多容纳两个鞋子,且方向相反。井然有序的停车场,你看车辆尽可能分占不同的车位,方向相同,这样才能使整个停车场稳定有序,多像洪特规则。 [投影] 自选相反的鞋子,井然有序的停车场 [归纳总结] 1.基态原子:处于能量最低状态下的原子 2、基态原子的核外电子排布 原子核外电子的排布所遵循的三大原则:①能量最低原则 电子先占据能量低的轨道,再依次进入能量高的轨道 ②泡利不相容原理 每个轨道最多容纳两个自旋状态相反的电子 ③洪特规则 电子在能量相同的轨道上排布时,应尽可能分占不同的轨道,且自旋状态相同 [思考]请写出氯原子的原子结构示意图,根据你的书写请思考,该示意图能否清楚表示各原子轨道电子排布情况?如不能,用什么样的方法才能清楚表示呢? [师讲]电子排布式可简单写为nlx,其中n为电子层数,x为电子数,角量子数l用其对应的符号表示。 轨道表示式用小圆圈表示一个给定量子数n,l,m的原子轨道,用箭头来区别ms不同的电子,如:氦原子的轨道表示式 [练习]书写1~18号元素的基态原子的电子排布式 以氯原子为例比较电子排布式、轨道表示式、原子结构示意图书写的不同 [过渡]在以上书写家肯定有一种感觉,写着麻烦,有没有简单点的表示方法呢? [师讲] 33号砷As:[Ar]3d104s24p3;34号硒Se:[Ar]3d104s24p4;

原子结构和元素周期系习题及参考答案Yao

第五章 原子结构和元素周期系 1) 氢原子的可见光谱中有一条谱线,是电子从n =4跳回n =2的轨道时放出的辐射能所产生的,试计算该谱线的波长。 解: 18422.1810=J 4E -?—,18 22 2.1810=J 2E -?— 1818181922222.1810 2.181011=()()=2.1810 4.08710J 4224E ----?????---?-=? ??? ∵=E h ν? ∴ 191914134 4.08710 4.08710J ==6.16910s 6.62610J s h ν----??=?? 817141 310m s ==4.86310m=486.3nm 6.16910s c λν----?=?? 2) 下列的电子运动状态是否存在?为什么? ① n =2,l =2, m =0, m s =+2 1; ② n =3, l =2, m =2, m s =+ 2 1; ③ n =4,l =1, m =-3, m s =+2 1; ④ n =3,l =2, m =0, m s =+ 2 1。 解:① 不存在,因为 l = n 。 ②、④ 存在。 ③ 不存在。因为m > l 3) 对下列各组轨道,填充合适的量子数: ① n =?,l =2, m =0, m s =+2 1; ② n =2,l =?, m =-1, m s =-2 1; ③ n =4,l =2, m =0,m s =?; ④ n =2,l =0, m =?, m s =+ 2 1。 解:① n ≥3;② l = 1; ③m s = +1 2 或 -1 2; ④ m = 0。 4) 试用s, p, d, f 符号表示下列各元素原子的电子分布式,并分别指出它们各属于第几周期、 第几族?① 18Ar ; ② 26Fe ; ③ 29Cu ; ④ 35Br 。 解: ① 18Ar 1s 22s 22p 63s 23p 6 第三周期 ⅧA 族 ② 26Fe 1s 2 2s 22p 63s 23p 63d 64s 2 第四周期 ⅧB 族 ③ 29Cu 1s 22s 22p 63s 23p 63d 104s 1 第四周期 ⅠB 族

