当前位置:文档之家› 传递过程原理01

传递过程原理01

第1章数学准备:矢量分析与场论

The language of transport phenomena is mathematics ?Ordinary(partial) differential equations

?Elementary vector analysis.

本章的目的

作为传递过程原理的数学准备,通过本章的学习,需要熟悉以下内容:

?矢量运算(标量积、矢量积)

?三种正交曲线坐标系

?直角坐标系下梯度、散度、旋度的定义?标量和矢量的拉普拉斯运算

?偏导数、全导数和随体导数的定义

例:用矢量运算形式表示的传递方程

请将下面三个方向上的Navier-Stokes 方程写成统一的矢量运算和随体导数的形式:

2

2

2

22213y x x x x x z u Du u u u u u p

X Dt x x

y z x x y z ρρμμ????????????=?++++++????????????????222

22213y

y y y y x z Du u u u u u u p

Y Dt y x y z y x y z ρρμμ????????

????=?++++++?????????????????

?

222

22213y x z z z z z u u Du u u u u p

Z Dt z x y z z x y z ρρμμ????????????=?++++++????????????????21()

3

g Du F p u u Dt ρρμμ=??+?+???G G G G

第1章教学目录

1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系

1.2 矢量微分运算

1.1 标量、矢量和张量基本概念1.1.1 标量、矢量和张量基本概念

1.1.2 标量积

1.1.3 矢量积

传递过程中所遇到的物理量可以分为三类:

?标量,即0阶张量,具有大小,无方向,如温度、体积。?矢量,即1阶张量,具有大小和方向,如速度、力。

?张量,即2阶张量,具有大小和两个方向的量,如剪切应力。 矢量的表示方法?A 是矢量的大小,又称模值?代表矢量的方向,其大小等于1,称为基本矢量、单位矢量

?在直角坐标系中,矢量可以表示为:?该矢量的模为:1.1.1 标量、矢量和张量基本概念

A Ae

=G G

e G

1

2

3

11

22

33

A Ai A j A k A e A e A e

=++=++G G G G

222

1

23

A A A A A

==++G

标量积 在直角坐标系下:

cos A B A B θ?=??G G

B cos θ

θ

A

B

()()

x y z x y z x x y y z z

A B A i A j A k B i B j B k A B A B A B ?=++++=++G G

矢量积

?大小:?方向:右手螺旋定则

在直角坐标系下:

sin A B A B θ

×=??G G

sin x

y z x

y

z

i

j k A B A B A A A B B B θ×=??=G G

Solution

(i)

(ii)

(iii)

1 矢量分析与场论

1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系

1.3 矢量微分运算

1.2 正交曲线坐标系

目的

?为了解决问题的方便,不同的问题需要选用不同的坐标系,选

取原则:

被研究的课题在选定的坐标系上具有对称性,以便减少独立的空间参数。

?将在一个坐标系下推导的传递方程应用在另一个坐标系下需要

坐标变换。

主要内容

1.2.1 正交曲线坐标的概念

1.2.2 常见的正交曲线坐标系

1.2.1 正交曲线坐标(Orthogonal Curvilinear Coordinates)

?三维空间任意一点的位置可通过三条相互正交的曲线的交点来确定?该三条正交曲线组成确定三维空间任意点位置的体系,称为正交曲线坐标系

?三条正交曲线称为坐标轴,描述坐标轴的量称为坐标变量。

1.2.2 常见的正交曲线坐标系 1.2.2.1 直角坐标系

1.2.2.2 柱坐标系

1.2.2.3 球坐标系

1.2.2.1直角坐标系(Cartesian Coordinate System)

x y z ?∞<<∞?∞<<∞?∞<<∞

x y z A A i A j A k

=++J G

任一矢量可以表示为:

范围:

范围:

和直角坐标系的变换关系:

cos sin x r y r z z

θθ===002r z θπ≤≤∞≤≤?∞≤≤∞

r r z Z

A e A e A e A θθ=++G G G G 任一矢量可以表示为:

r=2,θ=-60°, z=1

微元体的体积:微元体的面积:

范围:

和直角坐标系的变换关系:

sin cos sin sin cos x r y r z r θφθφθ

===0020r φπθπ

≤≤∞

≤≤≤≤r r A e A e A e A φφθθ

=++G G G G 任一矢量可以表示为:

r=2, θ=45,φ=-60

微元体的体积:微元体的面积:

1 矢量分析与场论

1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系

1.3 矢量微分运算

传递过程原理作业题解章

传递过程原理作业题解 章 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第二章 1. 对于在r θ平面内的不可压缩流体的流动,r 方向的速度分量为 2cos /r u A r θ=-。试确定速度的θ分量。 解:柱坐标系的连续性方程为 11()()()0r z ru u u r r r z θρρρρθθ ????+++=' ???? 对于不可压缩流体在r θ平面的二维流动,ρ=常数,0, 0z z u u z ?==?,故有 11()0r u ru r r r θ θ ??+=?? 即 2 2 cos cos ()()r u A A ru r r r r r θθθθ ???=- =- -=- ??? 将上式积分,可得 2 2 cos sin ()A r A u d f r r θθθ θ=-=- +? 式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。令()0f r =,可得到u θ的最简单的表达式: 2 sin A u r θθ =- 2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。 (1)在矩形截面管道内,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动; (4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。 解: ()0ρρθ ?+?=?u

