当前位置:文档之家› 编码器的选型及技术解答

编码器的选型及技术解答

编码器的选型及技术解答
编码器的选型及技术解答

编码器的选型及技术解答

一、问:增量旋转编码器选型有哪些注意事项?

应注意三方面的参数:

1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。

2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。

3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。

二、问:请教如何使用增量编码器?

1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。

2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B 脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。

3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。

4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。

5,在电子装臵中设立计数栈。

增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位臵测量。A、A-,B、B-,Z、Z-连接,

由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

增量型编码器的一般应用:测速,测转动方向,测移动角度、距离(相对)。

增量式旋转编码器原理增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。下面对增量式旋转编码器的内部工作原理(附图)A,B两点对应两个光敏接受管,A,B两点间距为S2,角度码盘的光栅间距分别为S0和S1。当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。通过输出波形图可知每个运动周期的时序为顺时针运动:A B逆时针运

动:A B111101

10000010

01我们把当前的A,B输出值保存起来,与下一个A,B输出值做比较,就可以轻易的得出角度码盘的运动方向,如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,除以所消毫的时间,就得到此次角度码盘运动位移角速度。S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

增量式编码器的问题:增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。

绝对型编码器(旋转型):绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线……编排,这样,在编码器的每一个位臵,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1(N减1)次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位臵决定的,它不受停电、干扰的影响。绝对编码器由机械位臵决定的每个位臵是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位臵,什么时候就去读取它的位臵。这样,编码器的抗干扰特性、数据的可靠性大大提高了。从单圈绝对值编码器到多圈绝对值编码器。

旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。

如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位臵确定编码,每个位臵编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位臵作为起始点就可以了,而大大简化了安装调试难度。

三、关于户外使用或恶劣环境下使用;例如:野外使用,现场环境脏,而且怕撞坏编码器。

TR有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型编码器,放在户外不怕脏,钢厂、重型设备里都可以用。不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还是有一定差距的。

四、从接近开关、光电开关到旋转编码器:

工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了:

信息化:除了定位,控制室还可知道其具体位臵;

柔性化:定位可以在控制室柔性调整;

现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位臵准确,其使用寿命往往很长。

多功能化:除了定位,还可以远传当前位臵,换算运动速度,对于变频器,步进电机等的应用尤为重要。经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。

五、关于电源供应及编码器和PLC连接:

一般编码器的工作电源有三种:5Vdc、5-13 Vdc或11-26Vdc。如果你买的编码器用的是11-26Vdc的,就可以用PLC的24V电源,需注意的是:

1.编码器的耗电流,在PLC的电源功率范围内。

2.编码器如是并行输出,连接PLC的I/O点,需了解编码器的信号电平是推拉式(或称推挽式)输出还是集电极开路输出,如是集电极开路输出的,有N型和P型两种,需与PLC的I/O极性相同。如是推拉式输出则连接没有什么问题。

3.编码器如是驱动器输出,一般信号电平是5V的,连接的时候要小心,不要让24V的电源电平串入5V的信号接线中去而损坏编码器的信号端。(有些公司也可以做宽电压驱动器输出(5-30 Vdc),有此要求定货时要注明)

六、在很多的情况之下是编码器并没有坏,而只是干扰的原因,造成波型不好,导致计数不准。请教如何进行判断?

编码器属精密元件,这主要因为编码器周围干扰比较严重,比如:是否有大型电动机、电焊机频繁起动造成干扰,是否和动力线同一管道传输等。

选择什么样的输出对抗干扰也很重要,一般输出带反向信号的抗干扰要好一些,即

A+~A-,B+~B-,Z+~Z-,其特征是加上电源8根线,而不是5根线(共零)。带反向信号的在电缆中的传输是对称的,受干扰小,在接受设备中也可以再增加判断(例如接受设备的信号利用A、B信号90°相位差,读到电平10、11、01、00四种状态时,计为一有效脉冲,此方案可有效提高系统抗干扰性能(计数准确))。

就是编码器也有好坏,其码盘\电子芯片\内部电路\信号输出的差别很大,要不然怎么一个1000线的增量型编码器会从300多元到3000多元差别那么大呢?

①排除(搬离、关闭、隔离)干扰源,②判断是否为机械间隙累计误差,③判断是否为控制系统和编码器的电路接口不匹配(编码器选型错误);①②③方法偿试后故障现象排除,则可初步判断,若未排除须进一步分析。

判断是否为编码器自身故障的简单方法是排除法。TR公司编码器已规模化生产,技术生产已成熟运用,并且所有产品出厂前经过100%的检测,产品故障率几乎为0。

排除法的具体方法是:用一台相同型号的编码器替换上去,如果故障现象相同,可基本排除是编码器故障问题,因为两台编码器同时有故障的概率事件发生可能很小,可以看作为0。假如换一台相同型号编码器上去,故障现象立刻排除,则可基本判定是编码器故障。

七、何为长线驱动?普通型编码器能否远距离传送?