原子结构与元素周期律 习题及全解答

第9章原子结构与元素周期律 1.根据玻尔理论,计算氢原子第五个玻尔轨道半径(nm)及电子在此轨道上的能量。 解:(1)根据rn=a0n2 r5=53pm×25= 53×10-3nm×25= nm (2) 根据En=-B/2n E5= -52=-25=- 答: 第五个玻尔轨道半径为 nm,此轨道上的能量为-。 2.计算氢原子电子由n=4能级跃迁到n=3能级时发射光的频率和波长。 解:(1)根据 E(辐射)=ΔE=E4-E3 =×10-18 J((1/3)2-(1/4)2)= ×10-18 J(1/9-1/16)=×10-18 J×= 根据E(辐射)=hν ν= E(辐射)/h= ×10-19J /6.626X10–34 = s-1 (2)法1:根据E(辐射)=hν= hC/λ λ= hC/ E(辐射)= 6.626X10 –34×3×108×10-19J=×10-6m。 法2:根据ν= C/λ,λ= C/ν=3×108 s-1=×10-6m。 答:频率为 s-1,波长为×10-6m。 3.将锂在火焰上燃烧放出红光,波长 =,这是Li原子由电子组态1s22p1→1s22s1跃迁时产生的。试计算该红光的频率、波数以及以KJ·mol-1为单位符号的能量。解:(1)频率ν= C/λ=3×108×10-9 m/nm=×1014 s-1; (2)波数ν=1/λ=1/×10-9 m/nm=×106 m-1 (3) 能量E(辐射)=hν=6.626X10 –34××1014 s-1=×10-19 J ×10-19 J××1023mol-1×10-3KJ/J= KJ mol-1 答: 频率为×1014 s-1,波数为×106 m-1,能量为 KJ mol-1。 4.计算下列粒子的德布罗意波的波长:(已知电子的速度为v=×106m.s-1)(1)质量为10-10kg,运动速度为·s-1的尘埃; (2)动能为的自由电子; (3)动能为300eV的自由电子。 解:λ= h/ m v=6.626X10–34 10-10kg×·s-1=×10-22 m (单位运算:λ= h/ m v = =

培优原子结构与元素周期表辅导专题训练附答案

培优原子结构与元素周期表辅导专题训练附答案 一、原子结构与元素周期表练习题(含详细答案解析) 1.下表是元素周期表的一部分,回答相关的问题。 (1)写出④的元素符号__。 (2)在这些元素中,最活泼的金属元素与水反应的离子方程式:__。 (3)在这些元素中,最高价氧化物的水化物酸性最强的是__(填相应化学式,下同),碱性最强的是__。 (4)这些元素中(除⑨外),原子半径最小的是__(填元素符号,下同),原子半径最大的是__。 (5)②的单质与③的最高价氧化物的水化物的溶液反应,其产物之一是OX2,(O、X分别表示氧和②的元素符号,即OX2代表该化学式),该反应的离子方程式为(方程式中用具体元素符号表示)__。 (6)⑦的低价氧化物通入足量Ba(NO3)2溶液中的离子方程式__。 【答案】Mg 2Na+2H2O=2Na++2OH-+H2↑ HClO4 NaOH F Na 2F2+2OH-=OF2+2F-+H2O 3SO2+2NO3-+3Ba2++2H2O=3BaSO4↓+2NO+4H+ 【解析】 【分析】 根据元素在元素周期表正的位置可以得出,①为N元素,②为F元素,③为Na元素,④为Mg元素,⑤为Al元素,⑥Si元素,⑦为S元素,⑧为Cl元素,⑨为Ar元素,据此分析。 【详解】 (1)④为Mg元素,则④的元素符号为Mg; (2)这些元素中最活泼的金属元素为Na,Na与水发生的反应的离子方程式为 2Na+2H2O=2Na++2OH-+H2↑; (3)这些元素中非金属性最强的是Cl元素,则最高价氧化物对应的水化物为HClO4,这些元素中金属性最强的元素是Na元素,则最高价氧化物对应的水化物为NaOH; (4)根据元素半径大小比较规律,同一周期原子半径随原子序数的增大而减小,同一主族原子半径随原子序数的增大而增大,可以做得出,原子半径最小的是F元素,原子半径最大的是Na元素; (5)F2与NaOH反应生成OF2,离子方程式为2F2+2OH-=OF2+2F-+H2O; (6)⑦为S元素,⑦的低价氧化物为SO2,SO2在Ba(NO3)2溶液中发生氧化还原反应,SO2变成SO42-,NO3-变成NO,方程式为3SO2+2NO3-+3Ba2++2H2O=3BaSO4↓+2NO+4H+。