(1) 在矩形截面管道内,可压缩流体作稳态一维流动 0x z x y z u u u u u u x y z x y z ρρρρρθ ???????++++++=????????? ??? y 稳态: 0ρ θ ?=?,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρ ρ ??+=??, 即 ()0z u z ρ?=? (2)在平板壁面上不可压缩流体作稳态二维流动 ()()()0y x z u u u x y z ρρρρθ ????+++=???? 稳态: 0ρ θ ?=?,二维流动:0z u = ∴ ()()0y x u u x y ρρ??+=??, 又cons t ρ=,从而 0y x u u x y ??+=?? (3)在平板壁面上可压缩流体作稳态二维流动 在此情况下,(2)中cons t ρ≠ ∴ ()()0y x u u x y ρρ??+=?? (4)不可压缩流体在圆管中作轴对称的轴向稳态流动 ()()()110r z r u u u r r r z θρρρρθθ????+++='???? 稳态: 0ρθ?='?,轴向流动:0r u =,轴对称:0θ ?=? ∴ ()0z u z ρ?=?, 0z u z ?=? (不可压缩cons t ρ=) (5)不可压缩流体作球心对称的径向稳态流动

传递过程原理论文样本

简谈化工传递原理中的类似性 摘要 在化工行业的生产过程中,有各种各样的单元操作,但是从原理上看就包括流体流动,质量交换,加热或冷却这三类过程。也就是我们所说的动量传递,质量传递与热量传递。本文通过分析化工过程中的传递现象, 总结了动量传递、热量传递和质量传递过程的一些类似性, 并且讨论了这些类似性的理论和应用价值。 关键词: 动量传递;热量传递;质量传递;类似性 一、分子传递的类似性 描述分子传递的三个定理分别是牛顿粘性定理、傅立叶热传导第一定理和费克扩散第一定理。其数学描述依次为: 方程(1)和(2)经过简单的推导可变为如下方程: 在(3)(4)(5)三个方程中,我们可以分析发现以下的类似性: 首先,v,和D 都被叫做扩散系数,单位均为m2/s。它们是物质的动力学物AB 性,且三者之间存在如下关系: 其中u 为分子平均速度,为分子平均自由程。 其次,,, 分别为动量浓度梯度、热量浓度和质量浓度梯度。表明了三种传递都是以浓度梯度作为传递的推动力。 最后,,,都表示了某一物理量的通量,分别为动量通量、热量通量和质量通量。 由以上分析可知这三种分子传递可以用统一的文字方程描述为: 通量扩散系数浓度梯度() 其中负号表示传递方向与浓度梯度方向相反。我们将上式称为现象方程, 表明三种分子传递过程具有同样的现象方程。

二、对流传递的类似性 我们分析在平板壁面的边界层中, 摩擦曳力系数,对流传热系数h和对流传质系的定义式分别为: (7),(8),(9)三式可以变换如下: 分析上述三式,便可以得出以下的类似性: 第一,对流传递的动量通量、热量通量和质量通量都相应地等于各自的对流传递系数乘以各自量的浓度差,可以用如下文字方程表示: 通量(对流传递系数)(浓度差) 其中负号同样表示方向的差异。 第二,上述三式中的浓度差其实就是表示传递的推动力。 为动量浓度差, 表示动量传递的推动力。由于壁面的动量为,而),所以用“0”表示壁面动量。 为热量浓度差, 表示对流传热的推动力。 为摩尔浓度差, 可以看做对流传质的推动力。 第三,,, 均表示对流传递的系数,且单位均为m/s 。 三、三传类比的概念 在无内热源,无均相化学反应,无辐射传热的影响,由于表面传递的质量速率足够低, 对速度分布、温度分布和浓度分布的影响可以忽略不计, 可视为无总体流动,无边界层分离,无形体阻力等条件下,许多学者从理论上和实验上对三传类比进行了研究。 雷诺通过理论分析,最早提出了三传类比的概念,得出单层模型。雷诺首先假定层流区(或湍流区)一直延伸到壁面,然后利用动量、热量和质量传递的相似性,导出了范宁摩擦因子与传热系数和传质系数之间的关系式,即广义雷诺类比式如下: 或

传递过程原理讲课提纲第一章:动量、热量与质量传递

化学工程、环境工程专业工程硕士班 传递过程原理/环境流体力学(水力学)讲课提纲 湘潭大学化工学院杨运泉 绪论 1.动量、热量与质量传递概述 a. “传递过程”概述 b. “传递过程”所讨论的主要问题:过程速率及定义式 c. “传递过程”的意义及用途 2.单位制的问题 第一章动量热量与质量传递导论 §1 现象定律与传递过程的类似性 1.传递过程的一般形式:分子与涡流传递 2.现象定律:定义及传递过程三个基本定律 3.梯度概念 §2 涡流传递的类似性 1.涡流黏度,涡流扩散系数 2.几个常用准数:Pr、Sc 、Le 、Sh 、Nu、Re 及其相互关系 §3 圆管中的稳态层流 1.圆管中稳态层流的速度分布及压降——泊稷叶方程 2.平行平板间稳态层流的速度分布与压降计算 3.主体流速(平均流速)概念及定义式 a.层流下的平均流速 b.湍流下的平均流速:尼古拉斯—布拉修斯分布律 c.湍流主体的涡流粘度与层流内层中分子粘度量级的比较 第二章总质量能量及动量衡算 §1总质量衡算 1.概念:控制体,控制边界 2.质量守恒定律一般表达式 3.单组分、多组分无化学反应体系的质量衡算一般表达式 4.多组分、有化学反应体系的质量衡算表达式及反应速率(生成速率)符号规定 5.系统总质量衡算的普遍化方程及∮AρucosαdA的意义 §2 总能量衡算 1.流动静力学平衡方程——流体连续性假定及欧拉平衡方程的推导 a.二种类型力:表面力:压力剪力 体积力:惯性力场力 b.力的平衡:微分平衡方程dp/ρ=Xdx+Ydy+Zdz

