当前位置:文档之家› 机械合金化制备粉末材料的良好应用前景

机械合金化制备粉末材料的良好应用前景

机械合金化制备粉末材料的良好应用前景
机械合金化制备粉末材料的良好应用前景

机械合金化制备粉末材料的良好应用前景

摘要:近年来,用机械合金化制备粉末材料的技术发展较快,高能球磨制备粉末材料尤其是纳米WC粉末材料,已经取得了长足进展。通过对微观结构和性能方面的比较,用机械合金化技术制备的纳米晶体与原子沉积法获得的材料具有相似的结构和性质,且机械合金化工艺简单,产量高,成本低,符合现代高新技术的基础研究和产业化发展需要。因此,用机械合金化制备纳米硬质合金粉有着良好的应用前景。但无论是国内还是国外,真正实现纳米钨和WC-Co粉末的大规模生产与大批量应用尚有一定的路程。

关键词:机械合金化、材料制备、前景

机械合金化(简称MA)是一种从元素粉末制取具有平衡或非平衡相组成的合金粉末或复合粉末的制粉技术。它是在高能球磨机中,通过粉末颗粒之间、粉末颗粒与磨球之间长时间发生非常激烈的研磨,粉末被破碎和撕裂,所形成的新生表面互相冷焊而逐步合金化,其过程反复进行,最终达到机械合金化的目的。机械合金化是美国国际镍公司Benjamin等人于20世纪60年代末期开发的,当时主要用于制备同时具有沉淀硬化和氧化物弥散硬化效应的镍基和铁基超合金。20世纪80年代初,美国科学家Koch及其同事采用机械合金化手段成功地获得Ni60Nb40非晶粉末,此后,该方法得到迅速发展。W.Schlum和H.Grewe通过大量的试验研究之后,于1988年提出机械合金化方法能够制备纳米晶体。后来 Fecht等用机械合金化方法成功地制备出纳米级超细晶合金,开创了机械合金化技术新领域。现在,机械合金化方法已成功地应用于制备纳米级超细晶弥散强化材料、磁性材料、超导材料、非晶材料、纳米晶材料、轻金属高比强材料和过饱和弥散固溶体等。美国、德国、日本等发达国家纷纷投入大量的人力、物力和财力,做了大量的研究工作,取得了显著的成果,并已经实现工业化生产。美国INCO公司已经建成了铁、镍、铝基氧化物弥散强化合金的机械合金化生产线,生产能力达350t/年。我国机械合金化研究工作从1988年开始,十多年来已取得了十分显著的进展。

机械合金化

1基本原理

1988年,日本的新宫秀夫提出了压延和反复折叠模型。当一次压下率为1/a时,经n 次压延后,其厚度即由原来的d0变为d,且d=d0(1/a)。如用机械合金法将两种元素的粉末混合压延10次且设1/a≈31 6296,粉末粒度则可被减薄到其原来厚度的十万分之一,形成非常微小的双层重叠,粉末经更多次的压延可达到纳米级的微细组织结构。因此,机械合金化法使粉末在固态下也可能发生合金化。1990年,Atzmon又提出了另一种机械合金化原理? 机械感应自蔓延反应机理即金属间化合物不是一个形核长大的过程,而是突然爆发形成的。因为燃烧自蔓延反应的点燃温度与粉末颗粒及晶粒尺寸有关,点燃温度随粉末颗粒或晶粒尺寸减小而降低。当粉末颗粒或晶粒减小到一定程度,球磨过程中的机械碰撞产生的局部高温就可以“点燃”粉末,表现为合金的突然爆发形成。

现在,一般认为球磨中多数机械合金化过程是受扩散控制的。机械合金化的基本过程是粉末颗粒的反复混合、破碎和冷焊,几种金属元素或非金属元素粉末的混合物在球磨过程中会形成高密度位错,同时晶粒逐渐细化至纳米级,这样为原子的相互扩散提供了快速通道,在一定条件下,合金相的核得以形成。在进一步的球磨过程中,直到所有元素粉末形成合金相,并逐步长大。

2 机械合金化设备

机械合金化设备主要有振动球磨机,行星球磨机和搅拌球磨机等。

3 机械合金化的特性

(1)突然升温由于不同元素粉末在机械合金化时,具有很高的生成热,故在球磨过程中会有一个突然的温升。 (2)局部熔化机械合金化时,由于有放热的化学反应,温度很高,会出现粉末的局部熔化现象。(3)非晶化机械合金化时,在合适的条件下,有可能发生非晶化。由于机械合金化降低了非晶形成能,促进无序相向非晶转化,又因球磨时反复机械变形产生大量缺陷,从而诱导非晶形成。

