当前位置:文档之家› 数字频带传输系统研究

数字频带传输系统研究

数字频带传输系统研究
数字频带传输系统研究

石家庄铁道大学四方学院毕业设计

数字频带传输系统研究Research of Digital Frequency Transmission

System

摘要

本文主要研究数字频带传输系统基本原理,包括二进制和多进制数字调制和解调原理,然后对调制和解调原理进行仿真,并对结果进行分析。

对二进制的数字频带系统,重点研究二进制振幅键控(2ASK)、二进制频移键控(2FSK)、二进制相移键控(2PSK)、二进制差分相移键控(2DPSK)的调制和解调原理,并对各个系统的功率谱进行分析;对多进制数字调制系统,研究了多进制振幅调制、多进制频率调制、多进制相位调制的原理,并以四进制为例对各个系统进行仿真,最后对系统的有效性进行分析。

关键词:频带传输调制与解调幅度键控频移键控相移键控

Abstract

This paper studies the basic principles of digital band transmission systems, including binary and multi-band digital modulation and demodulation, Also principles of the modulation and demodulation are simulated, with the results analyzed.

For the binary digital frequency transmission system, this paper focuses on the modulation and demodulation of the binary amplitude shift keying (2ASK), binary frequency shift keying (2FSK), binary phase shift keying (2PSK), binary differential phase shift keying (2DPSK) , and the power spectrum of each system is analyzed. For the M-ary digital frequency transmission system, this paper focuses on the basic principles of M-ary amplitude modulation, M-ary frequency modulation, M-ary phase modulation. Also simulation is accomplished, with the results analyzed.

Keywords: Frequency-Band transmission Modulation and demodulation Amplitude shift keying Frequency shift keying Phase shift keying

目录

第1章绪论 (1)

1.1研究的背景 (1)

1.2研究的意义 (3)

1.3国内外研究现状 (4)

1.4主要研究内容 (5)

第2章数字频带传输系统的研究 (6)

2.1数字频带传输系统的概述 (6)

2.2二进制数字频带传输系统 (6)

2.2.1二进制振幅键控(2ASK) (6)

2.2.2二进制频率键控(2FSK) (7)

2.2.3二进制相移键控(2PSK) (8)

2.2.4二进制差分相移键控(2DPSK) (9)

2.3多进制数字频带传输系统 (10)

2.3.1多进制振幅键控(MASK) (10)

2.3.2多进制频移键控(MFSK) (10)

2.3.3多进制相移键控(MPSK) (11)

第3章二进制数字频带传输系统设计 (13)

3.12ASK系统设计 (13)

3.1.12ASK系统框图设计 (13)

3.1.22ASK系统仿真及波形分析 (13)

3.22FSK系统设计 (14)

3.2.12FSK系统框图设计 (14)

3.2.22FSK系统仿真及波形分析 (15)

3.32PSK系统设计 (17)

3.3.12PSK系统框图设计 (17)

3.3.22PSK系统仿真及结果分析 (18)

3.42DPSK系统设计 (20)

3.4.12DPSK系统框图设计 (20)

3.4.22DPSK调制解调系统波形仿真 (20)

第4章多进制数字频带传输系统的仿真设计 (22)

4.14ASK系统仿真及结果分析 (22)

4.24FSK系统仿真及结果分析 (23)

4.34PSK系统仿真及结果分析 (24)

第5章结论与展望 (26)

I

参考文献 (27)

致谢 (28)

附录 (29)

附录A外文资料 (29)

附录B程序清单 (48)

II

石家庄铁道大学四方学院毕业设计

第1章绪论

1.1研究的背景

通信是人类文明发展历史中一个永恒的话题,通信的历史演进伴随着通信技术的发展,它与人类社会的进步和科学技术的发展有极为密切的关系。通信技术的发展深刻地改变着人们的生产方式和生活习惯,推动人类社会向前迈进。从通信的发展可以看到社会进步的过程。从古时的烽火狼烟、飞鸽传书、驿站邮递到近代电报与电话的发明,再到现代以计算机和数字通信融合为代表的信息技术,每一次通信技术的飞跃,都深刻影响着人类的经济和社会生活。19世纪中叶以后,由于电报、电话的发明以及电磁波的发现,人类地通信手段发生了根本性的变革,开创了电气通信的新时代,随着科技水平的不断提高,相继出现了无线电、固定电话、移动电话、互联网等各种通信手段,先进的通信技术拉近了人与人之间的距离,回顾通信发展的历程,每一次相关重大技术的进步都孕育着通信技术水平的进一步提高。通信发展史也是一部人类科技进步史。1837年,美国人莫尔斯展示了世界上第一台电磁式电报机。1864年,英国人麦克斯韦预言了电磁波的存在。1875年,苏格兰人亚历山大·贝尔发明了世界上第一部电话机。1901年,意大利人马可尼成功实现了跨大西洋两岸的无线通信。1906年,美国人费森登研究出无线电广播发送机。1925年,美国无线电公司研制出第一部实用的传真机。1937年,英国人里夫斯首次提出用脉冲编码调制来进行数字语言通信的思想。1940年,美国人古马尔研制出机电式彩色电视系统。1945年,英国人克拉克提出静止人造卫星通信的设想。1946年,美国人埃克特和莫奇利发明了世界上第一台电子计算机。1947年,美国贝尔实验室提出来蜂窝网移动通信的概念。1957年,前苏联成功发射了人类第一颗人造卫星。1959年,美国人基尔比和诺伊斯发明了集成电路。1965年,第一部由计算机控制的程控电话交换机在美国问世。1966年英籍华人高锟提出以玻璃纤维进行远距离激光通信的设想。1969年,在美国投入运营的ARPA网形成了互联网的雏形。1974年,首次提出传输控制协议/互联网协议(TCP/IP),成为当代互联网的基础。1977年,美日科学家研制出超大规模集成电路。1982年,欧洲成立了移动通信特别组,制定了泛欧移动通信漫游标准。1983年,采用模拟蜂窝技术的先进移动电话系统(AMPS)在美国芝加哥开通。1991年,泛欧网数字移动通信系统投入商用。1993年,美国政府提出了建设国家“信息高速公路”的建设计划。20世纪80年代初,随着我国改革开放政策的实施,人们对通信业务的

1

石家庄铁道大学四方学院毕业设计

需求日益膨胀,为国内通信事业的快速成长提供了巨大的发展机会。通信业务以超常规、成倍数、跳跃式的发展速度和发展规模取得了令世人瞩目的成就。1982年,福州引进了第一套万门程控电话交换机。1983,上海率先开通了第一个模拟通信寻呼系统。1984,年东方红二号同步通信卫星发射成功。1984年,中外合资上海贝尔电话设备有限公司成立。1986年,国家对通信技术设备进口实行10年关税减免政策。1987年,第一个TACS制式模拟蜂窝移动电话系统在广东建成并投入使用。1988年,第一个实用单模光纤通信系统(34Kbit/s)在扬州、高邮之间开通。1990年,第一条长途光缆——宁汉光缆干线工程建成投产。1991年,自主研发的HJD-04型程控交换机研制成功。此后,以大唐、中兴、华为公司,以及武汉邮电科学研究院等为代表的民族通信制造业实现了群体突破。1993年,第一条公用数据通信网—公用分组交换网(CHINAPAC)正式开通。此后陆续开通了公用数字数据网(CHINADDN)和中国公用计算机互联网(CHINANET)。1993年,第一条国际光缆——中日海底光缆投入使用。1994年,广东开通了GSM数字蜂窝移动电话网。1995年,联通GSM130数字移动电话网在北京、天津、上海、广州建成开通。1996年,移动电话实现全国漫游,并开始提供国际漫游服务。1998年,正式向国际电联提交第三代移动通信标准(简称3G)——TD-SCDMA,该标准成为第一个具有自主知识产权并被国际上广泛接受和认可的无线通信国际标准。1999年,第一条传输速率为8×2.5Gbit/s的密集波分复用(DWDM)系统开通。2002年,中国移动通信GPRS业务正式投入商用,中国移动迈入2.5G时代。2006年,TD-SCDMA被宣布成为我国的国家通信行业标准。2009年初,3G牌照正式发放,标志着我国进入第三代移动通信的普及阶段,WCDMA、cdma2009和TD-SCDMA三大主流无线移动通信标准竞争并存的时代来临。

