当前位置:文档之家› 锅炉水动力计算软件简介(office2003)

锅炉水动力计算软件简介(office2003)

第三章--螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动 260

自然循环热水锅炉水动力计算

自然循环热水锅炉水动力计算例题 A1 锅炉规范 额定供热量Q sup:7.0MW 额定工作压力P: 1.0MPa 回水温度t bac.w:70℃ 供水温度t hot.w:115℃ 锅炉为双锅筒、横置式链条炉,回水进入锅筒后分别进入前墙、后墙、两侧墙和对流管束回路中,两侧水冷壁对称布置,前墙和后墙水冷壁在3.2m标高下覆盖有耐火涂料层,如图A -1所示。 图 A-1 锅炉简图 A2 锅炉结构特性计算 A2.1 前墙回路上升管划分为三个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,第Ⅱ区段为未覆盖有耐火涂料层的水冷壁管,第Ⅲ区段为炉顶水冷壁(图 A-2) A2.2 后墙回路上升管划分为二个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,剩下的受热面作为第Ⅱ区段(图A-3)。

A2.3 侧墙水冷壁回路上升管不分段(图A-4) A2.4 对流管束回路不分段,循环高度取为对流管束回路的平均循环高度,并设对 流管束高温区为上升区域(共7排),低温区为下降区(共6排)。对流管束共有347根,相应的上升管区域根数为191根,下降管区域根数为156根(图A-5)。 对流管束总的流通截面积A o 为: A o =347×0.785×0.0442 = 0.5274 m 2 下降管区域流通截面积A dc 为 : A dc =156×0.785×0.0442 = 0.2371 m 2 下降管区域流通截面积与对流管束总的流通截面积比A dc / A o 为: 4500=5274 02371 0=...o dc A A 其值在推荐值(0.44—0.48)的范围内。 图A-2 前墙水冷壁回路 图A-3 后墙水冷壁回路

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

第12章 自然循环锅炉水动力特性(西交大 锅炉原理 考研复试)

第12章 自然循环锅炉的水动力循环 1. 如何建立自然循环锅炉的水动力基本方程,分为几种型式? 答:(1)压差法:从锅炉液位面到下集箱中心高度之间,计算的上升管压差与下降管压差相等。方程式为:xj xj ss ss P gh P gh ?-=?+ρρ,式中,h ——锅炉液位面到下集箱的中心高度;ss ρ、xj ρ——分别为上升管和下降管中工质的平均密度;ss P ?、xj P ?——分别为上升管和下降管中工质流动阻力。 (2)运动压头法:循环回路中产生的水循环动力,在稳定流动时,用于克服回路中工质流动的总阻力。方程式为:()xj ss ss xj P P gh ?+?=-ρρ (3)有效压头法:循环回路中运动压头克服上升管得流动阻力后剩余的部分水循环动力,在稳定流动时,用于克服回路中下降管的流动阻力。方程式为:()xj ss ss xj P P gh ?=?--ρρ 2. 作图示出热负荷变化对上升管压差特性曲线及回路工作点的影响。 答: 图中φ为截面含汽率,x 为质量含汽率,ss P ?为上升管流动阻力,gh ss ρ为重位压差。如图可见,随着吸热量q 的增加,φ和x 都增大,但两者的增大趋势却有很大区别。x 随q 增大是线性增加,因此,ss P ?也几乎是随q 的增加而呈线性增加。而φ随q 增大是非线性增加,当工质吸热比较少,x 较小时,φ随q 增大增加得很快,即φ的增加远大于x 的增加; 上升管压差与吸热量的关系