c.旋转容器内流体的压强分布(闭盖时) d.旋转容器内流体的自由界面形态(敞盖时) 2.运动流体的平衡方程——牛顿第二定律应用于理想流体(柏努利方程) a.流体运动的两种考察方法:欧拉法与拉格朗日法 b.流线与轨线及其特性 c.稳态流动下流体的机械能守恒方程(理想流体) { d.稳态下非理想流体的机械能衡算方程 e.动能项修正系数α的计算 α=[(2n+1)(n+1)]3 /[4n 4(2n+3)(n+3)] §3 总动量衡算 1.流体动量的表示 u M p 2.三维流动空间中流体动量衡算方程总式及向量分式 3.弯管中流体动量及弯管受力分析计算 第三章 粘性流体运动的微分方程及其应用 §1 连续性方程 1.连续性方程推导 2.连续性方程的分析与简化 a.随体导数、 局部导数、 对流导数 b.不可压缩流体的连续性方程判别式及例题 3.柱和球座标系中的流体连续性方程表示 §2 流体运动的基本方程 1.以随体导数表示的流体受力,牛顿第二定律表示法 2.流体受力类型及各力大小、方向分析,力平衡方程 3.剪应力与形变(线形变、角形变)关系 4.法向应力的表达 5.粘性流体的Navier-Stokes 方程及讨论 6. N-S 方程在柱和球座标中的表示 §3 N-S 方程的应用实例 1.无限大平行平板间稳态层流速度分布、平均速度及压强计算 2.圆形直管内的稳态层流速度分布、平均速度及压强计算 3.环形套管中的稳态层流速度分布、平均速度及压强计算 §4 爬流 1.爬流概念 2.球形颗粒表面上爬流的N-S 方程球坐标解析式 3.球形颗粒在流体中的受力——Stokes 方程 a.形体阻力、表面阻力 单一流线 流线束

控制工程基础课程内容总结

控制工程基础课程内容总结 一.控制、控制系统的一般概念 1.反馈(闭环)控制原理 概念:基于负反馈基础上的检测偏差用以纠正偏差的控制原理(P4) 控制系统的工作原理:(P4) a.通过测量元件检测输出信号的实际值 b.将实际值与输入信号进行比较得出偏差信号。 c.利用偏差信号产生的控制调节作用去消除偏差。 控制系统的基本组成和术语 控制目标、控制系统、控制结果三部分组成;(P2) 信号、反馈、控制是控制工程的三个要素。(P5) 反馈是把取出输出信号送回到输入端,并与出入信号进行比较产生偏差信号的过程。(P4) 负反馈:反馈的信号是与输入信号相减,时产生的偏差越来越小。 正反馈:反之即得 控制过程的物理本质:任何控制系统的控制过程都是一种信息处理使能量(或物质、或信息)按预定的规律转移、传递的过程。(P6) 2.基本控制策略:开环控制、闭环控制、复合控制(P6—P7) 如果系统只是根据输入信号和干扰信号进行控制,而输入端和输出端之间不存在反馈回路,输出信号在整个控制过程中对系统的控制不产生任何影响,这样的控制方式称为开环控制。(数控机床的进给运动) 如果系统的输入端和输出端之间存在反馈回路,输出量对控制过程产生直接影响,这种系统称为闭环控制系统。 同时采用闭环控制和开环控制的控制方式称为复合控制。 3.线性系统的重要性质:叠加原理(P10) 控制系统的基本要求:稳定,快速,精确,健壮。(P11) 4.瞬态响应和稳态响应;零输入响应、零状态响应(P70) 二.系统数学模型及其建模 何谓数学建模?(P15)何谓负载效应?(P21)何谓线性化?(P19)如何线性化?(P19—P20) (一).传递函数 1.传递函数的概念(P35)与性质(P36)零点、极点、特征多项式和特征方程(P36) 2.典型环节的传递函数(P38—P46) 3.控制系统的传递函数 开环传递函数(P56),开环增益(P57),系统型号(P96) 主令输入、扰动输入下的闭环传递函数(P57) 主令输入、扰动输入下的偏差、误差传递函数(P57—P58)

传递过程原理作业题和答案(原稿)

《化工传递过程原理(Ⅱ)》作业题 1. 粘性流体在圆管内作一维稳态流动。设r 表示径向距离,y 表示自管壁算起的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩散系数)×(动量浓度梯度)表示的现象方程。 1.(1-1) 解:()d u dy ρτν = (y Z ,u Z ,du dy > 0) ()d u dr ρτν =- (r Z ,u ], du dr < 0) 2. 试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。 2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出: A A AB d j D dy ρ=- (1-3) () d u dy ρτν =- (1-4) ()/p d c t q A dy ρα=- (1-6) 1. 它们可以共同表示为:通量 = -(扩散系数)×(浓度梯度); 2. 扩散系数 ν、α、AB D 具有相同的因次,单位为 2/m s ; 3. 传递方向与该量的梯度方向相反。 3. 试写出温度t 对时间θ的全导数和随体导数,并说明温度对时间的偏导数、全导数和随体导数的物理意义。 3.(3-1) 解:全导数: dt t t dx t dy t dz d x d y d z d θθθθθ????=+++???? 随体导数:x y z Dt t t t t u u u D x y z θθ????=+++???? 物理意义: t θ ??——表示空间某固定点处温度随时间的变化率;