回顾国内外通信发展史,不难看出未来通信产业发展的一些显著特征:伴随着一系列新技术的不断涌现,通信技术和手段会进一步得到提升。以光信号作为信息的载体,以微电子学和光电技术为基础,结合计算机技术,网络信息处理技术,预示着高速、宽带、无缝连接的数字化信息时代即将到来。

随着通信系统复杂性的增加,传统的手工分析与电路板实验的分析设计方法已经不能适应发展的需要,通信系统计算机模拟仿真技术日益显示出巨大的优越性。计算机仿真是根据被研究的真实系统的模型,利用计算机进行试验研究的一种方法。它具有利用模型进行仿真的一系列优点,如费用低易于进行真实系统难于实现的各种试验,以及易于实现完全相同的条件下的重复性试验等。Matlab仿真软件就是分析通信系统常用的工具之一。Matlab是一种交互式的,以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。Matlab的编程功能简单并且很容易扩展和创造新的命令与函数。应用Matlab可方便的解决复杂数值计算问题。Matlab具有很强大的

2

石家庄铁道大学四方学院毕业设计

Simulink动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink支持连续、离散及两者混合的线性和非线性系统,也支持多采样速率的多速率系统,Simulink为用户提供了用方框图建模的图形接口,它与传统的仿真软件包用差分方程和微分方程建模相比,更直观、方便和灵活。用户可以在Matlab和Simulink 两种环境下对自己的模型进行仿真、分析和修改。用于实现通信仿真的通信工具包是Matlab语言中一个科学性工具包,提供通信领域中计算、研究模拟发展、系统设计和分析的功能,可以在Matlab环境下独立使用,也可以配合Simulink使用。因此,Matlab 在通信仿真系统中得到了广泛的应用。

1.2研究的意义

数字调制是指用基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制载波参量的不同,数字调制有调幅、调频、调相三种基本形式,并可以派生出多种其他形式。由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。另外,由于数字通信具有建网灵活,容易采用熟悉差错控制技术和数字加密,便于集成化,并能够进入综合业务数字网(ISDN),所以通信系统都有由模拟方式向数字方式过度的趋势。因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要组成部分之一,对它的研究也是有必要的。通过对调制系统的仿真,我们可以更加直观的了解数字调制解调的原理及性能,从而便于改进系统,获得更佳的传输性能。而数字频带传输系统的研究是在数字基带的传输系统的基础上进行改进。为使数字基带信号能够在信道中传输,要求信道具有低通形式的传输特性。但在实际信道中大多数新道具有带通传输特性,因此,必须用数字信号来调制某一较高频率的正弦载波,使已调信号能通过带限信道传输。这种用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制。而已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号,这种数字信号的反变换称为数字解调。一般说来,数字调制技术可分为两种类型:一是利用模拟调制方法去实现数字调制,即把数字基带信号当做模拟信号的特殊情况来处理;二是利用数字信号的离散取值特点键控载波,从而实现数字调制。第二种技术通常称为键控法,比如对载波的振幅,频率及相位进行键控,便可相应获得振幅键控(ASK),频移键控(FSK)及相移键控(PSK)调制方式。

3

石家庄铁道大学四方学院毕业设计

1.3国内外研究现状

数字通信的主要优点是抗干扰能力强,无噪声积累,可利用数字技术进行加/解密和检纠错,便于实现通信设备的集成化、微型化和智能化,有利于信号的存储、传输与交换的综合,可兼容语音、数据、文本、图像等多业务,因此自20世纪70年代以来,取得了飞速发展。最早的电通信形式,即1837年S.莫尔斯演示的电报试验就是一个数字通信系统。1937年提出的脉冲编码调制是应用最早和最广泛的数字语音通信方式,1960年世界上第一台数字电话终端机开始用于市内电话网改造,从此数字通信的优势和潜力逐渐被人们所认识和挖掘。随着集成电路、超大规模集成电路、光纤传输技术的应用,数字通信进入全盛时期,成为世界各国主要研究、应用和发展的领域。调制技术最初是从模拟信号的调制与解调技术开始发展的,这是因为当时的通信系统为模拟系统。后来,随着数字通信技术的发展,数字调制技术也得到了迅速发展和广泛应用。随着各种通信系统数量的日益增多,为了充分地利用有限的频谱资源,广大通信科研工作者致力于研究具有更高频谱利用率的数字调制技术,而且原CCITT一直在促进并鼓励开发新奇的频谱使用技术,由于原CCITT科学地将频段分别分配给各种通信系统,以便各种通信系统能够有效地进行通信,因而,许多用户团体、科研院所和通信公司都在开发先进的调制技术来提高给定频谱的利用率。众所周知,调制技术是通信系统中的关键技术之一,尤其对于数字通信系统,字调制技术更关系到系统性能的优劣。对于数字调制技术的主要要求是:已调信号要具有比较窄的频谱宽度和较快的带外衰减(即已调信号所占频带窄,或者称频谱利用率高);对于已调信号要容易采用相干或非相干方法解调;而且已调信号要具有较强的抗噪声和抗干扰能力,并适宜在衰落信道中传输。提高频谱利用率是提高通信系统容量的重要措施,也是人们规划和设计通信系统的关注焦点。高的频谱利用率就是要求已调信号所占的带宽要窄,即已调信号频谱从天线发射时功率的主瓣要窄,同时旁瓣的幅度要低(也就是要求辐射到相邻频道的功率要小)。对于数字调制系统而言,频谱利用率指的是传输效率问题,也就是说,不仅要关心通信系统的传输速率,还要看在这样的传输速率下所占用的信道频带宽度是多少。如果系统的频谱利用率高,则说明通信系统的传输效率高,否则传输效率就低。频谱利用率通常定义为单位频带(1Hz)内信息传输速率(单位为bit/s)和码元传输速率的高低。这里指的“高效”就是指具有较高的频谱利用率。从频谱利用率的定义可以看出,要提高通信系统的利用率有两种途径:一是降低已调信号的频谱宽度,二是提高该调制系统的信息传输速率。由于恒包络调制技术具有相对较窄的频谱,因而得到了重视和利用,并且获得了飞速的发展。另一种获得迅速发展的调制技术是振幅和相位联合调制(QAM)技术,该技术具有较高

4

石家庄铁道大学四方学院毕业设计

的信息传输速率。由于移动通信、导航控制技术的迅速发展,使得码分多址通信系统发展非常迅猛,也使得正交频分复用(OFDM)技术获得了新生,并得到极快的发展,该技术可以克服码间干扰并极大地提高系统的容量。随着通信技术的迅速发展,通信速度已经越来越不适应发展的要求了,因此多进制数字调制应运而生,它指的是调制信号的不同状态数大于2的数字调制,当信道频带受限时可以使信息传输率增加,从而提高频带利用率。现在多进制数字调制技术得到了越来越广泛的应用。它也可以相应地分为多进制振幅键控、频移键控和移相键控。多进制振幅键控(MASK),即载波的振幅有M种取值:A0,A1,A2,AM-1,每个符号间隔TS内发送一种振幅载波信号。MASK的调制方法与2ASK的方法相同,不同的只是基带信号由二电平变为多电平。多进制移相键控(MPSK),即载波的相位有M种取值。常用的有4PSK(又称QPSK)和8PSK。4PSK可以采用0、π/2、π、3π/2四种相位,也可以采用π/4、3π/4、5π/4、7π/4四种相位。另外,为了提高传输速率,现在经常采用幅度和相位联合调制方式(QAM)。所谓幅相联合调制是指调制载波的振幅和相位都随独立的基带信号而变化。CCITTV.29“点对点四线租用电话型电路上使用的标准化9600bit/s调制解调器”标准就是采用4QAM调制方式。在4QAM中,要传送的组合数据流经扰频后分为4比特一组,每4比特中的第一个比特决定了要传送信号的幅度,而其余3比特则决定要采用的相位变化。另外,目前较常使用的有16QAM、64QAM和256QAM[1]。

1.4主要研究内容

本文主要研究二进制和多进制数字频带传输系统,利用MATLAB仿真了2ASK、2FSK、2PSK、2DPSK的信号时间波形和功率谱密度,分析了频谱特性和带宽,并根据设计的调制解调原理框图仿真出了它们的调制解调波形,在多进制调制原理的基础上,以四进制为例仿真了4ASK、4FSK、4PSK的信号时间波形和功率谱,分析了与二进制数字频带传输系统的异同和优劣,着重对4PSK进行调制解调仿真。