而在某一x 或φ值后,x 增加φ却增加得很慢。这是由于水与水蒸气的物性决定的,因为当水转变为蒸汽时,体积急剧膨胀,与此对应,gh ss ρ随q 的增大开始下降的很快,而后下降的较慢。因此,gh ss ρ和ss P ?的叠加使得ss S 和q 的关系呈现先下降后上升的形状。 简单回路压差特性及工作状态 开始在q 较少、x 较小、循环倍率K 较大处,随着q 的增加,ss S 的特性曲线下移,因此回路的工作点向右移,循环流量0G 增加。这种情况持续到一定程度,当K 小于jx K 时,q 再进一步增加,因上升管压差升高而使ss S 的特性曲线上移,工作点的位置左移,循环流量0G 减小。 3. 自然循环锅炉的自补偿能力是如何形成的? 答:开始在q 较少、x 较小、循环倍率K 较大处,随着q 的增加,φ的增加大于x 的增加,则回路的动力压头大于的增加大于宗族里的增加,此时回路中的动力大于阻力,使得循环流量0G 相应增加。当循环倍率K 大于某一界限循环倍率jx K 时,循环回路具有因上升管吸热量q 增加而使循环流量0G 随之增加的能力,称为自然循环回路的自补偿能力。 4. 简述自然循环锅炉的水循环计算方法和步骤。 答:(1)确定循环流量或流速,循环倍率,循环回路的各种压差,以及可靠性指标;

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

非线性水动力导数的数值计算与研究

第41卷 第1期2017年2月 武汉理工大学学报(交通科学与工程版) Journal of W uhan U niversity of Technology (T ransportation Science & Engineering) Vol. 41 No. 1 Feb.2016 非线性水动力导数的数值计算与研究& 赵小仨u徐海祥1>2) (高性能船舶技术教育部重点实验室1:1武汉430063)(武汉理工大学交通学院2)武汉430063)摘要:针对船舶的非线性运动难以界定和非线性运动难以预报的问题,以供应船为研究对象,采用 C F D商用软件F L U E N T,结合动网格技术对大振幅平面运动机构试验进行数值模拟,通过对比不 同工况的流场压力云图,分析得出供应船水动力达到非线性的振幅范围.设计供应船非线性运动的试验方案,分别模拟不同频率时的大漂角斜航运动及大振幅的纯纵荡、纯横荡、纯首摇、组合运 动,拟合得到接近零频率的非线性水动力导数. 关键词:非线性水动力;大振幅P M M试验;数值计算;供应船 中图法分类号:U661. 33 doi:10. 3963/j. issn. 2095-3844. 2017. 01. 014 〇引言 船舶操纵性与船舶航行安全紧密相关,是重 要的水动力性能之一.近些年,国际海事组织(in- ternational m aritim e organization, IM O)前后颁布了 A. 751(18)和MSC. 137(76)号决议,针对船 舶操纵性的问题提出了明确的要求,并建议各国 政府机构按要求执行.SIM M A N2008和SIM- M AN 2014 的研讨会,评估T C F D(co m p u tatio n- al fluid dynam ics, C F D)方法预报船舶操纵性的 能力?第 25 届 IT T C(international tow ing tank conference,IT T C)操纵会议对现有的船舶操纵性预报方法做了总结.总之,船舶操纵性能越来越 受到造船界的重视[>3]. 水动力导数对船舶操纵性的预报至关重要.目前,通过平面运动机构试验(planar motion mechanism test,PM M)确定船舶水动力导数是最可靠的方法之一.从SIM M AN2008发布了针 对三个标准船模进行的P M M试验的实验数据以 来,国内外学者开始对C F D模拟P M M试验进行 探究?T u rnock等[4_12]用C F D软件模拟小振幅P M M试验,求取线性水动力导数;Toxopeus 等?^建立非线性水动力模型,模拟大振幅 P M M试验,求取非线性水动力导数. 虽然许多学者对数值模拟P M M试验做了大 量研究工作,但是迄今没有一个定量的标准来判断船模的运动是否达到非线性范畴,相关文章也 较少.评判船舶的运动是否达到非线性,不仅取决 于运动参数,还与船型等因素有关.文中将以供应 船为研究对象[17],通过数值模拟船模不同运动幅 值的P M M试验,分析出供应船水动力达到非线性的运动幅值范围.在此基础上,设计试验工况,计算零频率附近的非线性水动力导数. 1数学模型 研究船舶在大振幅下的操纵运动,用线性水 动力模型很难准确的表达船舶所受到的水动力,为了更准确的描述船舶的运动,须考虑运动状态 的非线性项[18].根据经验,在粘性类流体动力和力矩的泰勒级数展开式中保留至三阶项,对描述 船舶在常速域中的运动已足够精确. 1)流体惯性力(矩 收稿日期:2016-12-14 赵小仨(1989—):女,工学硕士,实验员,主要研究领域为船舶水动力研究 国家自然科学基金项目(61301279, 51479158)、中央高校基本科研业务费专项资金项目(163102006)资助