dt d θ——表示测量流体温度时,测量点以任意速度dx d θ、dy d θ、dz d θ 运动所测得的温度随时间的变化率 Dt D θ ——表示测量点随流体一起运动且速度x u dx d θ=、y u dy d θ=、z u dz d θ=时, 测得的温度随时间的变化率。 4. 有下列三种流场的速度向量表达式,试判断哪种流场为不可压缩流体的流动。 (1)xy x z y x )2()2(),,(2θθ--+= (2)k y x j z x i x z y x u )22()(2),,(++++-= (3)xz yz xy y x 222),(++= 4.(3-3) 解:不可压缩流体流动的连续性方程为:0u ?=r (判据) 1. 220u x x ?=-=r ,不可压缩流体流动; 2. 2002u ?=-++=-r ,不是不可压缩流体流动; 3. 002222()u y z x x y z =??≠??=++=++=r ,不可压缩 ,不是不可压缩 5. 某流场可由下述速度向量式表达: (,,,)3u x y z xyzi y j z k θθ=+-r r r r 试求点(2,1,2,1)的加速度向量。 5. (3-6) 解: y x z i j k Du Du Du Du D D D D θθθθ =++r r r r x x x x x x y z u u u Du u u u u D x y z θθ=+++???????? 0()()3()xyz yz y xz z xy θ=++- (13)xyz yz θ=+- y y Du D θ = 23(3)(3)3(31)z z z z Du D θθθθ =-+--=-

传递过程原理复习题最后报告

《传递工程基础》复习题 第一单元传递过程概论 本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。熟悉本课程的研究方法。 第二单元动量传递 本单元主要讲述连续性方程、运动方程。掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。 第三单元热量传递 本单元主要讲述热量传递基本方式、微分能量方程。了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。结合实际情况,探讨一些导热理论在工程实践中的应用领域。 第四单元传量传递 本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。

第一部分 传递过程概论 一、填空题: 1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。 2. 化学工程学科研究两个基本问题。一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。 3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。 4.分子扩散系数(ν ,α ,D AB )是物质的物理性质常数,它们仅与__温度__ , ___压力 ___和___组成__等因素有关。 5.涡流扩散系数(E )则与流体的__性质____无关、而与__湍动程度_____,流体在管道中的 ____所处位置____和___边壁糙度_____等因素有关。 6.依据流体有无粘性,可以将流体分为____粘性_______流体和理想_______流体。 7.用于描述涡流扩散过程传递通量计算的三个公式分别为:____ _、_______ 和 ________ __。 8.动量、热量及质量传递的两种基本方式是 对流 和 扩散 ,其中,前者是指由于 流 体宏观流动 导致的传递量的迁移,后者指由于传递量 浓度梯度 所致传递量的迁移。 9.分子传递的基本定律包括 牛顿粘性定律 , 傅立叶定律 和 费克定律 ,其数学定 义式分别为 dy du μτ-= , dy dt k A q -=?? ? ?? 和 dy dC D j A AB A -= 。 10. 依据守恒原理运用微分衡算方法所导出的变化方程包括连续性方程、能量方程、运动方 程和对流扩散方程。 11.描述分子传递的现象方程及牛顿粘性定律 、傅立叶定律和费克定律称为本构方程。 12. 依据质量守恒、能量守恒和动量守恒原理,对设备尺度范围进行的衡算称为总衡算或宏 观衡算;对流体微团尺度范围进行的衡算称为微分衡算或微观衡算。 13.通过微分衡算,导出微分衡算方程,然后在特定的边界和初始条件下通过梳理解析方法, 将微分方程求解,才能得到描述流体流动系统中每一点的有关物理量随空间位置和时间的变 化规律。 14. 传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的 梯度成正比,传递的方向为该物理量下降的方向。 15.传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。 二、基本概念 1. 流体质点 2. 连续介质 3. 稳态流动、非稳态流动 三、名词解释 1.压力、黏度、通量 2 不可压缩流体,可压缩流体,粘性流体,理想流体,非牛顿流体,非牛顿流体的几种类型?

热工基础课程总结

热工基础读书报告 摘要:能源是提供能量的源泉,是人类社会生存和发展的源泉。热工的基础课程的目的是认识和掌握能源开发和利用的基本规律,为合理的开发和利用能源奠定理论基础。本文就热工基础这门课程的学习进行了以下三方面的总结。第一:说明这门课程的研究目的和研究方法;第二:简单总结各章节的主要内容和知识框架体系;第三:从个人角度论述一下学习这门课程的心得体会及意见。 关键词:能量热工学研究方法心得体会

正文 自然界蕴藏着丰富的能源,大部分能源是以热能的形式或者转换为热能的形式予以利用。因此,人们从自然界获得的的能源主要是热能。为了更好地直接利用热能,必须研究热量的传递规律。 1 热工基础的研究目的和研究方法 1.1 研究目的 热的利用方式主要有直接利用和间接利用两种。前者如利用热能加热、蒸煮、冶炼、供暖等直接用热量为人们服务。后者如通过个证热机把热能转化为机械能或者其他形式的能量供生产和生活使用。 能量的转换和传递是能量利用中的核心问题,而热工基础正是基于实际应用而用来研究能量传递和转换的科学。 传热学就是研究热量传递过程规律的学科,为了更好地间接利用热能,必须研究热能和其他能量形式间相互转换的规律。工程热力学就是研究热能与机械能间相互转换的规律及方法的学科。由工程热力学和传热学共同构成的热工学理论基础就是主要研究热能在工程上有效利用的规律和方法的学科。 作为一门基于实际应用而产生的学科,其最终还是要回归到实际的应用中,这样一来,就要加强对典型的热工设备的学习和掌握。 1.2研究方法 热力学的研究方法有两种:宏观研究方法和微观研究方法。宏观研究方法是以热力学第一定律和热力学第二定律等基本定律为基础,针对具体问题采用抽象、概括、理想化简化处理的方法,抽出共性,