答:长线驱动也称差分长线驱动,5V,TTL的正负波形对称形式,由于其正负电流方向相反,对外电磁场抵消,故抗干扰能力较强。普通型编码器一般传输距离是100米,如果是24V HTL型且有对称负信号的,传输距离300-400米。

八、问:能否简单介绍旋转编码器检测直线位移的方法?

答: 1,使用“弹性连轴器”将旋转编码器与驱动直线位移的动力装臵的主轴直接联轴。

2,使用小型齿轮(直齿,伞齿或蜗轮蜗杆)箱与动力装臵联轴。

3,使用在直齿条上转动的齿轮来传递直线位移信息。

4,在传动链条的链轮上获得直线位移信息。

5,在同步带轮的同步带上获得直线位移信息。

6,使用安装有磁性滚轮的旋转编码器在直线位移的平整钢铁材料表面获得位移信息(避免滑差)。

7,使用类似“钢皮尺”的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(数据处理中须克服叠层卷绕误差)。

8,类似7,使用带小型力矩电机的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(目前德国有类似产品,结构复杂,几乎无叠层卷绕误差)。

九、增量光栅Z信号可否作零点?圆光栅编码器如何选用?(TR无此类产品)

无论直线光栅还是轴编码器其Z信号的均可达到同A\B信号相同的精确度,只不过轴编码器是一圈一个,而直线光栅是每隔一定距离一个,用这个信号可达到很高的重复精度。可先用普通的接近开关初定位,然后找最为接近的Z信号(每次同方向找),装的时候不要望忘了将其相位调的和光栅相位一致,否则不准。根据你的细分精度要求和分辩率要求选用。精度高自然要选用每周线纹高的,精度不高,就没必要选用高线纹数的圆光栅编码器了。

十、增量型编码器和绝对型编码器有何区别?做一个伺服系统时怎么选择呢?

常用的增量型编码器,如果对位臵、零位有严格要求用绝对型编码器。伺服系统要具体分析,看应用场合。测速度用常用增量型编码器,可无限累加测量;测位臵用绝对型编码器,位臵唯一性(单圈或多圈),最终看应用场合,看要实现的目的和要求。

十一、绝对型旋转编码器选型注意事项,旋转编码器和接近开关、光电开关优势比较:

绝对编码器单圈从经济型8位到高精度17位,价格可以从几百元到1万多不等;

绝对编码器多圈大部分用25位,输出有SSI,总线Profibus-DP,Can L2,Interbus,DeviceNet,价格也可以从3千多到1万多不等。

旋转光电编码器测量角度和长度,已是很成熟的技术了,现今再用上高精度大量程的绝对型编码器,大大提高了测量精度和可靠性,而且经济实用。就目前来看,其仍然是测量长度的最多选择。

十二、从增量式编码器到绝对式编码器

旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位臵,当编码器不动或停电时,依靠计数设备的内部记忆来记住位臵。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参考点,编码器每经过参考点,将参考位臵修正进计数设备的记忆位臵。在参考点以前,是不能保证位臵的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。

比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。

这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位臵),于是就有了绝对编码器的出现。

绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位臵,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1(N减1)次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位臵决定的,它不受停电、干扰的影响。

绝对编码器由机械位臵决定的每个位臵的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位臵,什么时候就去读取它的位臵。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

由于绝对编码器在位臵定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。

测速度需要可以无限累加测量,目前增量型编码器在测速应用方面仍处于无可取代的主流位臵。

十三、能不能告诉我选用绝对型编码器应注意哪些事项?

(一).机械部分:

1.测长度还是测角度,测长度如何通过机械方式转换(在上面有一些介绍,如不清楚可来电讨论)。测角度是360度内(单圈),还是可能过360度(多圈)。生产过程是一个方向旋转循环工作,还是来回方向循环工作。

2.轴连接安装形式,有轴型通过软性联轴器连接,还是轴套型连接。

3.使用环境:粉尘,水气,震动,撞击?

4.轴径尺寸?

5.法兰尺寸?

(二)电气部分

1.连接的输出接收部分是什么?

2.信号形式?------理解为输出接口方式

3.分辨率要求?-----参照不同型号的参数值

4.控制要求?