5

石家庄铁道大学四方学院毕业设计

6

第2章 数字频带传输系统的研究

2.1 数字频带传输系统的概述

数字调制就是把数字基带信号变换为数字带通信号(已调信号)的过程。通常把包括调制和解调过程的数字传输系统称为数字带通传输系统。在远距离传输情况下,特别是在无线或者光纤信道传输时,因为信道都是带限信道或带通信道,含有丰富低频成分的数字基带信号无法直接传输,必须经过调制器进行解调,使其成为数字频带(载波)信号后再进行传输,在接收端经过相应解调器,将其还原成数字基带信号,从实际的应用上来看,数字频带传输比基带传输的应用更加广泛。数字调制技术有两种方法:利用模拟调制的方法去实现数字式调制;通过开关键控载波,通常称为键控法。基本的键控方式分为振幅键控、频移键控、相移键控。数字调制可分为二进制调制和多进制调制。

所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK )、多进制频移键控(MFSK )以及多进制相移键控(MPSK 或MDPSK )。也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK )或它的特殊形式多进制正交幅度调制(MQAM )等。由于多进制数字已调信号的被调参数在一个码元间隔内有多个取值,因此,与二进制数字调制相比,多进制数字调制有以下几个特点:(1)在码元速率(传码率)相同条件下,可以提高信息速率(传信率),使系统频带利用率增大。码元速率相同时,进制数传系统的信息速率是二进制的M 2log 倍。在实际应用中,通常取k M 2 ,k 为大于1的正整数。(2)在信息速率相同条件下,可以降低码元速率,以提高传输的可靠性。信息速率相同时,M 进制的码元宽度是二进制的M 2log 倍,这样可以增加每个码元的能量,并能减小码间串扰影响等。正是基于这些特点,使多进制数字调制方式得到了广泛的使用。不过,获得以上几点好处所付出的代价是,信号功率需求增加和实现复杂度加大[2]。

2.2 二进制数字频带传输系统

2.2.1 二进制振幅键控(2ASK )

振幅键控是利用载波的幅度变化来传递数字信息的,而其频率和初始相位保持不

石家庄铁道大学四方学院毕业设计

7

变。在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”和“1”。一种常用的也是最简单的二进制振幅键控方式称为通-断键控,2ASK 信号的一般表达式为:

t t s t e c ASK ωcos )()(2= (2-1)

其中

∑-=n

s n nT t g a t s )()( (2-2)

s T 为码元持续时间;)(t g 为持续时间为s T 的基带脉冲波形,通常假设是高度为1,宽度等于s T 的矩形脉冲;n α为第N 个符号的电平取值,若取

??

?=p p

a n -1,0,1概率为

概率为 (2-3) 则相应的2ASK 信号就是OOK 信号。

二进制振幅键控信号的产生方法有两种:模拟调制法(相乘器法)和键控法。2ASK 信号与模拟调制中的AM 信号类似,所以对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法)。

由于2ASK 信号是随机的功率信号,故研究它的频谱特性时,应该讨论它的功率谱密度。若设)(t s 的功率谱密度为)(f P s ,2ASK 信号的功率谱密度为:

)]()([4

1

)(2c s c s ASK f f P f f P f P -++= (2-4)

2.2.2 二进制频率键控(2FSK )

频移键控时利用载波的频率来传递数字信息的。在2FSK 中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。若二进制基带信号的“1”符号对应于载波频率f1,“0”符号对应于载波频率f2,则二进制移频键控信号的表达式为:

)cos()()cos()()(212n n s n n n s n FSK t nT t g a t nT t g a t e θω?ω+??

?

???-++??????-=∑∑ (2-5)

式(2-5)中)(t g 为单个矩形脉冲,s T 为脉冲持续时间,n ?和n θ分别是第n 个信号码元(1或0)的初始相位,通常可令其为零。

2FSK 信号的产生方法主要有两种。一种可以采用模拟调频电路来实现;另一种可以采用键控法来实现。解调方法是采用非相干解调(包络检波)和相干解调。其解调原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决。这里的抽样判决是直接比较两路信号的抽样值的大小,可以不专门设置门限。

对于相位不连续的2FSK 信号的功率谱密度可以近似表示成两个不同载频的2ASK 信号功率谱密度的叠加,因此2FSK 频谱可以近似表示成中心频率分别为f1和f2的两个2ASK 频谱的组合。2FSK 信号的功率谱的表示式:

石家庄铁道大学四方学院毕业设计

8

[][])()(4

1)()(41

)(222211112f f P f f P f f P f f P f P s s s s FSK ++-+++-=

(2-6) 2.2.3 二进制相移键控(2PSK )

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。因此2PSK 信号的时域表达式为:

)cos()(2n c PSK t A t e ?ω+= (2-7)

式(2-7)中,n ?表示第n 个符号的绝对相位:

??

?=”时,发送“

”时

发送“10,0π?n (2-8) 因此,式(2-8)可以改写为:

??

?-=P t A P

t A t e c c PSK -1,cos ,cos )(2概率为

概率为ωω (2-9) 由于表示信号的两种码元的波形相同,极性相反,故2PSK 信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘,即:

t t s t e c PSK ωcos )()(2= (2-10)

式(2-10)中

∑-=n

s n nT t g a t s )()( (2-11)

这里,)(t g 是脉宽为s T 的单个矩形脉冲而n α的统计特性为

??

?--=P P

a n 1,1,1概率为

概率为 (2-12) 即发送二进制符号“0”时(n a 取+1),)(2t e P S K 取0相位;发送二进制符号“1”时(n a 取-1)。这种以载波的不同相位直接去表示相位相应二进制数字信号的调制方式称为二进制绝对相移方式。

2PSK 信号的产生有两种方法:模拟调制法和键控法,与2ASK 信号的产生方法相比较,只是对)(t s 的要求不同,在2ASK 中)(t s 是单极性的,而在2PSK 中)(t s 是双极性的基带信号。2PSK 信号的解调通常采用相干解调法[3]。

比较2ASK 信号的表达式和2PSK 的信号表达式可知两者的表示形式完全一样,区别仅在于基带信号)(t s 不同,前者为单极性,后者为双极性。因此,我们可以直接引用2ASK 信号的功率普遍密度的公式来表述2PSK 信号的功率谱,即

石家庄铁道大学四方学院毕业设计

9

[])()(4

1

2c s c s PSK f f P f f P P -++=

(2-13) 2.2.4 二进制差分相移键控(2DPSK )

2DPSK 是利用前后相邻码元的载波相对变化传递数字信息,所以又称相对相移键控。假设??为当前码元与前一码元的载波相位差,可定义一种数字信息与??之间的关系为:

??

?=?”,表示数字信息“

”表示数字信息“

10,0π? 于是可以将一组二进制数字信息与其对应的2DPSK 信号的载波相位关系示例如下: 二进制数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK 信号相位: (0) π π 0 π π 0 π 0 0 π 或: (π) 0 0 π 0 0 π 0 π π 0 相应的2DPSK 信号的波形如下:

图2-1 2DPSK 信号波形图

2DPSK 信号的产生方法可以采用:首先对二进制数字基带信号进行差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。2DPSK 信号的解调方法之一是相干解调(极性比较法)加码反变换法。其解调原理是:对2DPSK 信号进行相干解调,恢复出相对码,再经反变换器变换为绝对码,从而恢复出发送的二进制数字信息。在解调过程中,由于载波相位模糊性的影响,使得解调出的相对码也可能是“1”和“0”倒置,但经差分译码(码反变换)得到的绝对码不会发生任何倒置的现象,从而解决了载波相位模糊性带来的问题。2DPSK 信号的另一种解调方法是差分相干解调方式(相位比较法)。用这种方法解调时不需要专门的相干载波,只需要由收到的2DPSK 信号延时一个码元间隔s T ,然后与2DPSK 信号本身相乘。相乘器起着相位比较的作用,相乘结果反映了前后码元的相位差,经低通滤波后再抽样判决,即可直接恢复出原始数字信息,故解调器不需要码反变换。

()a 绝对码()b 相对码

1

0101()2DPSK

c

石家庄铁道大学四方学院毕业设计

10

2DPSK 可以与2PSK 具有相同形式的表达式,所不同的是2PSK 中的基带信号)(t s 对应的是绝对码序列,而2DPSK 中的基带信号)(t s 对应的是码变换后的相对码序列。因此,2DPSK 信号的2PSK 信号的功率谱密度是完全一样的[4]。

2.3 多进制数字频带传输系统

2.3.1 多进制振幅键控(MASK )