传递过程原理习题答案

《传递过程原理》习题一 一、在一内径为2cm 的水平管道内,测得距管壁 5mm 处水的流速为s 。水 在283K 温度下以层流流过管道。问:(1)管中的最大流速。(2)查出283K 下 水的粘度,注明出处。(3)每米管长的压强降(N/m 2/m )。(4)验证雷诺数。 为层流 二、用量纲确证有效因子(节)中的 K 为无量纲数 (K .. ?a/ D A R ) 【解】:[k 1] m s 1 [a] m 1 2 1 [D AB ] m s [R] m 所以,[K] ms 1 m 1 /(m 2 s 1 ) m 1 故,K 为无量纲数 【解】:⑴ r 2 ) P g R 2 4 L (1) 在r =0处, 即管中心处速度最大为V max P 丄R 2 4 L 本题中 R=1cm, 在 r ==, v=s ,带入(1) 得, 0.1 P g R 2 2 g [1 (0.5/1)2 ] 4 L P g R 2 s=s 4 L 3 1.31 10 4 v -r=Pa/s ⑷Re dv 2R 2 VmaX RV max 心/ 1020<2100 1.31 10

、对双组份A 和B 系统证明下列关系式: 方法2:从M 的定义推导 四、在管内CQ 气体与N 2气进行等摩尔逆向扩散。管长为0.20m ,管径为0.01m , 管 内N 2气的温度为298K ,总压为。管两端 CQ 的分压分别为456mmHg 和 76mmHg 。CQ 通过N 2气的扩散系数D AB =X 10-5m 2/s 。试计算CQ 的扩散通量。 【解】取柱坐标,设A 为CQ , B 为N 2, L 为管长。 假设(1) 一维定态 (2)等摩尔逆向扩散:N AZ +N BZ =0 (3)理想气体:C p/(RT), C A p A /(RT) 并有 p=c on st, T=con st , D AB =C onst M A M B 2 (X A M A X B M B ) dX A (从 W A —出发先推出W A 与X A 的关系式) 2. dx A M A M B (W A /M A W B /M B )2 (从 X A CC A 出发先推出 X A 与 W A 的关系 式) 【解】方法1:从W A 与X A 的关系式推导(M A 与M B 为常量) 求导(略) dx A X A 求导(略) 注意: A B (C A M A C B M B ) /C M A M B 「"A M , W A X A X A M A X B M B (X A M A C A C A C B dX A dw A dw A dX A B M B ) (A /M A )/ (A /M A B /M B )/ 1 M A M B (W A /M A M A M B M 2 dX A dw A 2 W B / M B ) 2 M M A M B W A ' M A , X A W A W A / M A W B / M B X A X B 1, dx A dx B 0 M X A M A X B M B , dM M A dx A M B dx E i (M A M i E )dx A (1) W A W B 1, dw A dw B 0 1/M W A / M A W B / M B , (1/ 2 M )dM (1/M A )dw A (1/ M B )dW B (M A M B )/(M A M B ) dw A ⑵ (2 )亠(得赞 M A M B (1) dw A r( 2) , 得 —— dX M A M B (X A M A X B M B ) 1 2 M A M B ( W A /M A W B /M B ) M A M B 2 2

传递过程原理作业题解(1-7章)

第二章 1. 对于在r θ平面内的不可压缩流体的流动,r 方向的速度分量为2 cos /r u A r θ=-。试 确定速度的θ分量。 解:柱坐标系的连续性方程为 11()()()0r z ru u u r r r z θρρρρθθ????+++='???? 对于不可压缩流体在r θ平面的二维流动,ρ=常数,0, 0z z u u z ?==?,故有 11()0r u ru r r r θ θ ??+=?? 即 2 2 cos cos ()()r u A A ru r r r r r θ θ θ θ?? ? =- =- -=- ??? 将上式积分,可得 22 cos sin ()A r A u d f r r θθθ θ=-=-+? 式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。令 ()0f r =,可得到u θ的最简单的表达式: 2 sin A u r θθ =- 2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。 (1)在矩形截面管道内,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动; (4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。 解: ()0ρ ρθ ?+?=?u (1) 在矩形截面管道内,可压缩流体作稳态一维流动 0x z x y z u u u u u u x y z x y z ρ ρ ρ ρ ρθ???????++++++=????????? ??? y 稳态: 0ρ θ ?=?,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρ ρ ??+=??, 即 ()0z u z ρ?=? (2)在平板壁面上不可压缩流体作稳态二维流动 ()()()0y x z u u u x y z ρρρρθ ????+ + + =????

热工基础课程总结

热工基础读书报告 摘要:能源就是提供能量得源泉,就是人类社会生存与发展得源泉。热工得基础课程得目得就是认识与掌握能源开发与利用得基本规律,为合理得开发与利用能源奠定理论基础。本文就热工基础这门课程得学习进行了以下三方面得总结。第一:说明这门课程得研究目得与研究方法;第二:简单总结各章节得主要内容与知识框架体系;第三:从个人角度论述一下学习这门课程得心得体会及意见。 关键词:能量热工学研究方法心得体会 正文 自然界蕴藏着丰富得能源,大部分能源就是以热能得形式或者转换为热能得形式予以利用。因此,人们从自然界获得得得能源主要就是热能。为了更好地直接利用热能,必须研究热量得传递规律。 1 热工基础得研究目得与研究方法 1、1 研究目得 热得利用方式主要有直接利用与间接利用两种。前者如利用热能加热、蒸煮、冶炼、供暖等直接用热量为人们服务。后者如通过个证热机把热能转化为机械能或者其她形式得能量供生产与生活使用。 能量得转换与传递就是能量利用中得核心问题,而热工基础正就是基于实际应用而用来研究能量传递与转换得科学。 传热学就就是研究热量传递过程规律得学科,为了更好地间接利用热能,必须研究热能与其她能量形式间相互转换得规律。工程热力学就就是研究热能与机械能间相互转换得规律及方法得学科。由工程热力学与传热学共同构成得热工学理论基础就就是主要研究热能在工程上有效利用得规律与方法得学科。 作为一门基于实际应用而产生得学科,其最终还就是要回归到实际得应用中,这样一来,就要加强对典型得热工设备得学习与掌握。 1、2研究方法 热力学得研究方法有两种:宏观研究方法与微观研究方法。宏观研究方法就是以热力学第一定律与热力学第二定律等基本定律为基础,针对具体问题采用抽象、概括、理想化简化处理得方法,抽出共性,突出本质。建立合适得物理模型通过推理得出可靠与普遍适用得公式,解决热力过程中得实际问题。微观研究方法就是从物质得微观基础上,应用统计学方法,将宏观物理量解释为微观量得统计平均值,从而解释热现象得本质。 传热学得研究方法主要有理论分析,数值模拟与实验研究。理论分析就是依据基本定律对热传递现象进行分析,建立合适得物理模型

