当前位置:文档之家› 数列复习基本知识点及经典结论总结+练习题

数列复习基本知识点及经典结论总结+练习题

数列复习基本知识点及经典结论总结+练习题
数列复习基本知识点及经典结论总结+练习题

数列复习基本知识点及经典结论总结

1、数列的概念:数列是按一定次序排成的一列数。数列中的每一个数都叫做这个数列的项。数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。数列的通项公式也就是相应函数的解析式。如(1)已知

*

2

()156n n a n N n =

∈+,则在数列{}n a 的最大项为__(答:125);(2)数列}{n a 的通项为1

+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );

(3)已知数列{}n a 中,2n a n n λ=+,

且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是

()(答:A )

A B C D

递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项a n 与它的前一项a n 1-(前n 项)间的关系可以用一个

式子来表示,则这个式子就叫数列的递推关系式。

数列的前n 项和:

a a a a s n n ++++=...321.

已知s n 求a n 的方法(只有一种):即利用公式 a n =?????≥=--)

2(,)

1(,11

n n s s s n n

注意:一定不要忘记对n 取值的讨论!最后,还

应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。

2.等差数列的有关概念: 1、 等差数列的定义:即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). (1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+?{}a n 为等差数列。

② 中项法: a a a n n n 212+++=?{}a n 为等差数列。③通项公式法:b an a n +=(a,b 为常数)?{}a n 为等差数列。④前n 项和公式法:Bn n A s n +=2(A,B 为常数)?{}a n 为等差数列。 如设{}n a 是等差数列,求证:以b n =

n

a a a n

+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。

(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。公式变形为:b an a n +=. 其中a=d, b= a 1-d. 如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:

8

33

d <≤) (3)等差数列的前n 和:1()2n n n a a S +=,1(1)2

n n n S na d -=+。公式变形为:Bn

n A s n +=2

,其中A=2d

B=2

1d

a -

.注意:已知n,d, a 1,a n , s n 中的三者可以求另两者,即所谓的“知三求二”。 如(1)数列 {}n a 中,*11

(2,)2

n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_

(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:

2*

2*

12(6,)1272(6,)

n n n n n N T n n n n N ?-≤∈?=?-+>∈??). (4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b

A +=。 3.等差数列的性质:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222

n n n d d

S na d n a n -=+

=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之和都等于首末两项之和.当m n p q +=+时,则有

q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.如(1)等差数列{}n a 中,12

3

18,3,1n n n n S a a a S --=++

=

=,则n =____(答:27);(2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则A 、1210,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于

0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )

(4) 项数成等差,则相应的项也成等差数列.即),,...(,,*2N m k a a a m k m k k ∈++成等差.若{}n a 、{}n b 是等差数列,则

{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}

n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列. 如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。(答:225)

(5)在等差数列{}n a 中,当项数为偶数2n 时, )(1a a n n n n s ++=;nd s s =-奇偶;a a n

n s s 1+=

奇偶.

项数为奇数21n -时,

a n n n s )12(12-=-;a s s 1-=-奇偶 ;

n s s 1

-=奇

偶。 如(1)在等差数列中,S 11=22,则6a =______(答:2);(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).

(6)单调性:设d 为等差数列{}a n 的公差,则

d>0?{}a n 是递增数列;d<0?{}a n 是递减数列;d=0?{}a n 是常数数列 (7)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且

()n n A f n B =,则21

21

(21)(21)n n n n n n a n a A f n ---===-.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若

3

41

3-+=

n n T S n n ,那么=n n b a ___________(答:62

87

n n --)

(8) 8、已知{}a n 成等差数列,求s n 的最值问题:

① 若01>a ,d<0且满足????

?

≤≥+0

,

01a a n n

,则s n 最大;

②若010且满足????

?≥≤+0

,01a a n n ,则s n 最小. 如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>,

200320040a a ?<,则使前n 项和0n S >成立的最大正整数n 是 (答:4006)

4.等比数列的有关概念:如果数列{}

a n 从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做

等比数列,这个常数叫等比数列的公比。即)2,(*1

≥∈=-n n q N

a a n n (或)(*1N a a

n q n n ∈=+

(1)等比数列的判断方法:定义法

1(n n a q q a +=为常数)

,其中0,0n q a ≠≠或11

n n n n a a

a a +-= (2)n ≥。如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____(答:

5

6

);(2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。

(2)等比数列的通项:11n n a a q -=或n m n m a a q -=。如设等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和

n S =126,求n 和公比q . (答:6n =,1

2

q =

或2)

(3)等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q

-=-11n a a q

q -=-。如(1)等比数列中,

q =2,S 99=77,求9963a a a +++ (答:44)

特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由

q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

(4)等比中项:如果a 、G 、b 三个数成等比数列,那么G 叫做a 与b 的等比中项,即G=ab ±.提醒:不是任何两数

都有等比中项,只有同号两数才存在等比中项,且有两个,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )

5.等比数列的性质:

(1)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之积都等于首末两项之积.即当m n p q +=+时,则有q p n m a a a a ..=,