多进制振幅调制(MASK)又称为多电平调制,它是二进制数字幅度调制方式的推广。MASK 信号的带宽和2ASK 信号的带宽相同,故单位频带的信息传输速率高,即频带利用率高。M 进制幅度调制信号的载波振幅有M 种取值,在一个码元期间b T 内,发送其中的一种幅度的载波信号。MASK 已调信号的表示式为:

t t s t S c mask ωcos )()(= (2-14)

这里,)(t s 为M 进制数字基带信号:

∑∞

-∞

=-=

n b n

nT t g a

t s )()( (2-15)

式(2-14)中,)(t g 是高度为1,宽度为b T 的门函数;n a 有M 种取值。

2.3.2 多进制频移键控(MFSK )

它是用M 个不同的载波频率代表M 种数字信息。MFSK 系统的组成方框图如图2-2所示。发送端采用键控选频的方式,接收端采用非相干解调方式。

图2-2 多进制数字频率调制的组成框图

石家庄铁道大学四方学院毕业设计

11

串/并变换器和逻辑电路1将一组组输入的二进制码(每k 个码元为一组)对应地转换成有)2(k M M =种状态的一个多进制码。这M 个状态分别对应M 个不同的载波频率),...,(21M f f f 。当某组k 位二进制码到来时,逻辑电路1的输出一方面接通某个门电路,让相应的载频发送出去,另一方面同时关闭其余所有的门电路。于是当一组组二进制码元输入时,经相加器组合输出的便是一个M 进制调频波形。M 进制的解调部分由M 个带通滤波器、包络检波器及一个抽样判决器、逻辑电路2组成。各带通滤波器的中心频率分别对应发送端各个载频。因而,当某一已调载频信号到来时,在任一码元持续时间内,只有与发送端频率相应的一个带通滤波器能收到信号,其它带通滤波器只有噪声通过。抽样判决器的任务是比较所有包络检波器输出的电压,并选出最大者作为输出,这个输出是一位与发端载频相应的M 进制数。逻辑电路2把这个M 进制数译成k 位二进制并行码,并进一步做并/串变换恢复二进制信息输出,从而完成数字信号的传输[5]。

2.3.3 多进制相移键控(MPSK )

它是利用载波的多种不同相位状态来表征数字信息的调制方式。与二进制数字相位调制相同,多进制数字相位调制也有绝对相位调制(MPSK )和相对相位调制(MDPSK )两种。设载波为t c ωcos ,则M 进制数字相位调制信号可表示为

∑+-=n

n c b MPSK t nT t g t S )cos()()(?ω

∑∑---=n n

b n

c b n c nT t g t nT t g t )(sin sin )(cos cos ?ω?ω (2-16)

n ?为第n 个码元对应的相位,共有M 种不同取值。由于一般都是在π20-范围内等

间隔划分相位的(这样造成的平均差错概率将最小),因此相邻相移的差值为

?????

??=M M

n P

P P 概率为概率为概率为,....,....

,,2

2

1

1θθθ? M

πθ2=? (2-17)

令n n a ?cos =,n n b ?sin =,式(2-17)变为

t nT t g b t nT t g a t S c n b n c n b n MPSK ωωsin )(cos )()(??

?

???--??????-=∑∑

t t Q t t I c c ωωsin )(cos )(-= (2-18) 这里

??

????-=∑n b n nT t g a t I )()(

石家庄铁道大学四方学院毕业设计

12

??

????-=∑n b n nT t g b t Q )()(

常把式(2-18)中第一项称为同相分量,第二项称为正交分量。由此可见,MPSK 信号可以看成是两个正交载波进行多电平双边带调制所得两路MASK 信号的叠加。这样,就为MPSK 信号的产生提供了依据,实际中,常用正交调制的方法产生MPSK 信号[6]。

石家庄铁道大学四方学院毕业设计

13

第3章 二进制数字频带传输系统设计

3.1 2ASK 系统设计

3.1.1 2ASK 系统框图设计

图3-1 2ASK 系统框图

在2ASK 调制解调系统中,调制时,将基带信号与载波相乘形成2ASK 信号,解调时,让已调信号通过带通滤波器,然后通过相乘器与相干载波相乘,最后通过低通滤波器,经抽样判决,恢复出原基带信号[7]。

3.1.2 2ASK 系统仿真及波形分析

图3-2 2ASK 系统仿真波形

石家庄铁道大学四方学院毕业设计

14

载波采用高频正弦波,基带信号经调制以后,2ASK 信号波形随基带信号变化,当调制信号为“1”时有载波信号,当调制信号为“0”时无载波,也就是说2ASK 是用已调波幅度的变化来传递数字信息的。当2ASK 信号经过信道时会产生加性噪声,通过带通滤波器后滤除部分噪声,在相乘器中与相干载波相乘进行整流,在经过低通滤波器滤除高频分量,抽样判决后还原成原基带信号。

图3-3 2ASK 功率谱密度

从图3-2和图3-3的仿真波形可以看出:第一,2ASK 信号的功率谱由连续谱和离散谱两部分组成;连续谱取决于单个基带信号码元经线性调制后的双边带谱,而离散谱由载波分量确定。第二,2ASK 信号的带宽是基带信号带宽的2倍,若只计谱的主瓣(第一个谱零点位置)即2ASK 信号的传输带宽是码元速率的两倍。

3.2 2FSK 系统设计

3.2.1 2FSK 系统框图设计

图3-4 2FSK 调制框图

石家庄铁道大学四方学院毕业设计

15

图3-5 2FSK 相干解调框图

2FSK 系统分为调制系统和解调系统。图3-4为2FSK 的键控调制,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同独立频率源进行选通,使其在每一个码元s T 期间输出1f 或2f 两个载波之一,例如,当基带信号为“1”时选通载波频率为1f ,根据2FSK 的时域表达式“1”的反码为“0”,所以基带信号经过一个反相器继而选通载波频率2f ,两路信号在相加器内叠加。图3-5为2FSK 相干解调原理框图,其解调原理是由于2FSK 可以看作是两个频率不同的2ASK 信号的叠加,故其相干解调可以分解为上下两路2ASK 信号分别进行解调,每一支路的解调与2ASK 相类似,然后进行判决[8]。

3.2.2 2FSK 系统仿真及波形分析

图3-6 基带信号与两种载波的产生

图3-6中第一个波形是基带信号的产生,第二个波形为基带信号反码的产生,即代表1和0的调制信号。第三波形和第四波形为两种不同频率载波信号的产生。

2e FSK

二进制数字频带传输系统设计方案ASK系统+

目录 1 技术要求1 2 基本原理1 2.1 频带传输的意义1 2.2 2ASK调制1 2.2.1 基本原理1 2.2.2 两种调制法2 2.2.3 功率谱密度3 2.3 2ASK解调3 3 建立模型描述4 3.1 使用SystemView实现2ASK模型仿真4 3.2 使用Simulink实现2ASK模型仿真5 3.3 使用Matlab编程实现2ASK模型仿真6 4 模型组成模块功能描述或程序注释7 4.1 使用SystemView实现2ASK模型仿真7 4.1.1 调制模块7 4.1.2 信道模块8 4.1.3 解调模块8 4.2 使用Simulink实现2ASK模型仿真9 4.2.1 调制及信道模块9 4.2.2 解调模块10 4.3 使用Matlab编程实现2ASK模型仿真11

5 调试过程及结论13 5.1 使用SystemView编程实现2ASK模型仿真13 5.1.1 采用模拟相乘法调制,及信道加噪后各点输出波形13 5.1.2 采用非相干解调各点输出波形13 5.1.3 采用相干解调各点输出波形14 5.1.4 模拟调制法与键控法比较15 5.1.5 波形分析15 5.2 使用Simulink编程实现2ASK模型仿真16 5.2.1 模拟调制,相干解调各点输出波形16 5.2.2 模拟调制,非相干解调各点输出波形17 5.3 使用Matlab编程实现2ASK模型仿真18 6 心得体会18 7 参考文献19 二进制数字频带传输系统设计 ——2ASK系统 1 技术要求 设计一个2ASK数字调制系统,要求: <1)设计出规定的数字通信系统的结构; <2)根据通信原理,设计出各个模块的参数<例如码速率,滤波器的截止

通信原理综合实验数字频带传输系统的仿真报告解析

课程名称数字通信综合实验 题目数字频带传输系统的仿真 专业电子信息工程 班级 学号 姓名 指导教师 地点 时间:2015年7月04日至2015年7月08日

摘要 此次课程设计主要运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。通过Simulink的仿真功能摸拟到了实际中的2ASK 调制与解调情况。 关键词:Simulink ;高斯白噪声;调制与解调