十四、从单圈绝对式编码器到多圈绝对式编码器

旋转单圈绝对式编码器,以转动中测量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对式编码器。

如果要测量旋转超过360度范围,就要用到多圈绝对式编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位臵确定编码,每个位臵编码唯一不重复,而无需记忆。

多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位臵作为起始点就可以了,而大大简化了安装调试难度。

多圈式绝对编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。

十五、绝对型编码器的串行(读:xing,不读:hang)和并行输出的详细一点的信息,谢谢!

并行输出:绝对型编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题:

1。必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。

2。所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。

3。传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。

4。对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。

并行:时间上,数据同时发出;空间上,每个位数的数据各占用一根线缆。

增量型编码器输出的通常是并行输出。

串行输出:串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。

串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了,一般高位数的绝对编码器都是用串行输出的。

由于绝对型编码器的部分知名厂家在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出,总线型是PROFIBUS-DP的输出等。

串行输出编码器连接德国西门子的设备是比较容易的,但是连接非德国系的设备,接口就是问题了,TR公司提供各种接口输出的仪表,可以解决这样的问题。

串行:时间上,数据按照约定,有先后;空间上,所有位数的数据都在一组线缆上(先后)发出。

十六、串行编码器应该都是绝对式的?

串行是指按时间约定,串行输出数字编码信号,基本是绝对的,但也有一些增量编码器,通过内臵电池记忆原点(TR无此类产品),其也可以通过串行输出位臵值,如电池线不联,还是增量编码器,此也称为伪绝对值编码器,在一些日本伺服系统中较多见。其本质其实还是增量编码器。

十七、问:为什么叫“绝对型编码器”?

“绝对型编码器”相对于“增量型编码器”而言。

“绝对型编码器”使用某种方式表示并记忆物体的绝对位臵,角度和圈数。即一旦位臵,角度和圈数固定,什么时候编码器的示值都唯一固定,包括停电后投电。“增量型编码器”做不到这一点。一般“增量型编码器”输出两个A、B脉冲信号,和一个Z(L)零位信号,A、B脉冲互差90度相位角。通过脉冲计数可以知道位臵,角度和圈数增量,通过A,B脉冲信号超前或滞后可以知道方向,停电后,必须从约定的基准重新开始计数。“增量型编码器”表示位臵,角度和圈数需要做后处理,重新投电要做“复零”操作,所以,“增量型编码器”比“绝对型编码器”在价格上便宜许多。

十八、问:光电编码器的优缺点?

光电编码器:(大类统称)

1,优点:体积小,精密,本身分辨度可以很高(例如:通过细分技术在直径φ66的编码器上可达到54000PPR) ,无接触无磨损;同一品种既可检测角度位移,又可在机械转换装臵帮助下检测直线位移;多圈光电绝对编码器可以检测相当长量程的直线位移(如25位多圈)。寿命长,安装随意,接口形式丰富,价格合理。成熟技术,多年前已在国内外得到广泛应用。

2,缺点:精密但对户外及恶劣环境下使用提出较高的保护要求;测量直线位移需依赖机械装臵转换,需消除机械间隙带来的误差;检测轨道运行物体难以克服滑差。

十九、例题:一个圆盘,分50个点,要实现定位控制,转速很慢,是要用到绝对型编码器吗?怎么找原点呢?50个位臵定位是360度均匀等分吗?

绝对编码器的编码都是2的幂次方,没有360度均匀50等分的,要近似,看精度要求有多高,选多高线

数的编码器,如果精度要求不是太高的话,用8位256线的就可以了。编码器的每个位臵都有唯一编码,编码为零的就可以作为零点,也可以任意位臵定义为零,其他位臵与其比较计算。

如果可以用参考点的话,也可以用增量式的,因速度慢,应该选3000线或以上的,每圈一个零位。

二十、简单介绍:RS-232、RS-422与RS-485标准及应用?

RS-232、RS-422与RS-485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的。

1、目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。

2、RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。

通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。

由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信。

RS-485与RS-422的不同还在于其共模输出电压是不同的,RS-485是-7V至+12V之间,而RS-422在-7V至+7V之间,RS-485接收器最小输入阻抗为12k RS-422是4k;由于RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。

编码器详细介绍与编程指导

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

编码器的选型及技术解答复习课程

编码器的选型及技术解答 一、问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B 超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位置测量。A、A-,B、B-,Z、