机械合金化技术制备超细硬质材料

1 超细硬质材料纳米晶硬质合金

由于晶粒尺寸细小,晶界密度极大,从而表现出一系列的优异性能。如既具有高的硬度和耐磨性,又具有很高的强度和韧性,已广泛用于制造微型钻、精密工模具和难切削加工领域。生产纳米晶硬质合金的关键技术之一是制备纳米WC粉或WC Co复合粉末。目前制备纳米硬质合金粉的方法主要有:喷雾转换法、等离子体法、低温还原碳化法、溶胶-凝胶法和复盐沉淀法等,但这些方法的工艺过程都较复杂。自20世纪80年代初Yermakov发现机械合金化可以作为一种制备非晶合金工艺后,随即在世界范围内形成了机械合金化研究热潮。1989年,美国Ru rgers大学率先研制出纳米结构硬质合金及其工艺并于同年申请了专利。此后,瑞典、德国、日本等国的大公司分别推出了各自纳米结构的超细硬质合金。机械合金化可以制备金属间化合物、非晶、准晶材料、纳米材料,而且工艺简单,可实现工业化,因此是近来倍受重视的一种新工艺。

机械合金化是在固态下实现合金化,不经气相、液相,不受物质的蒸气压、熔点等物理特性因素的制约,使过去用传统熔炼工艺难以实现的某些物质的合金化和远离热力学平衡的准稳态、非平衡态及新物质的合成成为可能,因此机械合金化在理论和应用方面均引起极大关注。唐嵘[14]等人指出:用机械合金化技术制备超细硬质合金粉末具有优点;晶粒长大抑制剂Cr3C2和钴在WC中分布均匀,成分容易控制,工艺简单,成本低。

制备及其对材料的影响

利用机械合金化制备纳米粉末是一种非常有效而简便的方法。粉末经机械合金化形成纳米晶有两种途径:①粗晶材料经过机械合金化形成纳米晶;②非晶材料经过机械合金化形成纳米晶。

粗晶粉末经高强度机械球磨,产生大量塑性变形,并产生高密度位错。在初期,塑性变形后的粉末中的位错先是纷乱地纠缠在一起,形成“位错缠结”。随着球磨强度的增加,粉末变形量增大,缠结在一起的位错移动形成“位错胞”,高密度的位错主要集中在胞的周围区域,形成胞壁。这时变形的粉末是由许多“位错胞”组成,胞与胞之间有微小的取相差。随着机械合金化强度进一步增加,粉末变形量增大,“位错胞”的数量增多,尺寸减小,跨越胞壁的平均取向差也逐渐增加。当粉末的变形量足够大时,构成胞壁的位错密度增加到一定程度且胞与胞之间的取向差达到一定程度时,胞壁转变为晶界形成纳米晶。非晶粉末在机械合金化过程中的晶体生长,是个形核与长大的过程。在一定条件下,晶体在非晶基体中形核。晶体的生长速率较低,且其生长受到机械合金化造成的严重塑性变形的限制。由于机械合金化使晶体在非晶基体中形核位置多且生长速率低,所以形成纳米晶。机械合金化技术对材料的影响主要有:①可形成高度弥散的第二相粒子;②可以扩大合金的固溶度,得到过饱和固溶体;③可以细化晶粒,甚至达到纳米级,还可以改变粉末的形貌;④可以制取具有新的晶体结构、准晶或非晶结构的合金粉末;⑤可以使有序合金无序化;⑥可以促进低温下的化学反应和提高粉末的烧结活性。

机械合金化的方法合成纳米粉末简单易行,效率高,制出的粉末晶粒尺寸细小,但往往会因为与罐体、球体摩擦造成粉末污染。

应用与前景

自硬质合金问世以来,其强度和硬度之间就一直是一对“不可调和的矛盾”,而先进制造技术的飞速发展,强烈要求将两者结合起来。研究表明,当WC晶粒尺寸减小到亚微米以下时,硬质合金材料的硬度和耐磨性、强度和韧性均获得提高。这种超细晶WC Co硬质合金,因同时具有高的硬度和高的抗弯强度、高耐磨性和高韧性,被形象地称为“双高”硬质合金,满足了对高性能硬质合金刀具材料越来越高的要求,正成为国际工程领域竞相研究开发的热点,从合金粉的制备工艺、烧结工艺到材料检测技术都得到了快速发展。