第1章前言 (4) 1.设计平台 (4) 2. Simulink (5) 第2章通信技术的历史和发展 (7) 2.1通信的概念 (7) 2.2 通信的发展史简介 (9) 2.3通信技术的发展现状和趋势 (9) 第3章2ASK的基本原理 (10) 3.1 2ASK定义 (10) 3.2 2ASK的调制 (11) 3.3 2ASK的解调 (11) 第4章2ASK频带系统设计方案 (12) 4.1仿真系统的调制与解调过程 (12) 4.2 SIMULINK下2ASK系统的设计 (12) 第5章仿真结果分析 (17) 第6章出现的问题及解决方法 (23) 第7章总结 (24) 参考文献 (24)

第1章前言 在现代数字通信系统中,频带传输系统的应用最为突出。将原始的数字基带信号,经过频谱搬移,变换为适合在频带上传输的频带信号,传输这个信号的系统就称为频带传输系统。在频带传输系统中,根据数字信号对载波不同参数的控制,形成不同的频带调制方法。幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波数字形式的调制信号在控制下通断,此时又可称作开关键控法(OOK)。本设计中选择正弦波作为载波,用一个二进制基带信号对载波信号的振幅进行调制,载波数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送,调制后的信号的频带宽度为二进制基带信号宽度的两倍,此制称为二进制振幅键控信号。 数字调制就是对基带数据信号进行变换,实现信号频谱的“搬移”数据的发送端进行搬移的过程称作“调制”,在称作调制器的设备中完成。在数据的接收端,有一个相反的变换被称作“解调”的过程,解调过程在称作解调器的设备中完成。经过调制的后的信号在一个很高的频段上占有一定的带宽,由于所处频段很高,使得其最高频率和最低频率的相对偏差变小(最高频率和最低频率的比值略大于1),这样的信号称为频带信号或射频信号,相应的传输系统称作频带传输系统。 数字频带传输系统或带通信号是现代通信系统的非常重要部分,通过调制来时信号与信道特新相匹配从而达到效果、传输为目的。数字频带传输系统既可用于低速数据信道,而可以用于中、高速数字信道,其应用很广泛,因此研究数字频带传输系统具有非常重要的义。理解和掌握二进制数字调制通信系统的各个关键环节,包括调制、解调、滤波、传输、噪声对通信质量的影响等。在数字信号处理实验课的基础上更加深入的掌握数字滤波器的设计原理及实现方法。是学习者对系统各关键点的信号波形及频谱有深刻的认识。设计或分析一个简单的通信系统,可以进一步理解通信系统的基本组成、模拟通信和数字通信的基础理论、通信系统发射端信号的形成及接收端信号解调的原理、通信系统信号传输质量的检测等方面的相关知识。 1.设计平台 MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型

通信原理第6篇数字信号频带传输

第6章数字信号频带传输 知识点 (1) 数字调幅、调频、调相——二元与多元系统信号分析; (2) 传输信道的利用——正交复用、带宽、频带利用率; (3) 解调方式——相干与非相干; (4) 各种系统噪声性能分析。 知识点层次 (1) 以二元调制系统为基础,掌握数字调制解调模型及信号特征;理解噪声性能分析方法。掌握基于信噪比的误比特率公式与比较分析; (2) 掌握以QPSK、QAM、MSK为重点的基本原理与技术特征,并熟悉有关重要参量与技术措施;掌握各种传输方式误码率表示式; (3) 通过大体了解改进型调制技术特点,了解现代调制技术思路; 本章涉及的系统最佳化设计思想 信号设计——基于已调波信号间正交的概念; 传输技术——基于正交载波复用与多元调制技术; 接收技术——基于相干接收与最佳接收的原理及发展。 6.1 数字频带调制概述 通过第3章模拟调制的讨论,我们已明确到,以调制信号去正比例控制正弦载波3个参量之一,可以产生载荷信息的已调波,并分为线性调制(幅度调制)和角度调制(调频与调相)。现将模拟调制信号改换为数字信号,仍去控制正弦载波,就可以得到相应的数字调幅、数字调频与数字调相等已调波。 本章拟首先介绍二元数字信号作为调制信号的基本调制方式。它们已调波分别称为二元幅移键控——ASK(amplitude shift keying)、二元频移键控——FSK(frequency shift keying)和二元相移键控——PSK(phase shift keying),并分别分析与计算它们在不同解调方式下的抗噪声性能。

然后介绍以多进制符号(M元)控制载波某1个或1、2个参量构成的多元调制,以及常用的优质调制技术。 本章讨论问题的基本着眼点为: (1)各种数字调制方式的发送信号(已调波构成)的设计考虑及其时、频域表示方式。 (2)针对已调波的时—频域特点,给出其传输有效带宽,讨论它们对于传输信道频带利用率。 (3)相干与非相干解调方法与解调效果评价。 (4)分析不同调制与不同解调方式的系统,在高斯信道环境下的抗噪声性能,同时计算它们的接收信号的比特或符号误差概率。 (5)在此基础上,能使读者深入了解到如何进行信号与系统优化设计,能够达到既有效又可靠信息传输。 就本章内容而言,称为数字信号频带传输(或调制),也可称为数字信号的载波传输(或调制)。虽然调制信号为二元或多元数字信号,但已调波信号却是连续波,因此也可称为数字信号的模拟传输。 本章覆盖的内容与概念很多,设计的数字分析也往往比较繁杂,所设计的调制技术均有很大的实用意义,并在不断发展。 6.2 二元幅移键控(ASK) 6.2.1 ASK信号分析 以二元数字信号序列或其波形序列去控制角频(载频)为、初相为(可设为0) 的幅度,可产生2ASK信号。首先应以基带数字序列来表示,即调制信号为 (6.2.1)式中,——二元码符号,取1或0;

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

2FSK数字信号频带传输系统的设计和建模

武汉理工大学《通信原理课程设计》 目录 1 课设设计要求 (1) 1.1 题目的意义 (1) 1.2 设计要求 (1) 2 FSK设计原理和方案 (2) 2.1 FSK的调制 (2) 2.1.1 直接调频法 (2) 2.1.2 频率键控法 (2) 2.1.3 基于FPGA的FSK调制方案 (3) 2.2 FSK的解调 (3) 2.2.1 同步(相干)解调法 (3) 2.2.2 FSK滤波非相干解调法 (4) 2.2.3 基于FPGA的FSK解调方案 (5) 3 FSK设计的程序与仿真 (5) 3.1 FSK基于HDL语言调制 (5) 3.1.1 FSK调制程序 (5) 3.1.2 FSK调制仿真 (7) 3.1.3FSK调制电路 (8) 3.2 FSK基于VHDL语言解调 (8) 3.2.1 FSK解调程序 (8) 3.2.2FSK解调仿真 (10) 3.2.3 FSK解调电路 (10) 4心得体会 (11) 参考文献 (12)

1课设设计要求 1.1题目的意义 数字调制技术是现代通信的一个重要内容,在数字通信系统中由于数字信号具有丰富的低频成份,不宜进行无线传输或长距离电缆传输,因而需要将基带信号进行数字调制(Digital Modulation)。数字调制同时也是数字信号频分复用的基本技术。 数字调制与模拟调制都属于正弦波调制,但是,数字调制是调制信号为数字型的正弦波调制,因而数字调制具有自身的特点一般说来数字调制技术分为两种类型:一是把数字基带信号当作模拟信号的特殊情况来处理;二是利用数字信号的离散取值去键控载波,从而实现数字调制。后一种方法通常称为键控法。例如可以对载波的振幅、频率及相位进行键控,便可获得振幅键控 (ASK)、移频键控(FSK)、相移键控(PSK)等调制方式。 移频键控(FSK)是数字信息传输中使用较早的一种调制形式,它由于其抗干扰及衰落性较好且技术容易实现,因而在集散式工业控制系统中被广泛采用。以往的键控移频调制解调器采用“定功能集成电路+连线”式设计;集成块多,连线复杂,容易出错,且体积较大,本设计采用Lattice公司的FPGA芯片,有效地缩小了系统的体积,降低了成本,增加了可靠性,同时系统采用VHDL语言进行设计,具有良好的可移植性及产品升级的系统性。 1.2设计要求 1.了解了FSK信号的基本概念后,利用Quartus II软件中的VHDL语言对2FSK