锅炉毕设文献翻译

自然循环热水锅炉水动力回路分析法 摘要:水动力计算都依据《热水锅炉水动力计算方法》,不足的是这种方法不能准确确定每根单管的工质流量,且不能准确确定工作点。为了避免其不确定性,研究得出了一种数值水动力计算方法即水动力回路分析法,简称回路分析法。该方法考虑了各种因素对锅炉本体每根管内工质流量的影响,在其热负荷、结构参数和工质流动阻力系数给定的条件下,可以准确计算出每根单管内的工质流量。在相同的参数条件下,分别用标准法和回路分析法对某单一循环回路的水动力特性进行计算,计算结果验证了水动力回路分析法的正确性。然后分别用标准法和回路分析法对一台自然循环热水锅炉的水动力特性进行计算,结果表明水动力回路分析法更准确并可接受。 关键词:热水锅炉;水动力;回路分析法 引言: 由于自然循环热水锅炉的大容量和对于断电保护、给水质量以及运行水平的低要求,它已经在中国广泛应用[1]。然而,在上升管和下降管中工质的密度差过小可能会导致自然循环有效压力较低,如果结构不合理,将会产生爆管。因此,在自然循环热水锅炉设计中,如何确定流动工质的安全速度和避免爆管导致受热面过冷沸腾是非常重要的。 在中国早期,有很多研究者致力于关于自然循环热水锅炉水动力计算的研究,一些人提出了对于几个简单循环回路和某些复杂循环回路的水动力计算方法,但是大多数方法只适用于简单回路。西安交通大学的朱教授提出了一种应用计算机流体力学分析的方法,他将流动工质的特点和使用一种两端参考作为主动解决方法的直流循环原则做了比较。这种方法的优势在于解决过程的方便性,但是对于复杂循环的解决过程非常复杂[2]。自从上世纪七十年代,对于管流分布热力学模型的研究显著增多[3-8]。 目前,水动力计算方法使用“热水锅炉水动力计算法”[9](以下简称一般方法),它提供了保证循环安全的一般方法。该方法采用图解的方式确定介质的工作点,这是非常准确和高效的。在解决整个问题时用到一些假设。 本文的目的是提供一种新的水动力数值计算方法,简称水动力回路分析法,即回路分析法。本文的研究内容主要包括基本模型、基本原理、基本

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

上计算水力学课的心得

上计算水力学课的心得 水利水电学院水力学及河流动力学 胥慧1030201016 摘要:首先通过计算水力学这门课程的学习,联想到不规则的平面图形面积的求解;还简要说明了从中学到的内容,着重说明了离散的有关问题;最后阐述了自己对这门课程的几点意见。 关键词:面积,区域离散,控制方程离散,意见 1、不规则图形面积求解 上计算水力学这门课程时,我突然想起小时候学过对于一个边界形状不规则的平面图形面积问题的求解方法。当时是先把那个不规则的平面图形誊画在一个透明的玻璃板上,再把一张事先做好的1cm×1cm方格纸铺在玻璃板下边,先记录一下不规则图形里显示完整的小方格数目,对于不完整的小方格,正好满半个格算的两个算一个格,大于半个格计一个格,不满半个格的舍去,这样相加在一起就是这个不规则的几何图形的近似面积。同样的办法,再分别用0.5cm×0.5cm 的方格纸和0.1cm×0.1cm的方格纸对不规则图形面积进行计算。结果不言而喻,必然是用0.1cm×0.1cm的方格纸得到的近似解更接近真实解。通过缩短方格纸的边长,来实现接近真实解的方法。用类比的方法学习了计算水力学这门课。2、学到的内容 在以前的学习中我了解到,描述流体流动及传热等物理问题的基本方程为偏微分方程,想要得它们的解析解或者近似解析解,在绝大多数情况下都是非常困难的,甚至是不可能的,就拿我们熟知的Navier-Stokes方程来说,现在能得到的解析的特解也就70个左右。通过学习计算水力学这么课程,我知道对这些问题进行研究,可以借助于现在已经相当成熟的代数方程组求解方法,对于这种方法简单来说就是将连续的偏微分方程组及其定解条件按照某种方法遵循特定的规则在计算区域的离散网格上转化为代数方程组,以得到连续系统的离散数值逼