传递过程原理__课后习题解答

【7-2】常压和30℃的空气,以10m/s 的均匀流速流过一薄平面表面。试用精确解求距平板前缘10cm 处的边界层厚度及距壁面为边界层厚度一半距离时的x u 、y u 、x u y ??、壁面局部阻力系数Dx C 、平均阻力系数D C 的值。设临界雷诺数5510xc Re =?。 解:已知流速u =10m/s ;查表得30℃空气的密度ρ=1.165kg/m 3;30℃空气的粘度μ=1.86×10-5Pa·s 45 5 0.110 1.165Re 6.26105101.8610 x xu ρ μ -??= = =???,所以流动为湍流

网络数据包传输过程总结

网络数据包传输过程总结 一、数据包是如何在网络中传输的 我们电脑上的数据,是如何“走”到远端的另一台电脑的呢?这是个最基础的问题,可能很多人回答不上来,尽管我们每天都在使用网络。这里我们以一个最简单的“ping”命令,来解释一个数据包“旅程”。 假设:我的电脑A,向远在外地的朋友电脑B传输数据,最简单的就是“ping”一下,看看这个家伙的那一端网络通不通。A与B之间只有一台路由器。(路由器可能放在学校,社区或者电信机房,无所谓,基本原理是一样的) 具体过程如下------ 1.“ping”命令所产生的数据包,我们归类为ICMP协议。说白了就是向目的地发送一个数据包,然后等待回应,如果回应正常则目的地的网络就是通的。当我们输入了“ping”命令之后,我们的机器(电脑A)就生成了一个包含ICMP协议域的数据包,姑且称之为“小德”吧~~~~

2.“小德”已经将ICMP协议打包到数据段里了,可是还不能发送,因为一个数据要想向外面传送,还得经过“有关部门”的批准------IP协议。IP要将你的“写信人地址”和“收信人 地址”写到数据段上面,即:将数据的源IP地址和目的IP地址分别打包在“小德”的头部和尾部,这样一来,大家才知道 你的数据是要送到哪里。 3.准备工作还没有完。接下来还有部门要审核------ARP。ARP属于数据链路层协议,主要负责把IP地址对应到硬件 地址。直接说吧,都怪交换机太“傻”,不能根据IP地址直接找到相应的计算机,只能根据硬件地址来找。于是,交换机就经常保留一张IP地址与硬件地址的对应表以便其查找目 的地。而ARP就是用来生成这张表的。比如:当“小德”被送到ARP手里之后,ARP就要在表里面查找,看看“小德”的 IP地址与交换机的哪个端口对应,然后转发过去。如果没找到,则发一个广播给所有其他的交换机端口,问这是谁的IP 地址,如果有人回答,就转发给它。 4.经过一番折腾,“小德”终于要走出这个倒霉的局域网了。可在此之前,它们还没忘给“小德”屁股后面盖个“戳”,说是什么CRC校验值,怕“小德”在旅行途中缺胳膊少腿,还得麻烦它们重新发送。。。。。我靠~~~~注:很多人弄不清FCS

传质总结

第一章传质过程基础 本章重点掌握的内容 (1)质量传递概论与传质微分方程。 (2)气体中的稳态扩散 (3)对流传质的基本概念 (4)相际间的对流传质模型———停滞膜模型 (5)对流传质系数和对流传质速率方程 本章应掌握的内容 (1)液体中的稳态扩散 (2)动量、热量与质量传递过程的类似律 (3)气体扩散系数和液体扩散系数的测定方法 (4)对流传质问题的分析求解方法 本章一般了解的内容 (1)固体中的稳态扩散 (2)气体扩散系数和液体扩散系数的计算公式 (3)对流传质系数的经验公式 本章学习应注意的问题 (1)传质速度和传质通量的概念较抽象,学习中应注意把握它们之间的联系。 (2)分子传质与导热、对流传质与对流传热具有类似性,在学习中应注意把握它们之间的类似性,以便于理解和记忆。 (3)学习分子传质、对流传质问题的求解时,不要机械地记忆各过程的求解结果,应注意把握求解的思路和应用背景。 第二章气体吸收 本章重点掌握的内容 (1)气体吸收过程的平衡关系 (2)气体吸收过程的速率关系 (3)低浓度气体吸收过程的计算 本章应掌握的内容 (1)费克定律和分子传质问题的求解方法 (2)双膜模型 本章一般了解的内容 (1)溶质渗透模型和表面更新模型 (2)吸收系数