原子结构与元素周期表习题及答案1

原子结构与元素周期表 基础题 一、选择题 1.下列用四个量子数标记某基态原子的电子在原子轨道上的运动状态,其中合理的是 A. 2,2,1,+2 1 B. 2,1,2,-2 1 C. 3,2,-2,+2 1 D. 3,-2,2,-2 1 2.基态原子的核外电子在原子轨道上的能量大小关系不正确的是( ) A. 3s >2s B. 3p >3s C. 4s >3d D. 3d >3s 3.下列符合泡利不相容原理的是( ) 4.下列哪个选项可以更贴切地展现洪特规则的内容( ) 5.关于价电子的描述正确的是( ) A.价电子就是元素原子最外层的电子 B.元素的物理性质与价电子的数目密切相关 C.从价电子中可以研究并推测出元素可能具有的价态 D.价电子能量都比较低,较稳定 6.根据鲍林近似能级图,理解正确的是( ) A.从能级组中我们可以推测对应周期包含元素的种数 B.相邻能级组之间的能量差较小,不相邻的能级组之间的能量差才较大 C.归为一组的能级用线框框在一起,表示其中能级的能量由于相互影响形成能量相同的能级 D.每个能级组中所示的能级,其主量子数都相同 7.下列关于核外电子排布的说法不合理的是( ) A.族的划分与原子的价电子数目和价电子的排布密切相关 B.周期中元素的种数与原子的能级组最多容纳的电子有关 C.稀有气体元素原子的最外层电子排布ns 2np 6的全充满结构,所以具有特殊稳定性 D.同一副族内不同元素原子的电子层数不同,其价电子排布一定也完全不同 8.指定化合物中两个相邻原子的核间距为两个原子的半径之和,再通过实验来测定分子或固体中原子的

核间距,从而求得相关原子的原子半径。不属于这种方法测得的半径是( ) A.玻尔半径 B.金属半径 C.共价半径 D.范德华半径 9.下列关于原子半径的周期性变化描述不严谨的是( ) A.元素的原子半径随元素原子序数的递增呈周期性变化 B.同周期元素随着原子序数的递增,元素的原子半径自左到右逐渐减小 C.同主族元素随着原子序数的递增,元素的原子半径自上而下逐渐增大 D.电子层数相同时,有效核电荷数越大,对外层电子的吸引作用越强 10、假定有下列电子的各套量子数,指出可能存在的是( ) A 、13222,,,+ B 、13012 ,,,-- C 、2222,,, D 、1000,,, 11、下列各组元素,按照原子半径依次减小、第一电离能依次增大的顺序排列的是 A 、K 、Na 、Li B 、Al 、Mg 、Na C 、N 、O 、C D 、P 、S 、Cl 12、已知某原子的各级电离能数值如下:11 12I 588kJ mol ,I 1817kJ mol ,--=?=? 1134I 2745kJ mol ,I 11578kJ mol --=?=?,则该原子形成离子的化合价为( ) A 、+1 B 、+2 C 、+3 D 、+4 13、下列说法中正确的是 A 、所有的电子在同一区域里运动 B 、能量低的电子在离核远的区域运动,能量高的电子在离核近的区域运动 C 、处于最低能量的原子叫基态原子 D 、同一原子中,1s 、2s 、3s 所能容纳的电子数越来越多 14、元素X 、Y 、Z 均为主族元素,已知元素X 、Y 的正离子与元素Z 的负离子具有相同的电子层结构,且Y 的原子半径大于X 的原子半径,则此三元素原子序数的大小关系是: A X >Y >Z B Y >X >Z C Y >Z >X D Z >Y >X 15、下列各原子或离子的电子排列式错误的是 ( ) A. Na + 1s 22s 22p 6 B. F ˉ 1s 22s 22p 6 C N 3+ 1s 22s 22p 6 D. O 2ˉ 1s 22s 22p 6 16、一个价电子构型为2s 22p 5的元素,下列有关它的描述正确的有: A 原子序数为8 B 电负性最大 C 原子半径最大 D 第一电离能最大 17、下列有关认识正确的是( ) A .各能级的原子轨道数按s 、p 、d 、f 的顺序分别为1、3、5、7 B .各能层的能级都是从s 能级开始至f 能级结束 C .各能层含有的能级数为n —1 D .各能层含有的电子数为2n 2 18、短周期的三种元素分别为X 、Y 和Z ,已知X 元素的原子最外层只有一个电子,Y 元素原子的M 电子层上的电子数是它的K 层和L 层电子总数的一半,Z 元素原子的L 电子层上的电子数比Y 元素原子的L 电子层上电子数少2个,则这三种元素所组成的化合物的分子式不可能是 A .X 2YZ 4 B .XYZ 3 C .X 3YZ 4 D .X 4Y 2Z 7 19、以下能级符号不正确的是 ( ) A. 3s B. 3p C . 3d D. 3f 20、下列关于氢原子电子云图的说法正确的是 ( )