超细晶硬质合金在具有高硬度、高耐磨性的同时,具有高的强度和韧性,并且可稳定进行规模化批量生产,非常适应现代先进制造技术对高性能刀具材料的技术要求,成为国际工程材料发展的热点,正广泛用于汽车制造、航空航天、模具制造、电子信息等行业的高效高精度切削加工领域。例如,汽车加工用孔加工刀具、印刷线路板用微型钻对“双高”性能的超细晶硬质合金的需求就非常大。随着电子信息产业的飞速发展,对微型钻的需求越来越大,月需求量约为2500~3500万支,每年需微型钻棒料约1800~2000t,国内市场的需求量以每年140%的速度递增,国际市场的需求量以5%的速度递增。而在汽车工业用刀具方面,仅以上海汽车工业集团的需求为例,目前年耗汇3000万美元进口高性能硬质合金刀具,折合成坯料约 100~150t,并且呈迅速上升趋势。

目前,像瑞典的Sandvik、美国的Kennametal、奥地利的Plansee、法国的 Forecreu、日本的ToshibaTungaloy等国际著名硬质合金生产企业纷纷进入和抢占我国超细晶硬质合金棒料及其孔加工刀具市场。我国的一些科研工作者也先后在此领域中开展了研究与开发,并取得了重要进展。上海材料研究所研制并小批量生产出的硬质合金(SRIM)晶粒度达到了 0 3~0 5μm,实现了“双高”性能,已生产了5~40mm十多种棒料规格,其中带内冷却孔的约占60%,制成多种形式的特种刀具,已在汽车工业中得到成功应用,取得了与原进口的相同型号钻头同等的使用效果。

随着快速凝固技术(喷射转换工艺、机械合金化、气相反应法等)、快速固结技术 (电火花等离子烧结技术、微波烧结技术等)及先进的无损检测方法(矫顽磁力、磁饱和性能)等在超细晶硬质合金发展中应用的日趋成熟和不断改进,必然为纳米晶硬质合金的研究开发打下坚实的基础。

参考文献:

[1]于文斌,程南璞,吴安如.材料制备技术.重庆:西南师范大学出版社,2006.179

[2]张彩霞,刘维平.纳米材料及其应用现状与发展[J].南方冶金学院学报,2001,250(7):1.

[3]张振忠,宋广生,杨根仓.块状金属纳米材料的制备技术进展及展望.兵器材料科学与工程,2003,20(1):2O

钛及钛合金粉末制备及研究现状

钛和钛合金的制备技术研究及应用现状 摘要:钛及钛合金综合力学性能优良,在航空航天、航海、化工等领域得到广泛应用。用粉末冶金法制造零部件,材料利用率高,降低生产成本。因此,高性能粉末冶金钛合金的研究与应用近年来非常活跃,对制备钛及钛合金粉末起到了很大的促进作用。金属注射成形( MIM) 技术是目前最具优势的粉末冶金成形技术之一,可制造高质量、高精度的复杂零件。 关键词:钛及钛合金;粉末冶金;金属注射成形;研究与应用;

1、前言: 钛及钛合金具有密度低、比强度高、耐腐蚀性强、高温下抗蠕变性能好、焊接性能优良、生物相容性优异等优点,被广泛应用于航空航天、航海、冶金、石油、化工、发电、汽车、医药、电子、体育及休闲等领域。然而,由于钛的提取、熔炼、加工十分困难,因此生产成本很高。钛锭的生产成本约为同质量钢锭的30倍,铝锭的6倍,而航空航天用的钛合金零部件因加工费昂贵,生产费用就更大了。 粉末冶金技术是一种由粉末直接成形,生产零部件的工艺方法。从技术上看,用该方法可获得成分无偏析、性能稳定优越、组织均匀的零部件;从经济上看,该方法是一种少切屑或无切屑的工艺,材料利用率几乎可以达到 100%,节省了加工费,提高了生产率 1