智能车光电传感器和摄像头的选择

第15卷第4期2011年12月 扬州职业大学学报 Journal of Yangzhou Polytechnic College Vol.15No.4 Dec.2011智能车光电传感器和摄像头的选择 戚玉婕 (扬州职业大学,江苏扬州225009) 摘要:智能车设计综合了光学传感器、硬件电路和软件算法等多方面跨领域的知识技巧。本文针对黑白赛道智能车的赛道光学识别模块,系统地介绍了红外反射式光电传感器、激光传感器和可见光摄像头的实现原理及硬件电路;同时结合实际比较了其优缺点。 关键词:红外反射式传感器;激光传感器;摄像头;智能车设计 中图分类号:TP212文献标识码:A文章编号:1008-3693(2011)04-0023-04 Choice of Photoelectric Sensor and Camera in Intelligent Car QI Yu-jie (Yangzhou Polytechnic College,Yangzhou225009,China) Abstract:Intelligent car designing is a modern and effective way in science and technology teaching.It in-tegrates some interdisciplinary skills,such as design and choice of optical sensor,hardware circuit and algo-rithm.In view of the benefit of designing the optical recognition module,the working mechanism and hardware design of several optical system,including infrared photoelectric sensor,laser sensor and camera are intro-duced in this article.Furthermore,combined with practical experience in teaching,pros and cons of the three alternative sensors are discussed to help teaching activities in intelligence car designing. Key words:infrared photoelectric sensor;laser sensor;camera;intelligent car designing 智能车也称无人车,是一个集环境感知规划决策和多等级辅助驾驶等功能于一体的综合系统。1953年,世界上第一台无人驾驶牵引车诞生,这是一部采用埋线电磁感应方式跟踪路径的自动导向车。如今,随着传感技术的不断进步,无人驾驶车发展也越来越快。智能车的光学传感器模块起到了至关重要的作为。光学传感器将获得的道路信息、测速传感器将现行车速信息传递至系统,系统对获得的图像和数据信息进行分析处理,经过特定的控制算法计算得出最佳速度和舵机转角,这是智能车系统的基本工作原理。 传感器是智能车的“眼睛”,必须能够真实、快速地反馈赛道信息。光电传感器和摄像头是两种工业应用最广泛的光学传感器。光电传感器包括红外传感器、激光传感器等,广泛应用于无人生产线,自动巡逻等领域;摄像头则广泛应用于汽车安全的智能技术中,如视觉增强系统、前照灯自动调整系统、转向监视系统等。本文结合我校开展智能车设计的经验,介绍了智能车设计中用到的光电传感器和摄像头,并比较两者的性能差别。 1光电传感器智能车道路识别系统设计 光电传感器(反射式)的光源有很多种,常用的有红外发光二极管,普通发光二极管和激光二 收稿日期:2011-09-26 作者简介:戚玉婕(1985—),女,扬州职业大学电子工程系助教,硕士。

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

编码器选型有哪些注意事项

编码器选型有哪些注意事项 ■一.※有网友问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 ■二.※有网友问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL 电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 ■三.※关于户外使用或恶劣环境下使用 有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。 我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型编码器,放在户外不怕脏,钢厂、重型设备里都可以用。 不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还是有一定差距的。■四.※从接近开关、光电开关到旋转编码器: 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了:信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。 如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。 ■五. ※关于电源供应及编码器和PLC连接: 一般编码器的工作电源有三种:5Vdc、5-13 Vdc或11-26Vdc。如果你买的编码器用的

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

光电传感器命名规则

光电传感器的命名规则...入光遮光...对射型扩散反射型,这些你都懂吗? 问题1:E3Z系列命名规则是什么? E3Z-①②③④-⑤ ①T-对射型;R-回归反射型;D-扩散反射型 ②6-NPN输出;8-PNP输出 ③1-导线引出;2-导线引出;6-接插件式;7-接插件式 ④K-外壳材料在E3Z-□□□基础上进行了防油性能上的改良,可以在较恶劣的环境下使用H-只有扩散反射型有灵敏度调整旋钮,对射型和回归反射型没有灵敏度调整旋钮, E3Z-□□□H的L-ON/D-ON通过接线来切换,是E3Z-□□□的经济型产品 ⑤G0-有投光停止功能;M3J-是耐油型的接插件中继型 问题2:反射型的光纤发射的光斑是不是发散的,能不能有什么办法能使光斑聚焦? 光纤传感器的光是散射的(除了激光)。如果要使光斑聚焦,可以考虑使用透镜单元。 聚焦的最远距离是20mm,另外透镜单元只能使用在专用的光纤上。 问题3:入光动作和遮光动作区别 入光动作是受光器接受到投光器的光后输出信号 遮光动作是受光器没有接受到投光器的光后输出信号 问题4:E3JK-R4M1管脚定义? 褐色、蓝色接电源DC12-240V、AC24-240V都可以,无极性 白色、灰色是常闭接点 白色、黑色是常开接点 问题5:E3Z-LS61怎么实现BGS和FGS功能? 粉线开路或者和蓝线短接实现BGS功能 粉线和棕线短路实现FGS功能 问题6:E3Z-T61输出接OMRON的PLC,怎么接线? 投光器: 褐色--电源+极 蓝色--电源-极 受光器:

褐色--电源+极--PLC的COM端 蓝色--电源-极黑色--PLC输入点 问题7:光电开关抗干扰措施 (1)光电开关在使用中可能会受到各种干扰,可采取以下措施消除干扰: ①布线时与强电的布线分开。 ②如现场存在辐射干扰,在干扰源与传感器之间插入屏蔽的钢板,请参考下图。 ③如存在电源线路干扰,在电源线路间,插入电容器,噪声滤波器,可变电阻等,请参考下图。 (2)扩散反射型的光电开关在使用时,实际检测距离受物体的大小、材质和颜色影响。 所以使用扩散反射型光电开关时,请查询产品对应的距离特性图(下图以E3Z-D口1为例),以确保: ①被测物体的正常检测 ②检测方向上可能出现的干扰物体不会被检出 问题8:E3JM系列与E3JK系列的区别是什么? 问题9:扩散反射型和限定反射型的区别? 扩散反射型:通过接受到物体的反光量的多少来判断是否检测到物体

倍加福P+F接近开关选型样本

P+F倍加福接近开关 From:上海贵伦自动化设备有限公司https://www.doczj.com/doc/2f10960444.html,/product_list.asp?id=341 【产品介绍】 接近传感器 ■电感式传感器 ■电感式特殊型传感器 ■位置传感器,阀位回讯传感器 ■电容式传感器 ■磁式传感器 ■传感器安装附件 ●电感式传感器可广泛应用于对物体进行非接触式的高精度的位置测量的场合,可覆盖大多数的工业领域 特性: ■动作距离:0.2-100mm ■外壳材料:不锈钢,黄铜镀镍 ■极性反转保护 ■短路保护 ■LED显示在中间或四周 ■M8或M12连接器或端子连接

■传感器带PVC,PUR或硅电缆输出 ■2线,3线或4线DC,AC,NAMUR和AS-I技术 特殊系列: ■0mA…20mA模拟量输出 ■集成的速度监控达100Hz ■高压型传感器达350bar ■危险区域型传感器 ■不锈钢感应面 ■衰减系数为1 ■防护等级为IP68/IP69K ■防磁防焊型 ■铁质金属和非铁质金属选择型 ■温度扩展型:-40℃-+250℃ ●电容式传感器可用来检测包括金属物体和非金属物体在内的所有物体,其中包含有液位和流体控制 特性: ■不锈钢或塑料外壳的圆柱型,12,18或30mm ■矩形外壳从:5mm到80mm*80mm*40mm,感应距离在40mm内 ■可用于危险区域 ●磁式传感器 P+F公司的磁式传感器有M12外壳用于传统磁式物质检测,以及防护等级IP67,透过25mm不锈钢气缸检测气缸位置的磁式开关。 ●位置传感器 位置传感器主要用于监控电枢或阀门。它是在一个简单外壳下组合有两个传感器,这样安装简单,维护方便。P+F几十年的产品经检验NAMUR型位置传感器可用于危险区域。 位置传感器有安装于"传统盒子"内的,和直接安装于执行器上的两种。用户可以选择端子连接,连接器连接和电缆连接方式。阀门可通过传感器直接控制。 特性: ■可直接安装 ■在盒子中安装 ■可安装于盒中的线路板 ■直接AS-Interface连接 ■简单方便的安装 ■集成的阀门控制 (1)用字母表示 N-电感式 C-电容式 M-磁式