直流锅炉的水动力特性

直流锅炉的水动力特性 一. 直流锅炉的优缺点 1.直流锅炉的主要优点是: 1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短,从而缩短了启、停时间。 4)制造、运输、安装方便。 5)受热面布置灵活。工质在管内强制流动,受热面可从有利于传热及适合炉膛形状而灵活布置。 2.直流锅炉的主要缺点是: 1)给水品质要求高。锅水在蒸发受热面要全部蒸发,没有排污,水中若有杂质要沉积于蒸发管内,或随蒸汽带入过热器与汽轮机。 2)要求有较高的自动调节水平。直流锅炉运行时,一旦有扰动因素,参数变化比较快,需配备自动化高的控制系统,才能维持稳定的运行参数。 3)自用能量大。工质在受热面中的流动,全靠给水泵压头,故给水泵的能耗高。 4)启动操作较复杂,且伴有工质与热量的损失。 5)水冷壁工作条件较差。水冷壁出口工质全部汽化或微过热,沸腾换热恶化不可避免,且没有自补偿特性。必须采取一定措施予以防止。 二. 超临界参数锅炉的水动力特性 超临界参数锅炉的水动力特性不仅影响着水冷壁的传热特性和安全性,而且在很大程度上影响着汽温特性、调峰性能,甚至影响到燃烧调节性能。。 超临界参数锅炉的水动力特性主要决定于水冷壁形式、工质的热物理特性、运行方式、水冷壁热流密度的大小及其分布等因素。其中工质的热物理特性是指:超临界参数下,在拟临界温度左右的一定范围内,工质受到大比热特性的影响,比容、黏度、导热系数发生急剧变化的特性。超临界压力下工质的热物理特性显著地影响着直流锅炉水动力的稳定性和下辐射区水冷壁出口工质的温度,进一步影响到自动调节性能。 超临界参数变压运行锅炉,当机组从额定负荷到低负荷时,炉膛水冷壁管圈的运行压力范围将从超临界压力降至亚临界压力,水冷壁管圈内工质将有两种工作状态,即单相流动和两相流动。故在分析超临界压力变压运行直流锅炉炉膛水冷壁水动力特性时不仅是分析超临界压力下的特性,同时还要分析亚临界压力下的特性,特别是负荷快速变化下的特性。超临界压力直流锅炉的蒸发受热面,尤其是启动及变压运行时(运行于亚临界压力下),带内置式启动系统的直流锅炉的蒸发受热面(即水冷壁),都可能存在着流动不稳定性、热偏差和脉动等水动力问题。 三. 亚临界和超临界压力下的流动不稳定性 直流锅炉蒸发受热面出现不稳定流动的根本原因是汽和水的比容差以及水冷壁进口有热水段存在,在一定条件下实际运行的直流锅炉蒸发受热面就会发生这种流动不稳定的工况。水动力不稳定性发生在同时具有蒸发段和热水段的管屏上,水动力多值性不会发生在只有蒸发段的管屏上。 燃料投入速度及减温水量会对水动力的稳定性有一定的影响。在升温升压的过程中,随着燃料量的增加,尤其是直吹式系统启动磨煤机时,一方面炉内燃烧放热量增大,引起热敏