第1课时 原子结构与元素周期表

第1章第2节第1课时 (本栏目内容在学生用书中以活页形式分册装订!) 一、选择题(本题包括10小题,每小题5分,共50分) 1.下列有关元素周期表的叙述正确的是() A.元素周期表是由苏联化学家门捷列夫初绘 B.门捷列夫是在梦中想到的周期表 C.最初的元素周期表是按原子内质子数由少到多排的 D.初排元素周期表时共有元素92种 解析:A是错误的,元素周期表由门捷列夫排列,他是俄国人;C是错误的,初排元素周期表是按相对原子质量由小到多排列的;D是错误的,初排元素周期表时共有元素63种;B正确,多日研究导致了梦中的图象。 答案: B 2.核磁共振(NMR)技术已广泛应用于复杂分子结构和医学诊断等高科技领域。已知只有质子数或中子数为奇数的原子核有NMR现象,试判断下列原子均可产生NMR现象的一组是() A.18O、31P、119Sn B.27Al、19F、12C C.元素周期表中ⅤA族所有元素的原子 D.元素周期表中第1周期所有元素的原子 解析:A项中18O的质子数和中子数均为偶数;B项中12C的质子数和中子数均为偶数;C项中元素周期表中ⅤA族所有元素的原子的质子数均为奇数;D项中的4He质子数和中子数均为偶数。故只有C项符合题意。 答案: C 3.下列元素中,基态原子的最外层电子排布式不正确的是() A.As4s24p3B.Cr3d44s2 C.Ar3s23p6D.Ni3d84s2 解析:能量相同的原子轨道在全充满(p6和d10)、半充满(p3和d5)和全空(p0和d0)状态时,体系能量较低,原子较稳定。故B项中Cr原子的最外层电子排布式应为3d54s1。 答案: B 4.国际无机化学命名委员会在1989年做出决定:把长式周期表原先的主、副族及族序号取消,从左到右改为第1~18列,碱金属为第1列,稀有气体为第18列,按这个规定,下列说法不正确的是()