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

绝对值编码器 选型

@Q发表于:2013/10/14 16:50:08 标签(TAG):编码器绝对值编码器选型 (绝对值编码器问答集节选) 本人正在编写一部《绝对值编码器问答集》的小册子,以下是部分节选。——根据实际使用要求判断是否需要选用绝对值编码器,根据已有的设备信号接口选择选什么样的编码器 1,使用绝对值编码器一定会比用增量式编码器贵吗? 没有!从编码器器件成本上说增量编码器内部器件少,成本价格确实低,但是从编码器的如何使用并产生效果的角度说,绝对值编码器如果选型得当,其使用的效果带来的综合成本,会低于选用增量值编码器,为使用者大大节省成本。2,什么情况下要选绝对值编码器? a.停电移动、惯性滑动的数据安全可靠性问题,对于一些需要高度、长度测量的安全性设备、较大型设备、起重类工程类设备,安全性是很重要的因素,为确保编码器数据的稳定可靠性,必须选用全行程绝对值编码器。这类应用如果发生编码器数据错误可能引起的损失远远超过了编码器成本本身。例如水闸、工程机械、起重机、电梯、门机等等的高度、长度测量。 b.信号抗干扰问题,有时所化的人工成本远远大于一个编码器成本,增量信号较易受到各种干扰,数据采集不稳定,对于各种现场不可预知的干扰会花很多精力去排查,并要设法避开干扰,此情况下应考虑更换绝对值编码器。例如各种自动化工程项目,对于现场的变频器、开关电源、接地状况不明的情抗下,无从判断干扰情况,选用绝对值编码器可以确保应对各种工况条件。 c.后续设备节省资源,增量编码器需要高速计数不停的计数,耗费CPU资源,有时多个编码器连接没有更多的高速计数口,此时选用绝对值编码器的串行输出(如RS485)或总线型输出,其实是节省了后续设备的资源而节省费用。例如需要多个编码器比较的同步纠偏、多个编码器联动操作的流水线、加工机械等。 d.环境较恶劣的选择,增量编码器绝大部分是光学式的,易受水气灰尘及振动影响而损坏,选用磁电式绝对值编码器(单圈或真多圈)的可以避免这种损坏,而大大提高产品使用的寿命,而得到综合效果更佳,使用成本更低。例如户外使用的港口矿山机械、工厂的快速开门机等。 e.节省综合成本,在一些不便于停机修正、更换、维修,或停机修正、更换、维修成本很高的场合下,用绝对值编码器,因其数据的可靠性、产品的耐用性,可以大大减少售后服务人工成本,产品可长时间的使用效果,直接的是产品使用的综合成本大大的节省了。例如一些高速运转的流水线、较远地区的管网系统(电动执行器)。 。。。。。 3.按绝对值编码器输出信号接口有哪些信号输出可选? 选择使用绝对值编码器,首先要根据自身所有的后续接受设备(例如PLC)有什么样的信号接口,根据已有的信号接口选择编码器:

倍加福编码器工作原理及作用

德国P+F倍加福旋转编码器工作原理 P+F倍加福旋转编码器作用由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接-编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

ENCODER (P+F) 倍加福编码器介绍

旋转编码器
—基础及注意事项
P+F FA 2009.03

内容
一、编码器分类
1.1 增量式编码器 1.2 绝对值编码器 1.3 防爆编码器
二、编码器选型注意事项
2.1 机械因素 2.2 环境因素 2.3 电气因素
三、编码器使用注意事项
3.1 安装注意事项 3.2 供电注意事项 3.3 软件设置 3.4 屏蔽的铺设
2009.03
P+F FA
Page 2

编码器简介
? 什么是旋转编码器?
– 把旋转机械参数转换为电气信号输出的数字式传感电子设备 ; – 用于旋转或直线等运动的监测,反馈角度、位置、速度和加速 度等机械参数。
?, ω, n
调制光
调制电流
频率脉冲
2009.03
P+F FA
Page 3

一、编码器分类
旋转编码器
增量型 绝对值
单圈 轴套型 实心轴 半空轴 轴套型 实心轴
多圈 半空轴
防爆编码器:隔爆型、本安型、 防爆编码器:隔爆型、本安型、无火花型
2009.03
P+F FA
Page 4

1.1 增量式编码器
? 增量式编码器
– 轴旋转一定角度,提供相应数量的脉冲;单位时间内的脉冲数可以用来 测量轴的转速; – 增量式编码器检测旋转中的相对位置变化时,需要一个参考起点,并进 行脉冲数的累加; 供电或电气受到扰动干扰时,脉冲计数将产生错误; 故障停车后,无法找回事故发生时的位置。 – 最大分辨率5000PPR,200kHz
2009.03
P+F FA
Page 5