锅炉英文术语

锅炉boiler 锅炉机组boiler unit 固定式锅炉stationary boiler 蒸汽锅炉steam boiler 电站锅炉power station boiler 工业锅炉industrial boiler 生活锅炉domestic boiler 热水锅炉hot water boiler 船用锅炉marine boiler 快装锅炉package boiler 组装锅炉shop-assembled boiler 散装锅炉field-assembled boiler 常压热水锅炉atmospheric pressure hot water boiler 低压锅炉low pressure boiler 中压锅炉medium pressure boiler 高压锅炉high pressure boiler 超高压锅炉superhigh pressure boiler 亚临界压力锅炉subcritical pressure boiler 超临界压力锅炉supercritical pressure boiler 超超临界锅炉ultra supercritical boiler 自然循环锅炉natural circulation boiler 强制循环锅炉forced circulation boiler 直流锅炉once-through boiler 复合循环锅炉combined circulation boiler 低循环倍率锅炉low circulation boiler 火管锅炉fire tube boiler 水管锅炉water tube boiler 固体燃料锅炉solid-fuel fired boiler 液体燃料锅炉liquid-fuel fired boiler 气体燃料锅炉gas-fuel fired boiler 余热锅炉exhaust heat boiler 余热锅炉(HRSG) 电热锅炉electric boiler 锅壳式锅炉shell boiler 水火管锅壳式锅炉water-fire tube shell boiler 卧式内燃锅炉horizontal internal-combustion boiler 错列布置管束staggered bank 顺列布置管束in-line bank 对流烟道convection pass 并联烟道parallel gas passes 风道air duct 炉膛(燃烧室)furnace

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

水动力计算

本计算按《热水锅炉水动力计算方法》进行 本锅炉只对省煤器及其给水管道(水泵后)进行水动力计算 1.省煤器的阻力计算△H 1 1.1由径d n =50mm=0.05m,每道管强度l 1=1m,共21根,全长l=21m 。180°弯 头20个 1.2省煤器管子水流速W fw =0.304m/s(热力计算提供) 1.3 管内水平温度t av =79.5℃(热力计算担供) 1.4雷诺数 R e =ρW fw μ n d =41.6×103 式中ρ水密度,查表972.3kg/m 3 μ水动力粘度系数355×10-6Pa ?s d n 为0.05m 1.5沿程摩擦阻力系数λ(按4000<R e <350 d n /k=2187.5×103) λ= 2 71.341? ?? ? ? R d L n g =0.022 式中R 管子粗糙度若d n 取mm,K 值为0.08mm. 1.6 180°弯头向阻力系数每个ζ 10 =2.2 ζ1=ζ 10 ZO=44 集箱进出口局部阻力系数ζ2=2×(1.1+0.7)=3.6 1.7水在省煤器管内流动阻力 △H 1=(ρζζλ?++Z w d l fw n 2 21)2=2553.7 Pa 2.进水管及其附属管件阀门的阻力△H 2

进水管中的阀门止回阀(ζ v1 =2)2个,截止阀或闸阀(ζ v2 =0.25)3个。 管长按L=10m, λ取0.022 (d n =50mm=0.05m) △H 2=(ρζζλ?++Z w Z d l fw V V n 2 21)3=411.1 Pa 3.水泵至锅筒入水口的总阻力△H △H=K (△H 1+△H 2)=3557.8 P a =0.036 MPa K 流量系数取1.2 4.选用给水泵 型号 DG6-25×6 (配Y13ZS2-2 电机N=7.5KW ) Q=3.75 m 3/h H=145~153m(1.42~15Mpa) 介质(水)动力计算书(汇总表)