元素周期表各原子结构示意图

元素周期表各原子结 构示意图 第1周期 [1] K 氢1 [2] He 氦2 第2周期 [3] Li 锂2 1 [4] Be 铍2 2 [5] B 硼2 3 [6] C 碳2 4 [8] O 氧2 6 [9] F 氟2 7 [10]Ne 氖2 8 第3周期 [11]Na 钠2 8 1 [12]Mg 镁2 8 2 [13]Al 铝2 8 3 [14]Si 硅2 8 4 [15] P 磷2 8 5 [16] S 硫2 8 6 [17]Cl 氯2 8 7 [18]Ar 氩2 8 8 第4周期 [19]K 钾2 8 8 1 [20]Ca 钙2 8 8 2 [21]Sc 钪2 8 9 2 [22]Ti 钛2 8 10 2 [23]V 钒2 8 11 2 [24]Cr 铬2 8 13 1 [25]Mn 锰2 8 13 2 [26]Fe 铁2 8 14 2 [27]Co 钴2 8 15 2 [28]Ni 镍2 8 16 2 [29]Cu 铜2 8 18 1 [30]Zn 锌2 8 18 2 [31]Ga 镓2 8 18 3 [32]Ge 锗2 8 18 4 [33]As 砷2 8 18 5 [34]Se 硒2 8 18 6 [35]Br 溴2 8 18 7 [36]Kr 氪2 8 18 8 第5周期 [37]Rb 铷2 8 18 8 1 [38]Sr 锶2 8 18 8 2 [40]Zr 锆2 8 18 10 2 [41]Nb 铌2 8 18 12 1 [42]Mo 钼2 8 18 13 1 [43]Tc 锝2 8 18 13 2 [44]Ru 钌2 8 18 15 1 [45]Rh 铑2 8 18 16 1 [46]Pd 钯2 8 18 18 [47]Ag 银2 8 18 18 1 [48]Cd 镉2 8 18 18 2 [49]In 铟2 8 18 18 3 [50]Sn 锡2 8 18 18 4 [51]Sb 锑2 8 18 18 5 [52]Te 碲2 8 18 18 6 [53]I 碘2 8 18 18 7 [54]Xe 氙2 8 18 18 8 第6周期 [55]Cs 铯2 8 18 18 8 1 [56]Ba 钡2 8 18 18 8 2 [57]La 镧2 8 18 18 9 2 [58]Ce 铈2 8 18 19 9 2 [59]Pr 镨2 8 18 21 8 2 [60]Nd 钕2 8 18 22 8 2 [61]Pm 钷2 8 18 23 8 2 [62]Sm 钐2 8 18 24 8 2 [63]Eu 铕2 8 18 25 8 2 [64]Gd 钆2 8 18 25 9 2 [65]Tb 铽2 8 18 27 8 2 [66]Dy 镝2 8 18 28 8 2 [67]Ho 钬2 8 18 29 8 2 [68]Er 铒2 8 18 30 8 2 [69]Tm 铥2 8 18 31 8 2 [70]Yb 镱2 8 18 32 8 2 [71]Lu 镥2 8 18 32 9 2 [72]Hf 铪2 8 18 32 10 2 [73]Ta 钽2 8 18 32 11 2 [74]W 钨2 8 18 32 12 2 [75]Re 铼2 8 18 32 13 2 [76]Os 锇2 8 18 32 14 2 [77]Ir 铱2 8 18 32 15 2 [78]Pt 铂2 8 18 32 17 1 [79]Au 金2 8 18 32 18 1 [81]Tl 铊2 8 18 32 18 3 [82]Pb 铅2 8 18 32 18 4 [83]Bi 铋2 8 18 32 18 5 [84]Po 钋2 8 18 32 18 6 [85]A 砹2 8 18 32 18 7 [86]Rn 氡2 8 18 32 18 8 第7周期 [87]Pr 钫2 8 18 32 18 8 1 [88]Ra 镭2 8 18 32 18 8 2 [89]Ac 锕2 8 18 32 18 9 2 [90]Th 钍2 8 18 32 18 10 2 [91]Pa 镤2 8 18 32 20 9 2 [92]U 铀2 8 18 32 21 9 2 [93]Np 镎2 8 18 32 22 9 2 [94]Pu 钚2 8 18 32 24 8 2 [95]Am 镅*2 8 18 32 25 8 2 [96]Cm 锔*2 8 18 32 25 9 2 [97]Bk 锫*2 8 18 32 27 8 2 [98]Cf 锎*2 8 18 32 28 8 2 [99]Es 锿*2 8 18 32 29 8 2 [100]Fm 镄* 2 8 18 32 30 8 2 [101]Md 钔* 2 8 18 32 31 8 2 [102]No 锘* 2 8 18 32 32 8 2 [103]Lr 铹* 2 8 18 32 32 9 2 [104]Rf* [105]Db* [106]Sg* [107]Bh* [108]Hs* [109]Mt* [110]Ds* [111]Rg* [112]Uub* 104-112号暂未列出 57-71号为镧系元素 89-103号为锕系元素 红色(深红色)为放射性元素 带*号为人造元素