2、钛及钛合金粉末注射成形技术 金属注射成形方法是美国在20世纪70年代发明的,是生产形状复杂高精度零部件的近净形制造方法得到的烧结体密度高,强度也高。 其工艺流程为:混合配料→注射成形→脱除粘结剂( 简称脱脂)→烧结。由于成形坯的受压过程是均匀等压压制过程,所以成形坯的力学性能是各向同性的。 我国钛及钛合金粉末注射成形研究始于 20 世纪 90 年代末。主要研究单位有北京科技大学、广州有色金属研究院和中南大学等,并在纯钛及Ti- 6Al-4V 合金注射成形方面取得了一定科研成果,但仍未形成产业化生产。钛及钛合金粉末注射成形产品主要有汽车零部件、医疗器械、牙科植入体、高尔夫球头和表壳等。目前,纯钛、Ti- 6Al- 4V、Ti A1、Ti- Mo- A1、Ni Ti 和其它一些钛基材料粉末都已成功地采用了注射成形工艺来制造零部件。钛及钛合金注射成形技术的主要阻碍有:①低氧球形钛粉末的价格高;②粘结剂的选择和去除工艺;③间隙元素的去除等。 1

金属基复合材料的制备方法

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介 (1)定义:金属基复合材料是以金属或合金为基体,以高性能的第二相为增强体的复合材料。它是一类以金属或合金为基体, 以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物, 其共同点是具有连续的金属基体。 (2)分类:按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料 按用途分为:1.结构复合材料;2.功能复合材料 (3)性能特征:金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性

钛合金的制备方法

专题报道 钛合金的制备方法 一种用熔分钛渣制备含钛合金的方法 热处理钛合金的方法和所得零件 机械合金化热处理法制备6AI4V钛合金粉的工艺 冲压成形性和强度的平衡优异的钛或钛合金板 一种钛合金棒材的制备方法 一种低成本钛合金的制备方法 大规格高性能钛及钛合金锭的熔铸方法 一种粉末冶金钛合金及其制备方法 一种凝胶注模-自蔓延高温合成制备钛合金材料的方法 微量稀土合金化处理的TA16钛合金 一种低密度高铸造性能钛合金材料及其制备方法 一种低弹性模量的铸造钛合金 一种低密度高性能钛合金材料及其制备方法 一种钛合金TI-62222S及其制备方法 一种钛合金TI-811-1及其制备方法 通过粉末冶金法制备基于钛合金的并且TIB强化的复合部件的方法 一种用熔分钛渣制备含钛合金的方法 申请号:201110267053.6 公布日:2012-01-18 申请(专利权)人:攀钢集团攀枝花钢铁研究院有限公司 摘要:本发明提供了一种用熔分钛渣制备含钛合金的方法。所述方法包括以下步骤:将熔分钛渣直接热装入炉;升温至熔池澄清后,加还原剂进行冶炼,控制反应温度;反应完毕后,镇静沉降;出渣、出合金,冷却制得含钛合金。本发明采用钒钛磁铁矿直接还原或非高炉炼铁后得到的熔分钛渣为原料制备含钛合金,能够有效的利用熔分钛渣中的钛资源,采用热渣直接入炉的方式,降低了生产成本和能源消耗,对提高钒钛磁铁矿资源的综合利用率具有重要意义。 热处理钛合金的方法和所得零件 申请号:200980156528.5 公布日:2012-01-11 申请(专利权)人:奥贝尔&杜瓦尔公司 摘要:本发明涉及一种热处理Ti?5-5-5-3型钛合金的方法,该Ti5-5-5-3型钛合金具有以重量百分数计的以下组成:4.4-5.7%铝,4.0-5.5%钒,0.30-0.50%铁,4.0-5.5%钼,2.5-3.5%铬,0.08-0.18%氧,痕量至0.10%的碳,痕量至0.05%的氮,痕量至0.30%的锆,痕量至0.15%的硅,其余百分数是钛和杂质,其特征在于所述合金的热处理包括:将合金加热到800-840℃且低于该合金的β-转变的第一平台;维持第一温度平台1-3小时;在没有中间再加热的情况下将合金冷却至760℃-800℃的第二平台;维持第二温度平台2-5小时;将合金冷却至室温;将