锅炉原理复试题.doc

填空20 1. 煤的工业分析成分:水分、挥发份、固定碳和灰 2. 影响制粉系统和磨煤机选择的是煤的性和性 3. 式空气预热器比式空气预热器低温腐蚀轻 4. 电站锅炉的燃烧方式:层燃烧、煤粉燃烧、流化床燃烧。 5. 灰熔融性的三个温度:变形温度、软化温度、流动温度。 6. 直流锅炉的启动系统分为: 式、式 7. 什么是直流锅炉水动力静态不稳、动态不稳(算名词解释吧) 8. (名词解释)可用率: 连续运行小时数: 简答80 1. 煤粉完全燃烧的条件:10 2. 影响锅炉效率的因素,如何提高锅炉经济性15 3. 直流射流偏斜的原因,对燃烧的影响15 4. 过热气温调节方法,原理15 5. 直流锅炉特点:汽水系统中不设置锅筒,工质一次性地通过省煤器、水冷器、过热器。 6. 影响蒸汽品质的因素,净化措施15 1、过量空气系数 2、碳、水分、挥发分对煤燃烧的影响 3、煤分细度 4、煤的化学分析 5、烟气侧热平衡方程,分析影响因素 1过量空气系数 2高低位发热 3汽水系统咽气系统的叙述 4热偏差 5理论空气实际空气 锅炉原理复试笔试(保定)(一共11道简答题) 1 煤的化学分析,以及煤中水分和灰分对燃烧的影响 2 什么是煤粉细度,以及均匀性指数对锅炉运行的影响 3 什么叫过量空气系数,当过量空气系数增大是炉膛出口烟气温度如何变化 4 烟气侧对流热平衡方程,以及强化对流的措施 5 气液两相流的流型有哪些,以及哪种流型对管壁运行不造成危害,哪种流型对管壁运行有危害 6 什么叫自然循环 7 什么叫热偏差,以及减少热偏差的结构措施 8 蒸汽带盐对锅炉运行的影响 面试问题 一开始老师问3门专业基础课的内容,估计是因为同学们都忘的差不多了,后来就直接提问考的专业基础课和专业课了,都是基础的东西,基本概念,比如热力学第二定律,兰贝特定律,基尔霍夫定律,烟气中具有辐射能力的物质哪个辐射能力最强等等,也不排除老师给你出即兴发挥的题,比如老师问了我如何测得一个木板的导热系数.

计算水动力学概述

计算水动力学概述 摘要:本文回顾了计算水动力学的发展历程,总结了计算水动力学的研究内容及研究进展, 结合国内外最新的研究成果,分析了计算水动力学的未來的发展趙势及研究重点。 关键词:计算水动力学N?S方程有限元法有限差分法并行计算 0前言 1965年美国人Harlow在“科学的美国人”上发表“流体力学的计算机实验”, 用计算机模拟出卡门涡列,法国人Macagiio在咱煤”杂志发表“水力学模拟的某些新方向”,模拟计算了突然扩大管内的流动以来,电子计算机及现代计算快速发展,流 体运动的数值模拟、数值计算和计算机实验方而获得蓬勃发展,并形成流体力学新分支——计算流体力学。 计算水动力力学侧重于研究不可圧缩流体,以电子计算机作为模拟、计算或实验手段來数值地求解各种齐样的水力学问题。计算水力动力学已在水力学各个领域取得各种新的成果,引起人们极大关注。目前,水利工程中,河道水力学、水工水力学中各种水流问题,海洋动力学和水环境的污染问题、水资源问题、水处理问题、水力机械中叶栅、流道问题,计算水动力学都有所涉及。 由于实际工程问题边界几何形状的不规则和流动的非线性性质,理论分析解很难求得:因此,多采用实验手段和数值il算束解决,il算水动力学采用数值方法,它比较省钱、省时,不受模型律(比尺)限制,因此适用性强、应用而广,能得出满足匸程需要的定量结果,可以改变不同参数,做出理论分析的各种近似, 可以快速地对多方案进行比较等优点,而为工程实际方而采用获得蓬勃的发展。 1计算水动力学研究内容及进展 目前,计算水动力学的发展,数值模拟计算己经从一维、二维进入到三维, 从势流进到旋涡运动,从层流发展到紊流模拟,从恒定流进入到非恒定流,从单相水流到液、固两相流体,到液、固、气三相流体:从大范围流动到水流内部机理都有所涉及。近四十年來,计算水动力学在以下方面収得较快的进展。 非恒定流 目前,一维明渠非恒定流已有通用的程仔包,并且比较成熟。包括河网、分义河道

