当前位置:文档之家› matlab30个案例分析案例14-SVM神经网络的回归预测分析

matlab30个案例分析案例14-SVM神经网络的回归预测分析

matlab30个案例分析案例14-SVM神经网络的回归预测分析
matlab30个案例分析案例14-SVM神经网络的回归预测分析

%% SVM神经网络的回归预测分析---上证指数开盘指数预测

%

%% 清空环境变量

function chapter14

tic;

close all;

clear;

clc;

format compact;

%% 数据的提取和预处理

% 载入测试数据上证指数(1990.12.19-2009.08.19)

% 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数

% 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额.

load chapter14_sh.mat;

% 提取数据

[m,n] = size(sh);

ts = sh(2:m,1);

tsx = sh(1:m-1,:);

% 画出原始上证指数的每日开盘数

figure;

plot(ts,'LineWidth',2);

title('上证指数的每日开盘数(1990.12.20-2009.08.19)','FontSize',12);

xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

ylabel('开盘数','FontSize',12);

grid on;

% 数据预处理,将原始数据进行归一化

ts = ts';

tsx = tsx';

% mapminmax为matlab自带的映射函数

% 对ts进行归一化

[TS,TSps] = mapminmax(ts,1,2);

% 画出原始上证指数的每日开盘数归一化后的图像

figure;

plot(TS,'LineWidth',2);

title('原始上证指数的每日开盘数归一化后的图像','FontSize',12);

xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

ylabel('归一化后的开盘数','FontSize',12);

grid on;

% 对TS进行转置,以符合libsvm工具箱的数据格式要求

TS = TS';

% mapminmax为matlab自带的映射函数

% 对tsx进行归一化

[TSX,TSXps] = mapminmax(tsx,1,2);

% 对TSX进行转置,以符合libsvm工具箱的数据格式要求

TSX = TSX';

%% 选择回归预测分析最佳的SVM参数c&g

% 首先进行粗略选择:

[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-8,8,-8,8);

% 打印粗略选择结果

disp('打印粗略选择结果');

str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);

% 根据粗略选择的结果图再进行精细选择:

[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-4,4,-4,4,3,0.5,0.5,0.05);

% 打印精细选择结果

disp('打印精细选择结果');

str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);

%% 利用回归预测分析最佳的参数进行SVM网络训练

cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -p 0.01'];

model = svmtrain(TS,TSX,cmd);

%% SVM网络回归预测

[predict,mse] = svmpredict(TS,TSX,model);

predict = mapminmax('reverse',predict',TSps);

predict = predict';

% 打印回归结果

str = sprintf( '均方误差MSE = %g 相关系数R = %g%%',mse(2),mse(3)*100);

disp(str);

%% 结果分析

figure;

hold on;

plot(ts,'-o');

plot(predict,'r-^');

legend('原始数据','回归预测数据');

hold off;

title('原始数据和回归预测数据对比','FontSize',12);

xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

ylabel('开盘数','FontSize',12);

grid on;

figure;

error = predict - ts';

plot(error,'rd');

title('误差图(predicted data - original data)','FontSize',12);

xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

ylabel('误差量','FontSize',12);

grid on;

figure;

error = (predict - ts')./ts';

plot(error,'rd');

title('相对误差图(predicted data - original data)/original data','FontSize',12);

xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);

ylabel('相对误差量','FontSize',12);

grid on;

snapnow;

toc;

%% 子函数SVMcgForRegress.m

function [mse,bestc,bestg] = SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)

%SVMcg cross validation by faruto

%

% by faruto

%Email:patrick.lee@https://www.doczj.com/doc/2510837534.html, QQ:516667408 https://www.doczj.com/doc/2510837534.html,/faruto BNU

%last modified 2010.01.17

%Super Moderator @ https://www.doczj.com/doc/2510837534.html,

% 若转载请注明:

% faruto and liyang , LIBSVM-farutoUltimateVersion

% a toolbox with implements for support vector machines based on libsvm, 2009.