基于Systemview的二进制数字频带传输系统设计——2PSK系统

基于Systemview的二进制数字频带传输系统设计——2PSK系统 1、技术指标: (1)设计出规定的2PSK数字通信系统的结构; (2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止 频率等); (3)用Matlab或SystemView 实现该数字通信系统; (4)观察仿真并进行波形分析; (5)系统的性能评价。 2、基本原理; 二进制移相键控(2PSK)的基本原理: 2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。 3、建立模型描述; (1)2PSK信号的产生 2PSK的产生:模拟法和数字键控法,就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ或双极性NRZ脉冲序列信号均可。 2PSK信号与2ASK信号的时域表达式在形式上是完全相同的,所不同的只是两者基带信号s(t)的构成,一个由双极性NRZ码组成,另一个由单极性NRZ码组成。因此,求2PSK信号的功率谱密度时,也可采用与求2ASK信号功率谱密度相同的方法。 (2)2PSK信号的功率谱 2PSK信号的功率谱密度及其功率谱示意图如下: 分析2PSK信号的功率谱:(1)当双极性基带信号以相等的概率(p=1/2)出现时,2PSK信号的功率谱仅由连续谱组成。而一般情况下,2PSK信号的功率谱由连续谱和离散谱两部分组成。其中,连续谱取决于基带信号经线性调制后的双边带谱,而离散谱则由载波分量确定(2)2PSK的连续谱部分与2ASK 信号的连续谱基本相同因此,2PSK信号的带宽、频带利用率也与2ASK信号的相同 其中,数字基带信号带宽。这就表明,在 数字调制中,2PSK的频谱特性与2ASK相似。相位调制和频率调制一样,本质上是一种非线性调制,但在数字调相中,由于表征信息的相位变化只有有限的离散取值,因此,可以把相位变化归结为幅度变化。这样一来,数字调相同线性调制的数字调幅就联系起来了,为此可以把数字调相信号当作线性调制信号来处理了。 (3)2PSK的解调系统

基于Systemview的数字频带传输系统的仿真

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于Systemview的数字频带传输系统的仿真 基于 Systemview 的数字频带传输系统的仿真华东交通大学 理工学院课程设计报告所属课程名称: 现代通信原理课程设计标题: 基于 Systemview 的数字频带传输系统的仿真分院:专业班级: 姓名: 学号: 指导老师: 胡保安 1 目录课程设计目的 3 课程设计器材 3 课程设计原理3 Systemview 的基本介绍3 课程设计过程4 1 二 进制振幅键控 2ASK4 2 二进制频移键控 2FSK9 3 二进制移相键控 2PSK14 4 二进制差分移相键控 2PSK18 课程设计总结22 参考 文献22 谢辞232 课程设计目的: 1、熟练掌握 Systemview 的用法,在该软件的配合下完 成各个系统的结构图,还有调试结果图 2、深入了解 2ASK, 2FSK, 2PSK, 2DPSK 的调制解调原理课程设计器材: PC 机, Systemview 软件课程设计原理: 数字信号的传输方式可以分为基带传输和带通传输。 为了使信号在带通信道中传输,必须用数字基带信号对载波进 行调制,以使信号与信道特性相匹配。 1 / 20

在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。 键控主要分为: 振幅键控,频移键控,相移键控三种基本的数字调制方式。 Systemview 的基本介绍: SystemView 是一个用于现代科学与科学系统设计及仿真打动态系统分析平台。 从滤波器设计、信号处理、完整通信系统打设计与仿真,到一般打系统数字模型建立等各个领域,SystemView 在友好而功能齐全打窗口环境下,为用户提供啦一个精密的嵌入式分析工具。 进入 SystemView 后,屏幕上首先出现该工具的系统视窗,系统视窗最上边一行为主菜单栏,包括: 文件(File)、编辑(Edit)、参数优选(Preferences)、视窗观察(View)、便笺(NotePads)、连接(Connetions)、编译器(Compiler)、系统(System)、图符块(Tokens)、工具(Tools)和帮助(Help)共 11 项功能菜单。 如下图所示。 3 系统视窗左侧竖排为图符库选择区。 图符块(Token)是构造系统的基本单元模块,相当于系统组成框图中的一个子框图,用户在屏幕上所能看到的仅仅是代表某一

数字调制系统(数字频带传输系统)

121 第六章 数字调制系统(数字频带传输系统) 6.1 引 言 在实际通信中,有不少信道都不能直接传送基带信号,而必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓调制。 数字调制是用载波信号的某些离散状态来表征所传送的信息,在收端对载波信号的离散调制参量进行检测。 数字调制信号也称键控信号。 在二进制时,有 ASK ~ 振幅键控 FSK ~ 移频键控 PSK ~ 移相键控 正弦载波的三种键控波形 见樊书P129,图6-1 6.2 二进制数字调制原理 6.2.1 二进制振幅键控(2ASK ) 一、一般原理及实现方法 2ASK 是用“0”,“1” 码基带矩形脉冲去键控一个连续的载波,使载波时 断时续地输出。 最早使用的载波电报就是这种情况。 数字序列{}n a ()t s 单极性基带脉冲序列 ()()t t s t e c ω=cos 0 与t c ωcos 相乘,()t s 频谱搬移到c f ±附近,实现2ASK 。 {}n a 信号 2ASK 调制的方框图 转换成 数字调制系统的基本结构图

122 带通滤波器滤出所需已调信号,防止带外辐射,影响邻台。 二、2ASK 信号的功率谱及带宽 ()()()() ∑∞-∞ =-=ω=n s n c nT t g a t s t Cos t s t e 0 ???-=p p a n 110,概率为,概率为随机变量 ()()()()()() ()()()s s T f j s a s T j s a s e fT S T f G e T S T G E t e S t s G t g 002 π-ω-?π=???? ??ω=ωω?ω?ω?或,设 ()()()[]c c S S E ω-ω+ω+ω=ω21 ()()()的功率为: 则在频率轴上互不重叠,,假如t e S S c c 0ω-ωω+ω ()()()[]()()()[] c S c S E c S c S E f f P f f P f P P P P -++=ω-ω+ω+ω= ω4 1 4 1 或 )(f P S 为)(t s 的功率谱, 可见,知道了)(f P S 即可知道)(f P E 。 由前面,二进制随机序列)(t s 的功率谱: 的门函数 12s 2 s t t t

2FSK数字信号频带传输系统的设计与建模

课程设计任务书 学生姓名: COBE 专业班级:电信1333班 指导教师:工作单位:信息工程学院 题目:2FSK数字信号频带传输系统的设计与建模 初始条件: (1)MAX+plus、Quartu s II、ISE等软件; (2)课程设计辅导书:《通信原理课程设计指导》 (3)先修课程:数字电子技术、模拟电子技术、电子设计EDA、通信原理 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)课程设计时间:; (2)课程设计题目:2FSK数字信号频带传输系统的设计与建模; (3)本课程设计统一技术要求:按照要求对题目进行逻辑分析,了解2FSK数字信号的产生方法,画出FSK调制解调的方框图,编写VHDL语言程序,上机调试、仿真,记录实验结果波形,对实验结果进行分析; (4)课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,并标明参考文献至少5篇; (5)写出本次课程设计的心得体会(至少500字)。 时间安排:第19周 参考文献: 江国强.EDA技术与应用. 北京:电子工业出版社,2010 John G. Proakis.Digital Communications. 北京:电子工业出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日 本科生课程设计成绩评定表

指导教师签字: 年月日

目录 1 设计要求分析 (1) 1.1 题目的意义 (1) 1.2 设计要求 (1) 2 FSK设计的原理与方案 (2) 2.1 FSK的调制 (2) 2.1.1 直接调频法 (2) 2.1.2 频率键控法 (2) 2.1.3 基于FPGA的FSK调制方案 (3) 2.2 FSK的解调 (3) 2.2.1 同步(相干)解调法 (3) 2.2.2 FSK滤波非相干解调法 (4) 2.2.3 基于FPGA的FSK解调方案 (4) 3 FSK设计的程序与仿真 (5) 3.1 FSK基于VHDL语言调制 (5) 3.1.1 FSK调制程序 (5) 3.1.2 FSK调制仿真 (6) 3.2 FSK基于VHDL语言解调 (10) 3.2.1 FSK调制程序 (10) 3.2.2 FSK调制仿真 (11) 4 FSK基于FPGA实物测试 (14) 4.1 FPGA原理图及其引脚分配 (14) 4.1.1 数码管电路介绍 (14) 4.1.2 按键电路介绍 (15) 4.1.3 LED电路介绍 (16) 4.2 FPGA程序 (17) 4.3 FPGA结果演示 (19) 5 课程设计心得 (20) 6 参考文献 (21)