3D打印用钛合金粉末制备技术分析

doi: 10.12052/gdutxb.180114 3D打印用钛合金粉末制备技术分析 唐超兰1,张伟祥1,陈志茹2,周德敬2,李龙2,楚瑞坤3(1. 广东工业大学 机电工程学院,广东 广州 510006;2. 银邦金属复合材料股份有限公司,江苏 无锡 214145; 3. 飞而康快速制造科技有限责任公司,江苏 无锡 214145) 摘要: 钛合金是3D打印中使用最广泛的金属材料, 具有密度小、比强度高、耐热性好、耐蚀性优异、生物相容性好等优点. 不同于传统制造技术, 3D打印技术对粉末材料有着极高的要求, 粉末的质量会直接影响3D打印零件的性能. 本文从粉末性能入手, 阐述了杂质含量、流动性、松装密度等因素对3D打印过程的影响; 然后综述了氢化脱氢法、气体雾化法、离心雾化法、等离子雾化法等钛合金粉末制备技术的原理和优缺点; 最后结合国内外研究现状, 对改善钛合金粉末的方法进行探讨. 关键词: 钛合金;粉末性能;制备技术;优化方法 中图分类号: TF123.23 文献标志码: A 文章编号: 1007–7162(2019)03–0091–08 Simple Descriptions of Preparation Technology of Titanium Alloy Powder for 3D Printing Tang Chao-lan1, Zhang Wei-xiang1, Chen Zhi-ru2, Zhou De-jing2, Li Long2, Chu Rui-kun3 (1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. Yinbang Glad Material Co. Ltd., Wuxi 214145, China; 3. Falcon Fast Manufacturing Technology Co. Ltd., Wuxi 214145, China) Abstract: Titanium alloy is the most widely used metal material in 3D printing, which has the advantages of low density, high specific strength, good heat resistance, excellent corrosion resistance and good biocompatibility. Different from the traditional manufacturing technology, 3D printing technology has a very high demand for powder materials, and the quality of powder will directly affect the performance of 3D printing components. The influence of impurity content, fluidity and bulk density in the 3D printing process is described. Then the principle, advantages and disadvantages of hydrogenation and dehydrogenation, gas atomization, centrifugal atomization and plasma atomization are reviewed. Finally, according to the present research situation at home and abroad, methods of improving titanium alloy powder are discussed. Key words: titanium alloy; powder properties; preparation technology; optimization method 3D打印技术又被称为“快速成形技术”“增材制造技术”,是20世纪80年代发展起来的一种先进制造技术[1]. 该技术采用离散?堆积的思想,将设计好的三维零件模型按照一定厚度离散成二维层状切片,由激光或电子束沿特定轨迹扫描加工层状切片,逐层增加材料完成整个三维零件的制造[2-3]. 相比传统制造技术,3D打印技术无需复杂的工艺、大型的加工设备,便可完成复杂结构零部件的加工,有效地节约了原材料、简化了生产工序、缩短了设计制造时间、降低了制造成本和风险[4-5]. 目前,3D打印的常用材料主要有高分子材料(树脂、塑料、橡胶等)、金属材料(铝合金、钛合金、不锈钢等)和非金属材料(陶瓷、石膏、纸张等)[6-7],其中高分子材料和非金属材料3D打印技术起步较早、研究较多,技术相对成熟,而金属材料3D打印技术起步较晚,仍具备巨大的发展潜力. 有专家预测,金属材料3D打印技术未来将会逐渐占据整个快速成形制造领域的主导地位[8]. 钛合金是3D打印中最常用的金属材料,具有密 第 36 卷 第 3 期广东工业大学学报Vol. 36 No. 3 2019 年 5 月Journal of Guangdong University of Technology May 2019 收稿日期:2018-08-31 基金项目:科技部国家重点研发计划项目(2017YFB0305802);江苏省金属层状复合材料重点实验室资助项目(BM2014006) 作者简介:唐超兰(1969?),女,教授,主要研究方向为金属材料的压力加工.

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

钛及钛合金粉末制备及研究现状复习进程

钛及钛合金粉末制备及研究现状

钛和钛合金的制备技术研究及应用现状摘要:钛及钛合金综合力学性能优良,在航空航天、航海、化工等领域得到广泛应用。用粉末冶金法制造零部件,材料利用率高,降低生产成本。因此,高性能粉末冶金钛合金的研究与应用近年来非常活跃,对制备钛及钛合金粉末起到了很大的促进作用。金属注射成形( MIM) 技术是目前最具优势的粉末冶金成形技术之一,可制造高质量、高精度的复杂零件。 关键词:钛及钛合金;粉末冶金;金属注射成形;研究与应用; 仅供学习与交流,如有侵权请联系网站删除谢谢2