% Software available at https://www.doczj.com/doc/2510837534.html,

%

% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for

% support vector machines, 2001. Software available at

% https://www.doczj.com/doc/2510837534.html,.tw/~cjlin/libsvm

% about the parameters of SVMcg

if nargin < 10

msestep = 0.06;

end

if nargin < 8

cstep = 0.8;

gstep = 0.8;

end

if nargin < 7

v = 5;

end

if nargin < 5

gmax = 8;

gmin = -8;

end

if nargin < 3

cmax = 8;

cmin = -8;

end

% X:c Y:g cg:acc

[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);

[m,n] = size(X);

cg = zeros(m,n);

eps = 10^(-4);

bestc = 0;

bestg = 0;

mse = Inf;

basenum = 2;

for i = 1:m

for j = 1:n

cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) ),' -s 3 -p 0.1'];

cg(i,j) = svmtrain(train_label, train, cmd);

if cg(i,j) < mse

mse = cg(i,j);

bestc = basenum^X(i,j);

bestg = basenum^Y(i,j);

end

if abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)

mse = cg(i,j);

bestc = basenum^X(i,j);

bestg = basenum^Y(i,j);

end

end

end

% to draw the acc with different c & g

[cg,ps] = mapminmax(cg,0,1);

figure;

[C,h] = contour(X,Y,cg,0:msestep:0.5);

clabel(C,h,'FontSize',10,'Color','r');

xlabel('log2c','FontSize',12);

ylabel('log2g','FontSize',12);

firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...

' CVmse=',num2str(mse)];

title({firstline;secondline},'Fontsize',12);

grid on;

figure;

meshc(X,Y,cg);

% mesh(X,Y,cg);

% surf(X,Y,cg);

axis([cmin,cmax,gmin,gmax,0,1]);

xlabel('log2c','FontSize',12);

ylabel('log2g','FontSize',12);

zlabel('MSE','FontSize',12);

firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...

' CVmse=',num2str(mse)];

title({firstline;secondline},'Fontsize',12);

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

【专业文档】相关与回归分析案例分析.doc

案例:利兴铸造厂产品成本分析 最近几年利兴铸造厂狠抓成本管理,提高经济效益,在降低原材料和能源消耗,提高劳动生产率,以及增收节支等方面,取得了显著成绩,单位成本有明显下降,基本扭转了亏损局面。但是各月单位成本起伏很大,有的月份赢利,有的月份赢利少甚至亏损。为了控制成本波动,并指导今后的生产经营,利兴铸造厂统计部门进行了产品成本分析。 资料搜集整理分析 首先,研究单位成本与产量的关系(如下表): 表1 铸铁件产量及单位成本 从表1可以看出,铸铁件单位成本波动很大,在15个月中,最高的上年4月单位成本达800元,最低的今年3月单位成本为570元,全距是230元。上年2、4、5、9月4个月成本高于出厂价,出现亏损,而今年3月毛利率达到20.8%[(720-570)/720*100%]。

成本波动大的原因是什么呢?从表1可以发现,单位成本的波动与产量有关。上年4月成本最高,而产量最低,今年3月成本最低,而产量最高,去年亏损的4个月中,产量普遍偏低,这显然是个规模效益问题。在成本构成中,可以分为变动成本和固定成本两部分。根据利兴铸造厂的实际情况,变动成本主要包括原材料及能源消耗、工人工资、销售费用、税金等,固定成本主要包括折旧费用、管理费用和财务费用。在财务费用中,绝大部分是贷款利息,由于贷款余额大,在短期内无力偿还,所以每个月的贷款利息支出基本上是一项固定支出,不可能随产量的变动而变动,故将贷款利息列入固定成本之中。从目前情况看,在成本构成中,固定成本所占比重较大,每月产量大,分摊在单位产品中的固定成本就小;如果产量小,分摊在单位产品中的固定成本就大,所以每月产量的多少直接影响单位成本的波动。为了论证单位成本与产量之间是否存在相关关系,并找出其内在规律以指导今后的工作,现计算相关系数,并建立回归方程。 r= - 0.98 计算结果表明,单位成本与产量之间,存在着高度负相关,相关系数为-0.98。 设各月产量为自变量x ,单位成本为因变量y ,则有直线方程式 x y βα???+= 可得结果为 x y 49.01049?-= 计算结果表明,铸铁件产量每增加1吨,单位成本可以下降0.49