数字通信系统的模型

数字通信系统的模型 ? 数字通信系统的分类 数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。 1. 数字频带传输通信系统 数字通信的基本特征是,它的消息或信号具有“离散”或“数字” 的特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。 另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有

一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。 综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。 需要说明的是,图中 / 、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。 2. 数字基带传输通信系统 与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。

数字频带传输系统的仿真设计(数字通信原理课程设计)

课程设计报告 一.设计题目 数字频带传输系统的仿真设计 二.主要内容及具体要求 a.利用所学的《通信原理及应用》的基础知识,设计一个2ASK数字调制器。完成对2ASK的调制与解调仿真电路设计,并对其仿真结果进行分析。要求理解2ASK 信号的产生,掌握2ASK信号的调制原理和实现方法并画出实现框图。 b.设计一个2FSK数字调制器。要求给出2FSK的产生原理框图(调频法、键控法)、SystemView仿真电路图、调制解调的原理框图,给出信号的频谱图、调制前与 借条后数据波形比较覆盖图,加噪前后相关波形。 三.进度安排 5.28-5.29 图书馆查阅资料,确定选题,思考总体设计方案 熟悉软件的编程环境 推荐的参考资料有: 《MATLAB通信工程仿真》 《MATLAB/SIMULINK通信系统建模与仿真实例分析》 《MATLAB在通信系统建模中的应用》 5.30 总体设计方案的确定与设计 5.31 各部分的具体实现 6.01—6.02 程序调试并程序注释 6.03 整理完成设计报告 四.成绩评定 总成绩由平时成绩(考勤与课堂表现)、程序设计成绩和报告成绩三部分组成,各部分比例为30%,50%,20%.

(1)平时成绩:无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。迟到15分钟按旷课处理 (2)设计成绩:按照实际的设计过程及最终的实现结果给出相应的成绩。 (3)设计报告成绩:按照提交报告的质量给出相应的成绩。 备注:每人提交一份课程设计报告(打印稿和电子稿各一份) 课程设计报告按照模板撰写内容,要求详细、准确、完整。 第一部分 1 2ASK 调制方法 1.基本原理调 频移键控是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。一种常用的也是最简单的二进制振幅键控方式称为通—断键控(OOK ),其表达式为: =)(t e OOK ???? ?-时 发送“以概率”时发送“ 以概率"01,01,cos P P t A c ω (1-1) 典型波形如图1-1所示: 图1-1

基于Systemview的数字频带传输系统的仿真要点

课程设计目的: 1、熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图 2、深入了解2ASK,2FSK,2PSK,2DPSK的调制解调原理 课程设计器材: PC机,Systemview软件 课程设计原理: 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 Systemview的基本介绍: SystemView是一个用于现代科学与科学系统设计及仿真打动态系统分析平台。从滤波器设计、信号处理、完整通信系统打设计与仿真,到一般打系统数字模型建立等各个领域,SystemView在友好而功能齐全打窗口环境下,为用户提供啦一个精密的嵌入式分析工具。 进入SystemView后,屏幕上首先出现该工具的系统视窗,系统视窗最上边一行为主菜单栏,包括:文件(File)、编辑(Edit)、参数优选(Preferences)、视窗观察(View)、便笺(NotePads)、连接(Connetions)、编译器(Compiler)、系统(System)、图符块(Tokens)、工具(Tools)和帮助(Help)共11项功能菜单。如下图所示。

系统视窗左侧竖排为图符库选择区。图符块(Token)是构造系统的基本单元模块,相当于系统组成框图中的一个子框图,用户在屏幕上所能看到的仅仅是代表某一数学模型的图形标志(图符块),图符块的传递特性由该图符块所具有的仿真数学模型决定。创建一个仿真系统的基本操作是,按照需要调出相应的图符块,将图符块之间用带有传输方向的连线连接起来。这样一来,用户进行的系统输入完全是图形操作,不涉及语言编程问题,使用十分方便。进入系统后,在图符库选择区排列着8个图符选择按钮创建系统的首要工作就是按照系统设计方案从图符库中调用图符块,作为仿真系统的基本单元模块。可用鼠标左键双击图符库选择区内的选择按钮。 当需要对系统中各测试点或某一图符块输出进行观察时,通常应放置一个信宿(Sink)图符块,一般将其设置为“Analysis”属性。Analysis块相当于示波器或频谱仪等仪器的作用,它是最常使用的分析型图符块之一。 在SystemView系统窗中完成系统创建输入操作(包括调出图符块、设置参数、连线等)后,首先应对输入系统的仿真运行参数进行设置,因为计算机只能采用数值计算方式,起始点和终止点究竟为何值?究竟需要计算多少个离散样值?这些信息必须告知计算机。假如被分析的信号是时间的函数,则从起始时间到终止时间的样值数目就与系统的采样率或者采样时间间隔有关。实际上,各类系统或电路仿真工具几乎都有这一关键的操作步骤,SystemView 也不例外。如果这类参数设置不合理,仿真运行后的结果往往不能令人满意,甚至根本得不到预期的结果。有时,在创建仿真系统前就需要设置系统定时参数。 时域波形是最为常用的系统仿真分析结果表达形式。进入分析窗后,单击“工具栏”内的绘制新图按钮(按钮1),可直接顺序显示出放置信宿图符块的时域波形,对于码间干扰和噪声同时存在的数字传输系统,给出系统传输性能的定量分析是非常繁杂的事请,而利用“观察眼图”这种实验手段可以非常方便地估计系统传输性能。实际观察眼图的具体实验方法是:用示波器接在系统接收滤波器输出端,调整示波器水平扫描周期T s,使扫描周期与码元周期T c同步(即T s=nT c,n为正整数),此时示波器显示的波形就是眼图。由于传输码序列的随机性和示波器荧光屏的余辉作用,使若干个码元波形相互重叠,波形酷似一个个“眼睛”,故称为“眼图”。“眼睛”挣得越大,表明判决的误码率越低,反之,误码率上升。SystemView具有“眼图”这种重要的分析功能。 当需要观察信号功率谱时,可在分析窗下单击信宿计算器图标按钮,出现“SystemView 信宿计算器”对话框,单击分类设置开关按钮spectrum,完成功率谱的观察。 课程设计过程 1 二进制振幅键控 2ASK 2ASK的实现: 模拟调制法键控法 在幅移键控中,载波幅度是随着调制信号而变化的。一种是最简单的形式是载波在二进制调制信号1或0控制下通或断,这种二进制幅度键控方式称为通断键控(OOK)。二进制振幅键控方式是数字调制中出现最早的,也是最简单的。这种方法最初用于电报系统,但由于它在抗噪声的能力上较差,故在数字通信中用的不多。但二进制振幅键控常作为研究其他数字调制方式的基础。

2ASK数字基带信号频带传输系统的设计与建模

2ASK数字基带信号频带传输系统的设计与建模

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:2ASK数字信号频带传输系统的设计与建模 初始条件: (1)MAX+plus II、Quartu s II、ISE等软件; (2)课程设计辅导书:《通信原理课程设计指导》 (3)先修课程:数字电子技术、模拟电子技术、电子设计EDA、通信原理 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)课程设计时间: ; (2)课程设计题目:2ASK数字信号频带传输系统的设计与建模; (3)本课程设计统一技术要求:按照要求对选定的设计题目进行逻辑分析,画出ASK调制解调的方框图,设计出各模块的逻辑功能,编写VHDL语言程序,上机调试、仿真,记录实验结果波形,对实验结果进行分析; (4)课程设计说明书按学校“课程设计工作

规范”中的“统一书写格式”撰写,并标明参考 文献至少5篇; (5)写出本次课程设计的心得体会(至少500字)。 时间安排:第19周 参考文献:段吉海.数字通信系统建模与设计.北京:电子工业出版社,2004 江国强.EDA技术与应用. 北京:电子工业出版社,2010 John G. Proakis.Digital Communications. 北京:电子工业出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 一.摘要 (1) 二.题目分析与设计方案论证 (1) 2.1、ASK调制原理 (1) 2.2、ASK信号的产生 (2) 2.3、ASK解调原理 (2) 三.基于Quartus的系统建模与仿真 (3) 3.1、2ASK数字调制系统 (3) 3.2、2ASK解调系统 (5) 四.心得体会 (7) 五.附录 (8) 六.参考文献 (11)