本章学习应注意的问题 (1)表示吸收过程的平衡关系为亨利定律,亨利定律有不同的表达形式,学习中应注意把握它们之间的联系。 (2)表示吸收过程的速率关系为吸收速率方程,吸收速率方程有不同的表达形式,学习中应注意把握它们之间的联系。 (3)学习分子传质,不要机械地记忆各过程的求解结果,应注意把握求解的思路和应用背景。 (4)学习中应注意把握传质机理和吸收过程机理之间的联系,注意体会讲述传质机理和吸收过程机理的目的和意义。 第三章蒸馏 本章重点掌握的内容 (1)两组分理想物系的汽液平衡关系 (2)蒸馏过程的原理 (3)两组分连续精馏过程的计算(物料衡算与进料热状况的影响、理论板层数的计算与回流比的影响、塔板效率) 本章应掌握的内容 (1)平衡蒸馏与简单蒸馏 (2)两组分连续精馏过程的计算(简捷法求理论板层数、几种特殊情况理论板层数的计算、塔高和塔径的计算及连续精馏装置的热量衡算) (3)间歇精馏 本章一般了解的内容 (1)两组分非理想物系的汽液平衡关系 (2)特殊精馏 本章学习应注意的问题 (1)汽液平衡关系是精馏过程计算的基础,要理解平衡常数、相对挥发度等基本概念,熟练地运用汽液平衡关系进行有关计算。 (2)两组分连续精馏过程计算的主要内容是物料衡算、理论板层数的计算及塔高和塔径的计算,涉及到进料热状况、最小回流比和回流比、塔板效率等诸多概念,要理解上述概念,熟练地掌握各计算公式之间的联系。 (3)两组分连续精馏过程计算所涉及的公式较多,学习时不要机械地记忆,应注意掌握其推导 过程。 (4)塔板效率计算通常需联立操作线方程、汽液平衡方程及塔板效率定义式,应注意给出有关组成可计算塔板效率;给出塔板效率亦可计算有关组成。计算时应注意所求塔板的位置和类型(是理论板还是实际板)。

基础工程课程总结

7 浅基础 7.1 地基基础设计原则 ①对防止地基土体剪切破坏和丧失稳定性方面,应具有足够的安全度。 ②应控制地基变形量,使之不超过建筑物的地墓变形允许值,以免引起基础不利截面和上部结构的损坏,或影响建筑物的使用功能和外观。 ③基础的型式、构造和尺寸,除应能适应上部结构、符合使用需要,满足地基承载力 (稳定性)和变形要求外,还应满足对基础结构的强度,刚度和耐久性的要求。 7.2 浅基础的类型: 据基础刚度分:刚性基础和柔性基础;据形状和大小可分:独立基础、条形基础、十字交叉条形基础、筏形基础、箱形基础及壳体基础;根据基础所用材料的性能可分:砖砌体、石材及石材砌体、混凝土和毛石混凝土、灰土和三合土和钢筋混凝土。 7.3 基础埋置深度的确定 7.3.1度一般是指基础底面到室外设计地面的距离,简称基础埋深。 7.3.2深度,应按下列条件确定:(1)筑物的用途,有无地下设施,基础和形式和构造;(2)作用在地基上的荷载大小和性质;(3)工程地质和水文地质条件;(4)相邻建筑物的基础埋深;(5)地基土冻胀和融陷的影响。 7.3.3稳定和变形要求的前提下,基础宜浅埋,当上层地基的承载力大于下层土时,宜利用上层土作持力层。除岩石地基外,基础埋深不宜小于 0.5m。高层建筑筏形和箱形基础的埋置深度应满足地基承载力,变形和稳定性要求。在抗震设防区,除岩石地基外,天然地基上的箱形和筏形基础其埋置深度不宜小于建筑物高度的 1/15;桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18~1/20。位于岩石地基上的高层建筑,其基础埋深应满足抗滑要求。 7.4 地基承载力的确定

(1)原位试验法:是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法:是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法:是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法:是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。 7.5偿性基础概述:又称浮基础,是指建筑物基础开挖卸去的土重部分抵偿了上部结构传来的荷载的基础。 8 桩基础及其他深基础 8.1.1 桩基础的类型 (1)摩擦型桩:摩擦桩、端承型桩。 (2)按桩材分类:木桩、钢筋混凝土桩、素混凝土桩钢桩、组合材料桩。 (3)按成桩方法分:非挤土桩、部分挤土桩和挤土桩 (4)径大小分:小直径桩、中等直径桩、大直径桩。 (5)施工方法:预制桩和灌注桩 8.1.2桩基础:是一种深基础,它由设置于土中的桩和桩顶联结的承台共同组成,或由柱与桩直接联结而成。承台:承台将所有桩的顶部由联成一整体并传递荷载。在承台上再修筑桥墩、桥台及上部结构。 8.1.3桩基础适用条件 (1)荷载较大,地基上部土层软弱,适宜的地基持力层位置较深,采用浅基础或人工地基在技术上、经济上不合理时; (2)河床冲刷较大,河道不稳定或冲刷深度不易计算正确,如采用浅基础施工困难或不能保证基础安全时; (3)当地基计算沉降过人或结构物对不均匀沉降敏感时,采用桩基础穿过松软(高压缩性)土层,将荷载传到较坚实(低压缩性)土层,减少结构物沉降并使沉降较均匀;