自动化工程案例分析

《自动化工程案例分析》课程总结报告 时光如白驹过隙,转眼间,大学已经步入了第四年的光景。短暂的回眸,激荡起那一片片的涟漪,却才开始发现,案例分析,在我心中挥之不去,留下了难以磨灭的记忆。四位老师的倾情传授,为我们的大学生涯留下的不止是斑驳的光影,还有那一缕盘旋不去的温情。 四位老师给我们深入浅出地讲解了很多详细的实例,这些例子和我们所学的知识相互印证,加深了我们对专业知识的了解。也让我们对毕业后的工作方向有了一个更直观的认识,让我们更加有勇气,更加自信的面对即将到来的工作或者是研究生的学习生涯。 叶老师给我们演示的是“中石化某油库计量系统”。首先叶老师讲了背景:中国石化担负着保障国家能源安全的重要责任,一年的原油加工量约为亿吨,其中原油依赖进口,因此,如何降低原油的采购运输成本成为了影响企业生产经营效益的重要问题。原油运输大型化或者原油运输管道化已成为中国石化降低原油输送成本的主要手段。国外的油库管理中已经引入了先进的工业控制技术、网络技术、数据库技术等,对油库日常的收发油品作业、储油管理、油库监控系统等进行全方位的综合管理。而我国的油库自动化技术与国际先进水平相比还是有一定的差距。各种计量仪表的精度较低,稳定性较差,控制系统的控制精度比较低,信息化管理水平不够健全。我国的油库自动化控制和管理系统曾经历了一个较长的发展时期,各种系统操作方式各异,水平也参差不齐,其中还存在着许多人工开票、开阀、手动控泵的原始发油手段。这些系统一方面是可靠性不高,影响油库的经济效益另一方

面没有运用现代化信息技术使有关人员能够方便及时的了解现场的实时运行情况以及历史生产信息,不能为生产调度决策提供可靠的数据依据,同时也不利于提高整个企业的科学化管理水平。 自动化项目浏览: 油库监控自动化系统 原油调合自动化系统 选矿自动化系统 嵌入式项目浏览: 智能防溜系统 海关油气液体化工品物流监控系统 综合项目要求,从整个系统分析,我们需要: 自动化/嵌入式项目浏览 投标与方案 监控系统设计 监控系统调试 监控系统验收 项目管理 油库是储存和供应石油产品的专业性仓库,是协调原油生产和加工、成品油运输及供应的纽带。长期以来,我国油库数据采集工作中的许多操作都是采用人工作业的方式。一方面,不仅工作效率低,而且容易出现人为因素造成的失误另一方面,也不便于有关人员及时了解现场的实时运行情况,不利于提高企业的规范化管理水平。随着自动化

SPSS线性回归分析案例

回归分析 实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析 【研究目的】 居民消费在社会经济的持续发展中有着重要的作用。影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。 【模型设定】 我们研究的对象是各地区居民消费的差异。由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。 1、实验数据 表1: 2010年中国各地区城市居民人均年消费支出和可支配收入

2、实验过程 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:

表2 模型汇总b 表3 相关性 从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX

表4 系数a 3、结果分析 表2模型汇总:相关系数为0.965,判定系数为0.932,调整判定系数为0.930,估计值的标准误877.29128 表3是相关分析结果。消费性支出Y与可支配收入X相关系数为0.965,相关性很高。 表4是回归分析中的系数:常数项b=704.824,可支配收入X的回归系数a=0.668。a的标准误差为0.034,回归系数t的检验值为19.921,P值为0,满足95%的置信区间,可认为回归系数有显著意义。得线性回归方程Y=0.668X+704.824. 【实验结论】 (1)结果显示,变量之间具有如下关系式:Y=0.668X+704.824.也就是说消费与收入之间存在稳定的函数关系。随着收入的增加,消费将增加,但消费的增长低于收入的增长。这与凯尔斯的绝对收入消费理论刚好吻合。但为了研究方便,这里假设边际消费倾向为常数。由公式知X每增长1个单位,Y增加0.668个单位。

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

, 设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年 年份 @ 人口自然增长率 (%。) 国民总收入 (亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15037 1366 1989 … 17001 18 1519 1990 18718 1644 1991 【 21826 1893 1992 26937 2311 1993 . 35260 2998 1994 48108 4044 1995 — 59811 5046 1996 70142 5846 1997 ~ 78061 6420 1998 83024 6796 1999 【 88479 7159 2000 98000 7858 2001 [ 108068 8622 2002 119096 9398 2003 : 135174 10542 2004 159587 12336 2005 、 184089 14040 2006 213132 16024

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

统计学案例——相关回归分析

《统计学》案例——相关回归分析 案例一质量控制中的简单线性回归分析 1、问题的提出 某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。 通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。 2、数据的收集

目标值确定之后,我们收集了某年某季度的回流温度与液化气收率的30组数据(如上表),进行简单直线回归分析。 3.方法的确立 设线性回归模型为εββ++=x y 10,估计回归方程为x b b y 10?+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。因此,建立描述y 与x 之间关系的模型时,首选直线型

是合理的。 从线性回归的计算结果,可以知道回归系数的最小二乘估计值 b 0=21.263和b 1=-0.229,于是最小二乘直线为 x y 229.0263.21?-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。 (3)残差分析 为了判别简单线性模型的假定是否有效,作出残差图,进行残差分析。

从图中可以看到,残差基本在-0.5—+0.5左右,说明建立回归模型所依赖的假定是恰当的。误差项的估计值s=0.388。 (4)回归模型检验 a.显著性检验 在90%的显著水平下,进行t 检验,拒绝域为︱t ︱=︱b 1/ s b1︱>t α /2=1.7011。 由输出数据可以找到b 1和s b1,t=b 1/ s b1=-0.229/0.022=-10.313,于是拒绝原假设,说明液化气收率与回流温度之间存在线性关系。 b.拟合度检验 判定系数r 2=0.792。这意味着液化气收率的样本变差大约有80%可以由它与回流温度的线性关系来解释。 2r r ==-0.89 这样,r 值为y 与x 之间存在中高度的负线性关系提供了进一步的证据。 由于n ≥30,我们近似确定y 的90%置信区间为: s z y )(?2 α±=21.263-0.229x ±1.282×0.388 = 21.263-0.229x ± 0.497

Workbench高级工程实例分析培训

Workbench高级工程实例分析培训 第1例:齿轮动态接触分析 该实例系统讲解模型的导入,接触设置,齿轮实现转动的方法和原理解释,并给学员演示空载荷负载作用下的齿轮结构的应力计算比较。 图1 斜齿轮接触的有限元模型 图2 动态接触过程中某一时刻的等效应力云图(空载)

图3 动态接触过程中某一时刻的等效应力云图(负载200N.m) 第2例:过盈装配结构分析 该实例会系统讲解过盈装配结构的应力分析方法。不同设置过盈量的计算结果比较和讨论设置过盈量的合理方法,摩擦系数,旋转速度对过盈装配应力的影响。 图4 过盈量为0.00005m时的等效应力(转速=0)图5 过盈量为0.00005m时的接触应力(转速=0)