原子结构元素周期律知识点

元素周期律 1.元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。元素性质的周期性变化实质是元素原子核外.........电子排布的周期性变化.......... 的必然结果。 表左下方) 第ⅦA 族卤族元素:F Cl Br I At (F 是非金属性最强的元素,位于周期表右上方) ★判断元素金属性和非金属性强弱的方法: (1)金属性强(弱)——①单质与水或酸反应生成氢气容易(难);②氢氧化物碱性强(弱);③相互置换反应(强制弱)Fe +CuSO 4=FeSO 4+Cu 。 (2)非金属性强(弱)——①单质与氢气易(难)反应;②生成的氢化物稳定(不稳定);③最高价氧化物的水化物(含氧酸)酸性强(弱);④相互置换反应(强制弱)2NaBr +Cl 2=2NaCl +Br 2。

)先比较电子层数,电子层数多的半径大。 (2)电子层数相同时,再比较核电荷数,核电荷数多的半径反而小。 《元素周期律》练习题 1 .下列关于元素周期律的叙述正确的是 A .随着元素原子序数的递增,原子最外层电子总是从1到8重复出现 B .随着元素原子序数的递增,元素最高正价从+1到+7、负价从-7到-1重复出现 C .随着元素原子序数的递增,原子半径从小到大(稀有气体除外)发生周期性变化 D .元素性质的周期性变化是指原子核外电子排布、原子半径及元素主要化合价的周期性变化 2.下列说法正确的是 A .NaCl 固体中含有共价键 B .CO 2分子中含有离子键 C .12 6C 、13 6C 、14 6C 是碳的三种核素 D .16 8O 、17 8O 、18 8O 含有相同的中子数 3.已知元素的原子序数,可以推知原子的①原子数 ②核电荷数 ③核外电子数 ④在周期表中的位置,其中正确的是( ) A.①③ B.②③ C.①②③ D.②③④ 4. A 、B 、C 、D 、E 是同一周期的五种主族元素,A 和B 的最高价氧化物对应的水化物均呈碱性,且碱性B >A ,C 和D 的气态氢化物的稳定性C >D ;E 是这五种元素中原子半径最小的元素,则它们的原子序数由小到大的顺序是( ) A.A 、B 、C 、D 、E B.E 、C 、D 、B 、A C.B 、A 、D 、C 、E D.C 、D 、A 、B 、E 5.下列各组顺序的排列不正确...的是( ) A.离子半径:Na +>Mg 2+>Al 3+>F B.热稳定性:HCl >H 2S >PH 3>AsH 3 C.酸性强弱:H 2AlO 3<H 2SiO 4<H 2CO 3<H 3PO 4 D.溶点:金刚石>Na >SiO 2>CO 2 6.某元素原子的质量数为A ,它的阴离子X n-核外有x 个电子,w 克这种元素的原子核内中子数为( ) A. mol w n x A A )(+- B .mol A n x A w ) (-+ C . mol A n x A w )(+- D.mol A n x A w ) (-- 7.某主族元素R 的最高正价与最低负化合价的代数和为4,由此可以判断( ) A.R 一定是第四周期元素 B.R 一定是ⅣA 族元素

相关主题
文本预览
相关文档 最新文档