信息传递知识点总结

信息的传递知识点 一、现代顺风耳----电话 知识点1 电流把信息传到远方 1、电话——1876年贝尔发明了第一步电话, (1)基本结构:主要由话筒和听筒组成。 (2)工作原理:话筒把声信号变成变化的电流,电流沿着导线把信息传到远方,在另一端,电流使听筒的膜片振动,携带信息的电流又变成了声音。 2、话筒 (1)基本构造:老式话筒中有一个装着碳粒的小盒子,上面盖有膜片。 (2)作用:把声信号变成电信号。当对着话筒讲话时,膜片时紧时松地压迫碳粒,它们的电阻随之变化,流过碳粒的电流就会相应改变,于是形成了随声音变化的电流信号。 3、听筒 (1)基本构造:听筒内有一个磁铁,磁铁上绕着线圈,磁铁前面有一个薄铁膜片。 (2)作用:把电信号变成声信号。听筒内有一个磁铁,磁铁上绕着线圈,前面有一个薄铁膜片。由于磁铁的吸引,薄铁膜片有些弯向磁极,在电话接通时,听筒和对方的话筒串联在一个电路中,当从话筒传来按说话声音振动而强弱变化的电流时,磁铁对膜片的吸引力发生了强弱的变化,使膜片振动起来,在空气中形成声波,就可以听到对方讲话了。 知识点2 电话交换机 1、为了提高线路的利用率,一般电话之间都是通过电话交换机来转接的。一个地区的电话都接到同一台交换机上,每部电话都编上号码接到交换机上使用时,交换机把需要通话的两部电话接通,通话完毕将线路拆开。 2、电话交换机的发展 (1)早期的电话交换机是依靠话务员的手工操作来接线、拆线的,工作效率低、劳动强度大。 (2)1981年出现了自动交换机,利用电磁继电器进行接线。 (3)程控电话交换机:利用电脑进行接线,有多种服务功能。 知识点3 模拟通信和数字通信 1、模拟信号 (1)概念:声音转换成信号电流时,信号电流的频率、振幅变化的情况跟声音的频率、振幅变化的情况完全一样,“模仿”着声信号的“一举一动”,这种电流传递的信号叫做模拟信号,使用模拟信号的通信方式叫做模拟通信。 (2)特点:模拟信号在长距离传输和多次加工、放大过程中,信号电流的波形会改变,从而使信号丢失一些信息,表现为声音、图像失真,严重时会使通信中断。 2、数学信号 (1)概念:用点“”和画“—”的组合代表各种数字,一定得数字组合代表一个汉字,于是,一系列点和画组成的信号就可以代表一个完整的句子。像这样用不同符号的不同组合表示的信号叫做数学信号,使用数学信号的通信方式叫做数字通信。 (2)特点:通常的数字信号只包含两种不同的状态,形式简单,所以抗干扰能力特别强。 二、电磁波的海洋 知识点1 电磁波是怎样产生的 1、电磁波在生活中的重要性

传递过程原理习题答案

《传递过程原理》习题一 一、在一内径为2cm 的水平管道内,测得距管壁5mm 处水的流速为s 。水在283K 温度下以层流流过管道。问:(1)管中的最大流速。(2)查出283K 下水的粘度,注明出处。(3)每米管长的压强降(N/m 2/m )。(4)验证雷诺数。 【解】:(1) ])(1[4)(422 2 2R r L R P r R L P v g g -?= -?= μμ (1) 在r =0处,即管中心处速度最大为2max 4R L P v g μ?= 本题中R =1cm, 在r ==,v =s ,带入(1)得, ])1/5.0(1[41.02 2-?= L R P g μ =?= L R P v g μ42max s=s (2) 31031.1-?=μ (3) 2 max 4R v L P g μ = ?= Pa/s (4) 10201031.13.1301.01012 12Re 3 3max max =????====-μρμ ρμ ρRv v R v d <2100 为层流 二、用量纲确证有效因子(节)中的K 为无量纲数。 (R D a k K A /1=) 【解】:11][-?=s m k 1][-=m a 12][-?=s m D AB m R =][

所以,1)/(][1211=????=---m s m m s m K 故,K 为无量纲数 三、对双组份A 和B 系统证明下列关系式: 1.A B B A A B A A x M x M x M M w d ) (d 2 += (从ρρA A w =出发先推出w A 与x A 的关系式) 2.2)//(d d B B A A B A A A M W M W M M w x +=(从C C x A A =出发先推出x A 与w A 的关系式) 【解】方法1:从w A 与x A 的关系式推导(M A 与M B 为常量) ()/()/A A A A A A A B A A B B A A B B C M C x M w C M C M C x M x M ρρρ= = = +++, A A w x 求导(略),得 2()A A B A A A B B dw M M dx x M x M = + (/)//(//)///A A A A A A A B A A B B A A B B C M w M x C C M M w M w M ρρρρρ= == +++, A A x w 求导(略),得 2 1 (//)A A A B A A B B dx dw M M w M w M = + 注意: 2 2 , A A B A A A A B dw M M dx M dx dw M M M == 方法2:从M 的定义推导 ,1, ,1, 1///A B A A B B A B A A B B x x M x M x M w w M w M w M +=?? =+??+=??=+? 20 () (1)0 (1/)(1/)(1/) ()/() (2) A B A A B B A B A A B A A B B A B A B A dx dx dM M dx M dx M M dx dw dw M dM M dw M dw M M M M dw +=??=+=-?? +=??-=+?=--? (2)÷(1),得 22 ()A A B A B A A A B B dw M M M M dx M x M x M == + (1)÷(2),得 22 1 (//)A A A B A B A A B B dw M dx M M M M w M w M ==+ 四、在管内CO 2气体与N 2气进行等摩尔逆向扩散。管长为0.20m ,管径为0.01m ,管内N 2气的温度为298K ,总压为。管两端CO 2的分压分别为456mmHg 和76mmHg 。CO 2通过N 2气的扩散系数D AB =×10-5m 2/s 。试计算CO 2的扩散通量。

相关主题
文本预览
相关文档 最新文档