图6 过盈量为0.00005m 时的等效应力(转速=4000) 图7 过盈量为0.00005m 时的接触应力(转速=4000) 第3例:液压阀结构的分析 该实例会讲解施加随空间变化的压力载荷和系统分析接触设置对求解的影响,并给出如何合理选取接触参数来实现较为准确的求解。 图8 变化压力载荷分布云图 图9 接触压力云图(摩擦系数=0.1,增强拉格朗日算法) 第4例:发动机活塞机构的多体动力学分析 该实例会讲解如何为多体设置驱动力和约束多体之间的运动关系的方法,并讲解柔性体的多体动力学分析和刚-柔耦合的多体动力学分析。

图10 0.12s时刻的等效应力云图(柔性体)图11 1.17s时刻的等效应力云图(柔性体) 图12 0.12s时刻的等效应力云图(刚-柔耦合)图13 1.17s时刻的等效应力云图(刚-柔耦合)第5例:薄壁结构的非线性屈曲分析 该实例会讲解如何在Workbench环境下完成薄壁结构的非线性屈曲分析并获得非线性屈曲载荷的方法,研究不同初始缺陷,弹塑性对非线性屈曲载荷的影响。

BP网络用于催化剂配方建模--MATLAB实例

BP 网络用于催化剂配方建模--MATLAB 实例 本例是《人工神经网络理论、设计及应用》(第二版)中BP 网络应用与设计的例子,现用MATLABF 仿真。 介绍:理论上已经证明,三层前馈神经网络可以任意精度逼近任意连续函数。本例采用BP 神经网络对脂肪醇催化剂配方的实验数据进行学习,以训练后的网络作为数学模型映射配方与优化指标之间的复杂非线形关系,获得了较高的精度。网络设计方法与建模效果如下: (1)网络结构设计与训练首先利用正交表安排实验,得到一批准确的实验数据作为神经网络的学习样本。根据配方的因素个数和优化指标的个数设计神经网络的结构,然后用实验数据对神经网络进行训练。完成训练之后的多层前馈神经网络,其输入与输出之间形成了一种能够映射配方与优化指标内在联系的连接关系,可作为仿真实验的数学模型。图3.28给出针对五因素、三指标配方的实验数据建立的三层前馈神经网络。五维输入向量与配方组成因素相对应,三维输出向量与三个待优化指标[脂肪酸甲脂转化率TR(%)、脂肪醇产率Y (%)和脂肪醇选择性S (%)]相对应。通过试验确定隐层结点数为4。正交表安排了18OH OH 组实验,从而得到18对训练样本。训练时采用了改进BP 算法: ) 1()(??+=?t W X t W αηδ(2)BP 网络模型与回归方程仿真结果的对比表3.3给出BP 网络配方模型与回归方程建立的配方模型的仿真结果对比。其中回归方程为经二次多元逐步回归分析,在一定置信水平下经过F 检验而确定的最优回归方程。从表中可以看出,采用BP 算法训练的多层前馈神经网络具有较高的仿真精度。