实训四-数字信号频带传输的仿真设计

实训四数字信号频带传输的仿真设计 一、实验内容 1、基带信号采用不归零矩形脉冲,生成2PSK信号的时域波形和功率谱密度。 2、生成QPSK信号的时域波形和功率谱密度。 3、QPSK接收信号的星座图。 4、仿真QPSK系统的误码率。 二、程序与仿真图 1. clc;clear all; tm=1; fc=3; Nsample=100; Nnum=1000; dt=tm/Nsample; N=Nsample*Nnum; t=0:dt:Nnum*tm-dt; NFFT=2.^16; Nloop=50; st1=0;st2=0; %%%% for i=1:Nloop; d=2*randint(1,Nnum)-1;

st_bb=rectpulse(d,Nsample); st_2psk=st_bb.*sin(2*pi*fc*t); window=boxcar(length(st_bb)); [pxx1,f]=periodogram(st_bb,window,NFFT,1/dt); [pxx2,f]=periodogram(st_2psk,window,NFFT,1/dt); st1=st1+pxx1;st2=st2+pxx2; end st1=st1/Nloop; st2=st2/Nloop; %%%%%%%%%%%%%% figure(1); subplot(211);plot(t,st_bb);axis([0 10 -1.5 1.5]); xlabel('t');ylabel('幅度');title('双极性基带信号的时域波形'); subplot(212);plot(t,st_2psk);axis([0 10 -1.5 1.5]);grid on; xlabel('t');ylabel('幅度');title('2PSK已调信号波形'); figure(2); subplot(211);plot([-1*flipud(f);f],0.5*[flipud(st1);st1]);axis([-15 15 0 1]); xlabel('f');ylabel('频谱');title('双极性基带信号的频谱');grid on; subplot(212);plot([-1*flipud(f);f],0.5*[flipud(st2);st2]);axis([-10 10 0 0.5]); xlabel('f');ylabel('频谱');title('2PSK已调信号的频谱');grid on;

数字频带传输的可靠性比较

数字频带传输的可靠性比较 设信道加性高斯白噪声的双边功率谱密度为N0/ 2,发送信号平均每符号能量Es,计算: 1) MPSK 系统在AWGN 信道下的性能(理论值); 2) 用蒙特卡罗仿真的方式进行误码率仿真,并与理论值相比较。 代码: EsN0dB = 3:0.5:10; EsN0 = 10.^( EsN0dB/10 ); Es = 1; N0 = 10.^( -EsN0dB/10 ); sigma = sqrt(N0/2); error = zeros(1,length(EsN0dB)); s_data = zeros(1,length(EsN0dB)); M=4; for k=1:length(EsN0dB) error(k)=0; s_data(k) = 0; while error(k)<1000 d = ceil( rand(1,10000)*M ); s = sqrt(Es)*exp(j*2*pi/M*(d-1)); %加入信道噪声(复噪声) r = s + sigma(k)*( randn(1,length(d)) + j*randn(1,length(d)) ); for m=1:M %计算距离 rd(m,:) = abs( r - sqrt(Es)*exp(j*2*pi/M*(m-1)) ); end for m=1:length(s) %判决距离最近的点 dd(m) = find( rd(:,m) == min(rd(:,m)) ); ifdd(m)~=d(m) error(k) = error(k)+1; end end s_data(k) = s_data(k)+10000; end end Pe = error./s_data; %理论计算的误码率结果

通信原理数字频带传输系统课程设计

目录 1技术要求 (1) 2基本原理 (1) 2.1 数字基带传输系统的组成 (1) 2.2 基带传输的常用码型 (2) 2.3 无码间串扰的基带传输特性 (3) 2.3.1 无码间串扰的条件 (3) 2.3.2 余弦滚降特性 (3) 2.4 眼图 (4) 3 使用Matlab建立模型描述 (5) 3.1 Simulink简介 (5) 3.2 设计思路 (6) 3.2.1 信源模块 (6) 3.2.2 收发滤波器和信道模块 (7) 3.2.3 抽样判决模块 (9) 3.2.4 误码率计算模块 (9) 3.2.5 整体设计电路图 (10) 4 使用System View建立模型描述 (10) 4.1 System View简介 (10) 4.2 设计思路 (11) 5 模块功能分析 (12) 5.1 用Simulink设计系统 (12) 5.2 用System View设计系统 (13) 6 调试过程及结论 (15) 6.1 Simulink调试 (15) 6.1.1 Simulink调试结果 (15) 6.1.2 Simulink调试结论 (17) 6.2 System View调试 (17) 6.2.1 System View调试结果 (17)

6.2.2 System View调试结论 (18) 6.3 两种方案性能对比 (19) 7 心得体会................................................. 错误!未定义书签。 8 参考文献 (19)

数字基带通信系统的设计 1技术要求 设计一个数字基带传输系统,要求: (1)设计一个数字基带传输系统的结构; (2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等); (3)用Matlab或SystemView实现该数字基带通信系统; (4)观察仿真并进行波形分析; (5)系统的性能评价。 2基本原理 2.1 数字基带传输系统的组成 在数字传输系统中,其传输的对象通常是二进制数字信号,它可能是来自计算机、电传打字机或其它数字设备的各种数字脉冲,也可能是来自数字电话终端的脉冲编码调制(PCM)信号。这些二进制数字信号的频带范围通常从直流和低频开始,直到某一频率 m f,我们称这种信号为数字基带信号。在某些有线信道中,特别是在传输距离不太远的情况下,数字基带信号可以不经过调制和解调过程在信道中直接传送,这种不使用调制和解调设备而直接传输基带信号的通信系统,我们称它为基带传输系统。而在另外一些信道,特别是无线信道和光信道中,数字基带信号则必须经过调制过程,将信号频谱搬移到高频处才能在信道中传输,相应地,在接收端必须经过解调过程,才能恢复数字基带信号。我们把这种包括了调制和解调过程的传输系统称为数字载波传输系统。 系统基带波形被脉冲变换器变换成适应信道传输的码型后,就送入信道,一方面受到信道特性的影响,使信号产生畸变;另一方面信号被信道中的加性噪声所叠加,造成信号的随即畸变。因此,在接收端必须有一个接收滤波器,使噪声尽可能受到抑制,为了提高系统的可靠性,在安排一个有限整形器和抽样判决器组成的识别电路,进一步排除噪声干扰和提取有用信号。对于抽样判决,必须有同步信号提取电路。在基带传输中,主要采用位同步。同步信号的提取方式采用自同步方式(直接法)。同步系统性能的好坏将直接影

数字信号频带传输系统2fsk的仿真实现

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2012年秋季学期 通信系统综合训练 题目:数字信号频带传输系统的仿真实现 专业班级:通信工程(四)班 姓名: 学号: 指导教师:陈海燕 成绩:

摘要 本次综合训练主要是利用仿真软件,完成对数字信号频带传输系统的仿真实现。我在这次综合训练中利用Systemview仿真软件,采用2FSK对基带信号进行调制解调,独立完成整个传输系统的仿真。 关键词:频带传输;Systemview;2FSK

前言 1、为什么选取数字调制系统? 对于大多数的数字传输系统来说,由于数字基带信号往往具有丰富的低频成分,而实际的通信信道又具有带通特性,因此,必须用数字信号来调制某一较高频率的正弦或脉冲载波,使已调信号能通过带限信道传输。 2、什么叫数字调制与数字解调、频带传输系统? 数字调制:用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程。 数字解调:已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号的反变换。 频带传输系统:包括数字调制和数字解调过程的传输系统。 3、载波的选择 从原理上来说,受调制载波的波形可以是任意的,只要已调信号适合于信道传输就可以了。但实际上,在大多数数字通信系统中,都选择正弦信号作为载波。这是因为正弦信号形式简单,便于产生及接收。 4、数字调制技术类型 一般可分为两种类型:(1) 利用模拟方法去实现数字调制,即把数字基带信号当作模拟信号的特殊情况来处理;(2) 利用数字信号的离散取值特点键控载波,从而实现数字调制——键控法。键控法的特点:数字电路实现,调制变换速率快,调整测试方便,体积小和设备可靠性高。 5、数字调制类型的分类 (1)数字调制可分为二进制调制和多进制调制两种。 (2)根据已调信号的结构形式可分为线性调制和非线性调制两种。 (3)数字调制方式分为调幅、调频和调相三种基本形式[]1 。

相关主题
相关文档 最新文档