1、前言: 钛及钛合金具有密度低、比强度高、耐腐蚀性强、高温下抗蠕变性能好、焊接性能优良、生物相容性优异等优点,被广泛应用于航空航天、航海、冶金、石油、化工、发电、汽车、医药、电子、体育及休闲等领域。然而,由于钛的提取、熔炼、加工十分困难,因此生产成本很高。钛锭的生产成本约为同质量钢锭的30倍,铝锭的6倍,而航空航天用的钛合金零部件因加工费昂贵,生产费用就更大了。 粉末冶金技术是一种由粉末直接成形,生产零部件的工艺方法。从技术上看,用该方法可获得成分无偏析、性能稳定优越、组织均匀的零部件;从经济上看,该方法是一种少切屑或无切屑的工艺,材料利用率几乎可以达到 100%,节省了加工费,提高了生产率 仅供学习与交流,如有侵权请联系网站删除谢谢3

2、钛及钛合金粉末注射成形技术 金属注射成形方法是美国在20世纪70年代发明的,是生产形状复杂高精度零部件的近净形制造方法得到的烧结体密度高,强度也高。 其工艺流程为:混合配料→注射成形→脱除粘结剂( 简称脱脂)→烧结。由于成形坯的受压过程是均匀等压压制过程,所以成形坯的力学性能是各向同性的。 我国钛及钛合金粉末注射成形研究始于 20 世纪 90 年代末。主要研究单位有北京科技大学、广州有色金属研究院和中南大学等,并在纯钛及Ti- 6Al-4V 合金注射成形方面取得了一定科研成果,但仍未形成产业化生产。钛及钛合金粉末注射成形产品主要有汽车零部件、医疗器械、牙科植入体、高尔夫球头和表壳等。目前,纯钛、Ti- 6Al- 4V、Ti A1、Ti- Mo- A1、Ni Ti 和其它一些钛基材料粉末都已成功地采用了注射成形工艺来制造零部件。钛及钛合金注射成形技术 仅供学习与交流,如有侵权请联系网站删除谢谢4

纳米金属材料的制备方法

纳米硬质合金制备技术 纳米硬质合金具有很高的强度、硬度等力学性,能同时还具有普通超细合金难以获得的高导热特性(普通超细合金的导热性能随着晶粒度的减小而降低,瑞典的Sandvik公司就以硬质合金的导热性发生突变时合金晶粒度的临界值作为纳米硬质合金判据,认为晶粒度小于0.3μm的合金即可称为纳米硬质合金)。控制烧结过程中的晶粒长大是制备纳米硬质合金块体材料的关键,随着纳米(晶)硬质合金粉末制备技术的成熟,纳米(晶)硬质合金粉末的烧结研究成为材料研究领域的热点。 纳米晶粉末存在着很大的表面能和晶格畸变能,在烧结热处理中这些能量被充分释放,具体表现为晶粒迅速长大和快速致密化。在保证致密化的前提下,有效控制烧结过程中的晶粒长大成为纳米硬质合金制备技术的难点。为了抑制烧结晶粒长大,可在粉末中添加晶粒长大抑制,但添加抑制剂并不能有效地将晶粒控制在100nm以内,于是又发展了众多新的烧结方法,以期通过压力、电磁等活化作用来实现低温短时烧结,进一步控制晶粒长大。以下将对纳米硬质合金新型烧结技术进行简要介绍。 1 压力烧结 在烧结时施加压力可以加快烧结时的颗粒重排,快速实现致密化,消除孔隙,较有效控制烧结过程的晶粒长大。压力烧结主要有低压烧结、热等静压、热压、超高压烧结和爆炸烧结等。 1.1低压烧结 目前人们研究较多并且在工业中被广泛应用的是低压烧结。低压烧结将成形剂脱除、真空烧结和热等静压合并在同一设备中进行,最终烧结阶段采用氢气保护,压力一般为4~6MPa,可实现快速冷却。在低压烧结过程中,大部分收缩发生在真空烧结阶段,在加压阶段消除显微孔隙,使烧结体完全致密。其工艺主要优点为钻池几乎可以完全被消除,孔隙度显著降低,制品内部的缺陷得到有效控制合金的组织结构细小均匀。由于烧结和加压在同一设备中进行,不易造成产品的氧化和脱碳,还可通过引人碳势气体(如CH4等)来调整合金中的碳含量。 1.2热等静压