表3.3注:下标1表示实测结果,下标2表示神经网络输出结果,下标3表示回归方程 以下是具体操作: 编号A/Cu Z n/C u B/Cu C/Cu Mn/Cu T R1/% 1 T R2/% T R3/% Y OH 1/%Y OH 2/% Y OH 3/% S OH 1/% S OH 2/% S OH 3/% 10.050.130.080.140.0494.594.62 83.8396.3 96.56 95.9897.8 97.24 102.8320.0650.070.120.160.0288.05 88.0592.4375.575.97 76.5 86.586.68 79.6530.08 0.190.080.060.060.25 60.4382.0340.2141.4344.8796.2595.3681.9240.0950.110.060.160.0493.05 93.1194.3197.3196.29105.4399.3 99.39 103.0850.11 0.050.020.060.0294.65 94.7285.7988.5588.0677.8995.297.49 87.1260.1250.170.00.140.096.05 95.9697.0895.5 96.69 105.4399.599.52 104.7170.14 0.090.160.040.0461.00 61.1365.3959.7258.954.76 67.3569.1 73.52 80.1550.030.120.140.0270.40 70.3980.4437.5 41.83 46.3652.2551.3871.4590.17 0.150.10.040.083.383.32 70.2282.8580.4659.5 99.2 96.53 74.3 100.050.070.060.120.0584.585.27 70.2290.9 90.46 91.5195.997.87 92.75110.0650.190.040.020.0369.569.45 80.7761.865.03 55.2288.292.41 98.44120.08 0.130.00.120.0194.55 95.694.75 97.695.74 92.4499.697.93 101.65130.0950.050.160.020.0570.95 69.5192.8862.5460.452.5 60.162.63 68.12140.11 0.170.140.10.0387.287.16 78.6491.0 89.19 76.9299.899.36 92.22150.1250.110.10.00.0164.264.08 69.5958.359.12 54.0258.960.22 72.5 160.14 0.030.080.10.0586.15 86.1582.4 75.65 61.4329.9386.578.07 79.28170.1550.150.040.00.0377.15 77.1775.2371.971.72 83.9491.891.74 94.2318 0.17 0.090.020.080.0196.05 96 87.05 94.60 94.62 94.61 98.00 99.12 90.35

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

spss多元回归分析报告案例

企业管理 对居民消费率影响因素的探究 --- 以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。 本模型以湖北省1995年-2010 年数据为例,探究各因素对居民消费率的影响及多元关系。(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。通常来说,影响居民消费率的因素是多方面的,如:居民总 收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。 1. 人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14 岁人口与15-64 岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。0-14岁人口比例与65岁及以上人口比例可由《湖北省统计年鉴》查得。

注:数据来自《湖北省统计年鉴》) 、计量经济模型分析 (一)、数据搜集 根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。X1:居民总收入(亿元),X2:人口增长率(‰),X3:居民消费价格指数增长率,X4:少儿抚养系数,X5:老年抚养系数,X6:居民消费占收入比重(%)。 X3:居民 X2:人口X6:居民 Y:消费率(%)X1:总收入 (亿元) 增长率 (‰) 消费价格 指数增长 率 X4:少儿X5:老年 消费比重 (%) 抚养系数抚养系数 1995 51.96 1590.75 9.27 17.1 45.3 9.42 68.9 1997 50.35 2033.68 8.12 2.8 41.1 9.44 70.72 2000 44.96 2247.25 3.7 0.4 39 9.57 70.93

数控专业毕业论文选题

数控专业毕业论文选题 1、普通车床的数控化改造技术分析 2、对数控机床故障诊断的分析及研究 3、典型零件的数控加工工艺分析 4、车床工作台进给系统的结构分析 5、电脑外壳塑料模具设计 6、自车飞轮模具设计 7、简易立车自动回转刀架的设计 8、管内爬行机器人驱动机构设计 9、液压电梯闭式回路电液控制系统设计 10、带式运输机传动装置系统设计 11、气压传动机械手设计 12、零件的数控编程加工工艺流程 13、铣削组合机床及其主轴组件设计 14、数控机床的故障原因分析与处理 15、数控车床液压系统的设计分析 16、数控车床系统的故障诊断与维修 17、数控机床液压系统常见故障分析及诊断方法 18、数控机床控制及故障诊断系统分析与实现 19、数控机床机械加工效率的改进方法研究 20、数控机床维修的具体措施分析 21、数控机床维修改造中的问题与对策 22、试论数控机床的安装调试及维护 23、浅谈数控维修维修人才的培养 24、基于工艺特征的数控编程方法研究 25、数控机床变频器故障维修及解决方案 26、数控机床零件的加工工艺流程研究 27、数控机床中高速切削加工运用分析