基于CFD的三体船水动力性能计算

基于CFD的三体船水动力性能计算 近年来,随着人们对海洋资源开发的日益迫切以及国际间领海争议的日益激烈,人们对海上运输工具——船舶提出了更高的要求。高性能船舶也越来越备受关注。 与此同时,由于计算机技术的飞速发展,计算流体力学(Computational Fluid Dynamics, CFD)发展迅速。CFD由于其设计周期短、成本低、精度高等优点,近年来已逐渐成为科研人员设计新船型的主要方法。 本文基于CFD分析软件STAR-CCM+对不同构型的三体船进行了静水阻力、静水航态、波浪总阻力、零航速横摇等水动力性能的计算研究。首先,本文对不同构型的三体船进行了0.130<Fr<0.805范围内静水阻力和静水航态的数值计算。 针对不同构型的三体船,对比分析了其试验数据和数值模拟的结果,并给出了相对误差。当三体船周边出现喷溅现象时,相对误差较大;当三体船的体积傅汝德数Fr▽较高时,其航态与排水航行状态相比发生了明显的变化。 当计算工况的体积傅汝德数Fr▽较高时,应该放开三体船相应的自由度。随后,本文对不同构型的三体船进行了遭遇频率4.0rad/s<ωe<15.7rad/s 范围内波浪总阻力的数值计算。 相同航速的情况下,在某个遭遇频率范围内三体船的波浪总阻力相对较大,低于或高于这个频率范围的波浪总阻力大致相等。波浪总阻力成分的分析结果表明:造成不同构型的波浪总阻力曲线差异的主要原因是不同构型三体船间的“压阻力”曲线的变化情况不一致;遭遇频率较大或者较小时,各阻力成分(“摩擦阻力”和“压阻力”)的变化幅值均较小,即各阻力成分的数值相对稳定。

最后,本文对不同构型的三体船进行了2.5rad/s<ωe<5.6rad/s范围内零航速横摇运动的数值计算研究。数值计算结果表明:当遭遇频率频率较小时,随着遭遇频率的减小横摇运动响应因子RAO趋于某一个常数。 当遭遇频率较大时,随着遭遇频率的增大,横摇运动响应因子RAO先增大后减小;随着遭遇频率的增大,三体船的横摇运动响应因子RAO与三体船的横向受力有相同的趋势,而且其曲线对应的峰值点和拐点相同。

关于电站锅炉几种热力计算标准的研究

第18卷第1期现 代 电 力 Vo l.18 N o.1 2001年2月 M ODER N EL ECT R IC PO WER Feb .2001 文章编号:1007-2322(2001)01-0008-07 关于电站锅炉几种热力计算标准的研究 李 伟 王雅勤 (华北电力大学(北京)动能工程系,北京 102206) 摘 要:简要分析了原苏联1957年热力计算标准、1973年热力计算标准和美国CE 锅炉性能设计标准的区别,依据三种标准编制了计算程序,对HG -410/100-9型、HG-670/140-9型和DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了三种标准对锅炉不同容量的适用性,该项研究对锅炉工程技术人员有一定的参考价值。 关键词:锅炉;热力计算;计算标准;比较;适用性分类号:T K223.21 文献标识码:A 收稿日期:2000-12-20 作者简介:李伟,1977年生,女,硕士,主要从事世界各国电站锅炉热力计算方法的研究;王雅勤,1938年生,女,教授,主要从事锅炉整体CA D 系统的开发与应用。 锅炉热力计算是锅炉整体计算的核心。锅炉水动力计算、受压元件强度计算、通风阻力计算、炉墙热力计算、管壁温度计算、制粉系统热力计算、空气动力计算都要在锅炉热力计算的基础上才能进行。在锅炉设计、运行、技术改造的各个阶段,也都要用到热力计算的数据。然而,我国目前尚没有自己的电站锅炉行业的热力计算标准,锅炉的设计和校核计算大多采用原苏联的标准,其中包括1957年标准和1973年标准。近年来,引进了一些国外的标准,如哈尔滨锅炉厂引进CE 技术、北京锅炉厂引进巴威公司的技术等。 由于时间及技术背景的差异,这些标准的热力计算方法不尽相同,尤其是美国CE 标准和苏联标准的差别较大。作者根据苏联1957年标准、1973年标准及美国CE 标准编制了计算程序,对H G-410/100-9型、HG-670/140-9型、DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了这三种标准对不同的锅炉容量的适用性,这对于锅炉工程技术人员选用标准有一定的参考价值。 1 前苏联1957年与1973年标准的区别 1.1 炉内传热计算 (1)炉膛出口烟温