金属材料的制备冶金

第一章金属材料的制备—冶金 一.本章内容及要求 1.本章共三节,教授课时2学时,通过本章学习,要掌握金属材料的三种冶金方法的工艺过程、特点及应用。 1.1 冶金工艺 1.2 钢铁冶金 1.3 有色金属冶炼 2.重点是生铁冶炼的过程(包括冶炼的方法,使用的原料及各自的作用,主要装置,以及主要的物理化学过程)和炼钢的基本过程(元素的氧化,脱硫,脱磷,脱氧,合金化)。 3.难点:生铁冶炼过程中高炉中发生的物理化学变化。 4.要求: ①掌握常用的冶金方法,以及各自的特点; ②掌握生铁冶炼的过程; ③掌握炼钢的基本过程; ④了解铜的冶炼工艺过程; ⑤了解金属铝电冶金的原因和工艺过程。 具体内容 第一节冶金工艺 1.1.1冶金 冶金的定义:关于矿产资源的开发利用和金属材料生产加工过程的工程技术。 冶金的原因和目的:地球上已发现86种金属元素,除金、银、铂等金属元素能以自然状态存在外,其他绝大多数金属元素都以氧化物(例如Fe2O3)、硫化物(例如CuS)、砷化物(例如NiAs)、碳酸盐(例如FeCO3)、硅酸盐(例如CuSiO3·2H2O)、硫酸盐(例如CuSO4·5H2O)等形态存在于各类矿物中。因此,要获得各种金属及其合金材料,必须首先通过各种方法将金属元素从矿物中提取出来,接着对粗炼金属产品进行精炼提纯和合金化处理,然后浇注成锭,轧制成材,才能得到所需成分、结构、性能和规格的金属材料。

1.1.2冶金的方法 冶金工艺可以分为火法冶金、湿法冶金和电冶金三大类。 1.1. 2.1火法冶金 火法冶金:利用高温从矿石中提取金属或其化合物的方法。 特点:火法冶金是生产金属材料的重要方法,钢铁及大多数有色金属(铝、铜、镍、铅、锌等)材料主要靠火法冶金工艺生产。用火法冶金方法提取金属的成本较低,所以,火法冶金是生产金属材料的主要方法。 缺点:火法冶金存在的主要问题是污染环境。

金属材料的制备及发展

材料工程基础(论文)小论文:金属材料制备 院系名称:材料与化工学院 班级:材科14卓越班 学号:------------------ 任课老师:------------------- 学生姓名:------------------ 2016年10月

1 前言 (3) 1.1 引言 (3) 1.2.1冶金 (3) 1.2.2冶金的方法 (4) 1.1.2.1火法冶金 (4) 1.1.2.2湿法冶金 (5) 1.1.2.3电冶金 (6) 1.2.4生铁的冶炼 (8) 1.2.5钢的冶炼 (11) 2. 有色金属冶炼 (12) 2.1铜的冶炼 (12) 2.2铝的冶炼 (13) 3 金属材料的发展方向 (14) 2

摘要 金属材料自古以来都占据着极其重要的地位,开发新型材料,改良传统金属材料显得尤为重要。金属材料的发展,是从传统金属材料向合成金属材料,虽然根本转变己经初步实现,但由于我国经济的制约,直到现在我国才只是初步建立起现代市场金属材料发展趋势,还没有完全改变传统的金属材料发展的观念。这在发展上并没有把生态和金属材料发展作为基本,这对我国金属材料发展的道路非常不利。本文主要讨论金属材料的制备、现状以及未来发展。 1 前言 1.1 引言 纵观历史,人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。本文主要讨论金属材料的制备(主要为冶金工艺)、现状以及未来发展。 1.2冶金工艺(现状) 1.2.1 冶金 冶金的定义:关于矿产资源的开发利用和金属材料生产加工过程的工程技术。 冶金的原因和目的:地球上已发现86种金属元素,除金、银、铂等金属元素能以自然状态存在外,其他绝大多数金属元素都以氧化物、硫化物、砷化物、碳酸盐、硅酸盐、硫酸盐等形态存在于各类矿物中。因此,要获得各种金属及其合金材料,必须首先通过各种方法将金属元素从矿物中提取出来,接着对粗炼金属产品进行精炼提纯和合金化处理,然后浇注成锭,轧制成材,才能得到所需成分、结构、性能和规格的金属材料。 3

相关主题
文本预览
相关文档 最新文档