28、浅析数控加工生产效率的运用 29、数控机床电气控制系统的PLC设计 30、数控机床排屑机构的改造与设计 31、PLC在数控机床电气控制方面的应用 32、数控机床改造中的弊端及应对措施 33、数控机床机床维修及保养 34、数控机床常见故障的基本处理及研究 35、基于PLC的数控机床电气控制系统分析 36、PLC应用技术在数控机床电气控制中的具体运用 37、基于PLC的数控机床电气控制 38、加工中心数控系统改造及维护应用 39、FANUC数控故障维修与保养 40、数控机床主轴系统实用案例分析 41、基于机器人数控技术的机械制造行业研究 42、机械模具数控加工制造技术分析 43、现代自动化机械制造中的数控技术应用 44、数控技术在机械加工技术中的探讨 45、数控机床中的电气控制系统故障及维护方法 46、数控技术在智能制造中的应用 47、数控刀具对数控加工工艺的影响分析 48、机械零件数控加工精度的方法 49、数控机械加工效率优化措施分析 50、UG软件对工程制图课及数控加工教学中的帮助运用 52、浅析数控加工生产效率的改进 53、一种数控加工自动上下料机械手的设计 54、人工智能在数控加工中的具体应用 55、机械数控加工技术水平的提高策略 56、基于UG带槽组合体的数控铣削加工研究 57、数控加工技术在机械模具制造中的具体应用

项目二 相关与回归分析报告案例及练习要求

项目二:相关与回归分析 一、实验目的 1、掌握Pearson简单相关分析方法,并根据相关系数判断两变量的相关程度。 2、熟悉偏相关系数、Kendall tau-b和Spearman等级相关系数的计算方法,理解其区别与联系。 3、掌握一元与多元回归分析方法,对回归模型估计和检验,并对结果进行分析。 4、了解曲线回归分析方法。并对回归结果进行分析。 二、实验内容和要求 1、现有杭州市区 1978-2014 年的 GDP、城镇居民年人均可支配收入和年人均消费支出的数据资料(example1.sav),如下:

数据来源:历年《杭州统计年鉴》和《2014年杭州市国民经济和社会发展统计公报》。 要求: (1)求人均可支配收入、GDP、人均消费性支出与消费价格指数的双变量Pearson相关系数。 相关性 income bcpi income Pearson 相关性 1 .841**显著性(双侧).000 N 37 37 bcpi Pearson 相关性.841** 1 显著性(双侧).000 N 37 37 **. 在 .01 水平(双侧)上显著相关。 相关性 gdp bcpi gdp Pearson 相关性 1 .751**显著性(双侧).000 N 37 37 bcpi Pearson 相关性.751** 1 显著性(双侧).000 N 37 37 **. 在 .01 水平(双侧)上显著相关。

相关性 payout bcpi payout Pearson 相关性 1 .873**显著性(双侧).000 N 37 37 bcpi Pearson 相关性.873** 1 显著性(双侧).000 N 37 37 **. 在 .01 水平(双侧)上显著相关。 (2)画出人均可支配收入与人均消费支出的散点图,求人均消费支出倚人均可支配收入的直线回归方程,解释方程结果,并给出方程的估计标准误差。

数据分析师面试常见的77个问题

数据分析师面试常见的77个问题 2013-09-28数据挖掘与数据分析 随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。 1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。 2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的? 3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则? 4、什么是:协同过滤、n-grams, map reduce、余弦距离? 5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库? 6、如何设计一个解决抄袭的方案? 7、如何检验一个个人支付账户都多个人使用? 8、点击流数据应该是实时处理?为什么?哪部分应该实时处理? 9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在

所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好? 10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言? 11、你是如何处理缺少数据的?你推荐使用什么样的处理技术? 12、你最喜欢的编程语言是什么?为什么? 13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。 14、SAS, R, Python, Perl语言的区别是? 15、什么是大数据的诅咒? 16、你参与过数据库与数据模型的设计吗? 17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法? 18、你喜欢TD数据库的什么特征? 19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗? 20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出? 21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好? 22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少? 23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡? 24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些? 25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价? 26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法? 27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下) 28、什么是星型模型?什么是查询表?

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

相关主题
文本预览
相关文档 最新文档