计算水力学基础

计算水力学基础 李占松编著 郑州大学水利与环境学院

内容简介 本讲义是编者根据多年的教学实践,并参考《微机计算水力学》(杨景芳编著,大连理工大学出版社出版,1991年5月第1版)等类似教材,取其精华,编写而成的。目的是使读者掌握通过计算机解水力学问题的方法,为解决更复杂的实际工程问题打下牢固的计算基础。书中内容包括:数值计算基础,偏微分方程式的差分解法,有限单元法;用这些方法解有压管流、明渠流、闸孔出流、堰流、消能、地下水的渗流及平面势流等计算问题。讲义中的用FORTRAN77算法语言编写的计算程序,几乎包括了全部水力学的主要计算问题。另外,结合讲授对象的实际情况,也提供了用VB算法语言编写的计算程序。 VB程序编程人员的话 为了更好地促进水利水电工程建筑专业的同学学好《微机计算水力学》这门学科,编程员借暑假休息的时间,利用我们专业目前所学的VB中的算法语言部分对水力学常见的计算题型编制成常用程序。希望大家能借此资料更好地学习《微机计算水力学》这门课程。本程序着重程序的可读性,不苛求程序的过分技巧。对水力学中常用的计算题型,用我们现在所学的VB语言编制而成。由于编程员能力有限,程序中缺点和错误在所难免,望老师和同学及时给予批评指正。 VB程序编程人员:黄渝桂曹命凯

前言 ----计算水力学的形成与发展 计算水力学作为一门新学科,形成于20世纪60年代中期。水力学问题中有比较复杂的紊流、分离、气穴、水击等流动现象,并存在各种界面形式,如自由水面、分层流、交界面等。 由各种流动现象而建立的数学模型(由微分方程表示的定解问题),例如连续方程、动量方程等组成的控制微分方程组,多具有非线性和非恒定性,只有少数特定条件下的问题,可根据求解问题的特性对方程和边界条件作相应简化,而得到其解析解。因此长期以来,水力学的发展只得主要藉助于物理模型试验。 随着电子计算机和现代计算技术的发展,数值计算已逐渐成为一个重要的研究手段,发展至今,已广泛应用与水利、航运、海洋、流体机械与流体工程等各种技术科学领域。 计算水力学的特点是适应性强、应用面广。首先流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状任意,边界条件复杂,对这些无法求得解析解的问题,用数值解则能很好的满足工程需要;其次可利用计算机进行各种数值试验,例如,可选择不同的流动参数进行试验,可进行物理方程中各项的有效性和敏感性试验,以便进行各种近似处理等。它不受物理模型试验模型律的限制,比较省时省钱,有较多的灵活性。 但数值计算一是依赖于基本方程的可靠性,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;二是它不像物理模型试验一开始就能给出流动现象并定性地描述,却往往需要由原体观测或物理实验提供某些流动参数,并对建立的数学模型验证;三是程序的编制及资料的收集、整理与正确利用,在很大程度上依赖于经验与技巧。 所以计算水力学有自己的原理方法和特点,数值计算与理论分析观测和试验相互联系、促进又不能相互代替,已成为目前解决复杂水流问题的主要手段之一,尤其是在研究流动过程物理机制时,更需要三者有机结合而互相取长补短。 近三、四十年来,计算水力学有很大的发展,替代了经典水力学中的一些近似计算法和图解法。例如水面曲线计算;管网和渠系的过水或输沙(排污)能力的计算;有水轮机负荷改变时水力震荡系统的稳定性计算研究;流体机械过流部件的流道计算以及优化设计,还有洪水波、河口潮流计算,以及各种流动条件下,不同排放形式的污染物混合计算等。 上世纪70年代中期已从针对个别工程问题建立的单一数学模型,开始建立对整个流域洪泛区已建或规划中的水利水电工程进行系统模拟的系统模型。理论课题的研究中,对扩散问题、传热问题、边界层问题、漩涡运动、紊流等问题的研究也有了很大的发展,并已开始计算非恒定的三维紊流问题。 由于离散的基本原理不同,计算水力学可分为两个分支:一是有限差分法,在此基础上发展的有有限分析法;二是有限单元法,在此基础上提出了边界元法和混合元法,另外还有迎风有限元法等。

相关主题
相关文档 最新文档