光电编码器选型及同步电机转速和转子位置测量

光电编码器选型及同步电机转速和 转子位置测量3 于庆广 刘葵 王冲 袁炜嘉 钱炜慷 张程 清华大学 摘要:光电轴角编码器,又称光电角位置传感器,是电气传动系统中用来测量电动机转速和转子位置的核心部件。对绝对式、增量式和混合式光电轴编码器的工作原理进行了综述,介绍了光电轴编码器的选型原则、转子速度的测量和转子位置的测量方法。最后,给出了同步电动机变频调速系统中转速和转子位置测量系统的实现。 关键词:光电轴编码器 混合式轴编码器 同步电机转子位置 Choice of Optical2encoder and Measure of Speed and R otor Place of Synchronous Motor Yu Qingguang Liu Kui Wang Chong Yuan Weijia Qian Weikang Zhang Cheng Abstract:Optical2encoder,which is also called photoelectric angei2position sensor,is the core device in measurement of motor speed and rotor position in drive system.There summarize the operating principle of ab2 solute、incremental and hybrid encoder,introduce the choice principle of optical2encoder model and the measur2 ing method of rotor speed and rotor position.The implementation of measuring method of rotor speed and ro2 tor position in variable frequency speed2regulated system of synchronous motor is also given. K eyw ords:optical2encoder hybrid2encoder rotor place of synchronous motor 1 引言 光电轴角编码器,又称轴编码器或光电角位置传感器。光电轴编码器以高精度计量圆光栅为检测元件,通过光电转换,将输入的角位置信息转换成相应的数字代码,并与计算机等控制器及显示装置相连接,实现数字测量、数字控制与数字显示[1]。光电轴编码器具有较高的性能价格比,已普遍应用在雷达、光电经纬仪、地面指挥仪、机器人、数控机床和高精度闭环调速系统等诸多领域,是电动机等自动化设备理想的角度和速度传感器。轴编码器主要分为增量式、绝对式与混合式3种,其中增量式轴编码器主要用于测量转子速度,绝对式轴编码器主要用于测量转子的空间位置,混合式轴编码器是增量式轴编码器与绝对式轴编码器的组合。后端加入处理芯片之后,3种轴编码器都具有测量转子速度与空间位置的功能。本文综述了光电轴编码器的种类和选型原则,介绍了转速和转子位置的测量方法;最后,给出了同步电动机变频调速系统中转速和转子位置测量系统的实现。 2 光电轴编码器 2.1 增量式轴编码器 典型的光电轴角编码器结构原理如图1 所示。 图1 光电轴编码器结构图 71 3清华大学大学生SR T项目(031T0144)

光电编码器的计数方法

光电编码器的计数方法 点击次数:543 发布时间:2009-7-6 14:27:22 1 引言 在位置控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变 送器经A/D转换成数字量送至系统进行进一步处理。此方法虽然检测精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不适用;其二 是使用光电编码器[1]。光电编码器是高精度控制系统常用的位移检测传感器。当控制对象发生位置变化时,光电编码器便会发出A、B两路相位差90度的数字脉冲信号。正转时A超前B90度,反转时B超前A90度。脉冲的个数与位移量成比例关系,因此通过对脉冲计数就能计算出相应的位移。该方法不仅使用方便、测量准确, 而且成本较低,因此在电力拖动系统中,经常采用第二种位置测量方法。 使用光电编码器测量位移,准确无误的记数起着决定性作用。由于在位置控制系统中,电机既可以正转,又可以反转,所以要求计数器既要能够实现加计数,又 要能够实现减计数。相应的计数方法可以用软件来实现,也可以用硬件来实现。 使用软件方式对光电编码器的脉冲进行方向判别和计数降低了系统控制的实时性,尤其当使用光电编码器的数量较多时,并且其可靠性也不及硬件电路。但是用 软件计数外围电路比较简单,所以在计数频率不高的情况下,使用软件计数还是有一定优势的。对编码器中输出的两路脉冲进行计数主要分两个步骤,首先要对编码器输出的两路脉冲进行鉴相,即:判别电机是正转还是反转;其次是进行加减计数,正转时加计数,反转时减计数。 2 鉴相原理 脉冲鉴相的方法比较多,既可以用软件实现,也可以用一个D触发器实现。下图是编码器正反转时输出脉冲的相位关系。 由图中编码器输出波形可以看出,编码器正转时A相超前B相90度.在A相脉冲的下降沿处,B相为高电平;而在编码器反转时,A相滞后B相90度,在A相脉冲的下降沿处,B相输出为低电平。这样,编码器旋转时通过判断B相电平的高低就可以判断编码器的旋转方向[2]。 3 用软件实现脉冲的鉴相、计数 编码器输出的A向脉冲接到单片机的外部中断INT0,B向脉冲接到I/O 端口P1.0。当系统工作时,首先要把INT0设置成下降沿触发,并开相应中断。当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平,若是高电平则编码器正转,加1计数;若是低电平则编码器反转,减1计数。 4 用硬件实现脉冲的鉴相、计数 硬件计数在执行速度上有软件计数不可比拟的优势,通常采用多个可预置4位双时钟加减计数器74LS193 级联组成的加减计数电路。P0-P3为计数器的4位预置数据端,与数据输入锁存器相接;QA-QD 为计数器的4位数据输出端,与数据输出缓冲器相接;MR为清零端与上电清零脉冲相接;PL为预置允许端,由译码控制电路触发;CU 为加脉冲输入端,CD为减脉冲输入端;TCU为进位输出端,TCD 为借位输出端。如下图所示:

光电传感器选型和使用注意事项

光电传感器选型和使用注意事项 光电传感器的工作原理是通过对红外发射光的阻断和导通,在红外接收管感应出的电流变化来实现开和关的判断。槽型光耦通常也称作槽式光电开关通常是U型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了检测到的开关量信号。槽式光电开关比较安全可靠的适合检测高速变化,分辨透明与半透明物体。 一、选型 其选型主要考虑有三点:槽宽要多宽的;分辨率(光缝宽度);固定方式 1、槽宽,检测物体需通过槽型光耦的槽,才能对红外光实现阻断,所以光电传感器的槽宽要宽于检测物体,并要有一定的余量,便于安装。 2、槽型光耦的分辨率,如检测物是一个齿盘,其齿盘齿的宽度是d,齿盘齿槽的宽度是3,则槽型光耦的光缝宽度要求小于d,且小于f,这样才能保证能将红外光有效的阻断和导通,在满足上述条件下,选择光缝宽大的槽型光耦。 3、槽型光耦有带固定孔和不带固定空两种,根据实际情况选择。 4、安装位置。传感器安装时,应使检测齿盘的外径超过槽型光耦光轴1-2mm。这样才能有效阻断光线。 二、外围电路参数选择 1、在选择槽型光耦的外围电路时,先确定槽型光耦接收管的负

载电阻是多少,再根据槽型光耦的转换效率选择红外发射管的电流。 2、被测物体的运动速度越快(如1-2kHz),原则上红外接收管的负载电阻取值应小些。 三、使用注意事项 光电传感器在使用中出现问题了怎么办?要怎样才能减少光电传感器故障呢?这是很多用户在使用光电传感器的时候都会遇到的问题,那么要怎样解决这些问题呢,其实在日常生活中多注意光电传感器的的使用就可以减轻故障的发生,下面小编来介绍一下光电传感器使用注意事项吧。 1、使用中光电传感器的前端面与被检测的工件或物体表面必须保持平行,这样光电传感器的转换效率最高。 2、安装焊接时,光电传感器的引脚根部与焊盘的最小距离不得小于5mm,否则焊接时易损坏管芯。或引起管芯性能的变化。焊接时间应小于4秒。 3、对射式光电传感器最小可检测宽度为该种光电开关透镜宽度的80%。 4、当使用感性负载(如灯、电动机等)时,其瞬态冲击电流较大,可能劣化或损坏交流二线的光电传感器,在这种情况下,请将负载经过交流继电器来转换使用。 5、红外线光电传感器的透镜可用擦镜纸擦拭,禁用稀释溶剂等化学品,以免永久损坏塑料镜。 6、针对用户的现场实际要求,在一些较为恶劣的条件下,如灰

倍加福总线编码器PVM58N-011AGROBN-1213

PVM58N-011AGROBN-1213编码器技术参数

PVM58N-011AGROBN-1213编码器简介 应用行业: 一.BEN绝对值编码器的常规外形:38MM,58MM,66MM,80MM.100MM. 二.BEN绝对值编码器分为:单圈,多圈。 三.BEN绝对值编码器按原理分为:磁绝对值编码器,光电绝对值编码器 四.BEN绝对值编码器出线方式分为:侧出线,后出线 五.BEN绝对值编码器轴分为:6MM,8MM,10MM,12MM,14MM,25MM. 六.BEN绝对值编码器分为:轴,盲孔,通孔。 七.BEN绝对值编码器防护分为:IP54-68. 八.BEN绝对值编码器安装方式分为:夹紧法兰、同步法兰、夹紧带同步法兰、盲孔(弹簧片,抱紧)、通孔(弹簧片,键销) 九.BEN绝对值编码器精度分为:单圈精度和多圈精度,加起来是总精度,也就是通常的多少位(常规24位,25位,30位,32位。。。。)。十.BEN绝对值编码器通讯协议波特率:4800~115200 bit/s,默认为9600 bit/s。刷新周期约1.5ms ★精芬机电传感器 * 机床 * 航天航空、 * 造纸印刷、 * 水利闸门、 * 纺织机械 * 灌溉机械 * 军工设备 * 食品机械 * 钢铁冶金设备 * 机器人及机械手臂 * 港口起重运输机械 * 精密测量和数控设备 PVM58N-011AGROBN-1213编码器细节 工业编码器的种类可以满足所有的需求: ? 绝对式和增量式编码器? 光学或磁性传感器 ? 中空轴或者实心轴,包括非常多的尺寸? 分辨率最高可达10,000PPR BEN编码器的发展,从增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。BESM58系列绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。BEN绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。BEN编码器从单圈绝对值编码器到多圈绝对值编码器BESM58旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码,只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。详细了解编码器可随时致电021上海39536219精芬机电 ,编码器专家。BEN编码器上海精芬机电生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多, 这样在安装时不必要费劲找零点, 将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。多圈式绝对编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。

相关主题
文本预览
相关文档 最新文档