特别地,当2m n p +=时,则有2

.p n m a a a =.如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ?=,则

3132310

l o g l o g l o g a a a +++= (答:10)。 (2) 若{}n a 是等比数列,则{||}n a 、*

{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、成等比数列,则{}n n a b 、

{}n n

a

b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列. 若{}a n 是等比数列,且各项均为正数,则{}

a n a l og 成等差数列。 如(1)已知0a >且1a ≠,设数列{}n x 满足1log 1log

a n a n x x +=+(*)n N ∈,且12100100x x x +++= ,则101102200x x x +++= . (答:100100a );(2)在等比数列}{n a 中,n S 为其前

n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)

(3) 单调性:若10,1a q >>,或10,01a q <<<则{}n a 为递增数列;若10,1a q <>,或10,01a q ><< 则{}n a 为递减数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.

(4) 当1q ≠时,b aq q

a

q q a S n n n +=-+--=

1111,这里0a b +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)

(5) m n m n m n n m S S q S S q S +=+=+.如设等比数列}{n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为_____(答:-2)

(6) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶. (7)关于数列{}n a 有下列三个命题:①若)(1

N ∈=+n a a n n ,则{}n a 既是等差数列又是等比数列;②若

()R ∈+=b a n b n a S n 、2,则{}n a 是等差数列;③若()n

n S 11--=,则{}n a 是等比数列。这些命题中,真命题的序

号是 (答:②③)

⑧等差数列中,S m+n =S m +S n +mnd ;等比数列中,S m+n =S n +q n S m =S m +q m S n ; 6.数列的通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。如已知数列 ,32

1

9,1617,815,413试写出其一个通项公式:__________(答:1

1

212

n n a n +=++

) ⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{

11,(1)

,(2)

n n n S n a S S n -==

-≥。如①已知{}n a 的前n 项和

满足2log (1)1n S n +=+,求n a (答:{

3,1

2,2n n n a n ==

≥);②数列{}n a 满足12211125222

n n a a a n +++=+ ,求n a (答:{

114,1

2,2

n n n a n +==

≥)

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)()

,(2)

(1)n f n f n a n f n =??=?

≥?-?。如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______(答:61

16

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-

1a +(2)n ≥。如已知数列{}n a 满足11a =,n

n a a n n ++=

--111(2)n ≥,则n a =________(答

1n a =)

⑸已知

1()n n a f n a +=求n a ,用累乘法:121121

n n n n n a a a

a a a a a ---=???? (2)n ≥。如已知数列}{n a 中,21=a ,前n 项

和n S ,若n n a n S 2=,求n a

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。如①已知111,32n n a a a -==+,求n a (答:1231n n a -=- );②已知111,32n n n a a a -==+,求n a (答:11532n n n a -+=- )

(2)形如1

1n n n a a ka b

--=

+的递推数列都可以用倒数法求通项。如①已知1111,31n n n a a a a --==+,求n a (答:

1

32

n a n =

-);

7.数列求和的常用方法:

(1)公式法:③常用公式:1123(1)2n n n ++++=+ ,222

112(1)(21)6

n n n n +++=++ ,

33332(1)123[

]2

n n n +++++= .如(1)等比数列{}n a 的前n 项和S n=2n-1,则2

2322

21n a a a a ++++ =_____(答:413

n -);

(2)分组求和法:如求:1357(1)(21)n n S n =-+-+-+-- (答:(1)n

n -?)

(3)倒序相加法: 如已知2

2

()1x f x x =+,则111(1)(2)(3)(4)()()()234f f f f f f f ++++++=______(答:72)

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,即数列是一个“差·比”数列,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 如设{}n a 为等比数列,

121(1)2n n n T na n a a a -=+-+++ ,已知11T =,24T =,①求数列{}n a 的首项和公比;②求数列{}n T 的通项公式.(答:

①11a =,2q =;②1

2

2n n T n +=--)

; (5)裂项相消法:裂项相消法:把数列的通项拆成两项之差,在求和时一些正负抵消,从而前n 项化成首尾若干

少数项之和。如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

1(1)n n =+; ②1()

n n k =+ ;

22111k k -=- ④=+-)

12)(12(1n n ⑤

1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;

=++n

k n 1

如(1)求和:111

1447(32)(31)n n +++=??-?+ (答:

31

n n +);(2)在数列{}n a 中,1

1++=n n a n ,

且S n=9,则n =_____(答:99);

(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如①求数列1×4,2×5,3×6,…,

(3)n n ?+,…前n 项和n S = (答:

(1)(5)

3

n n n ++);

②求和:111

112123123n

++++=+++++++ (答:

21n n +)

8. “分期付款”、“森林木材”型应用问题

(1)这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.

(2)利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则

n 期后本利和为:(1)(12)(1)n S p r p r p nr =+++++

(1)

()2

n n p n r +=+

(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清。如果每期利率为r (按复利),那么每期等额还款x 元应满足:1

2(1)(1)(1)(1)n

n n p r x r x r x r x --+=+++++++ (等比数列

问题).

2012高考数学必修5数列检测题

一、填空题 1.(2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10= 2 .(2012辽宁理)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=

3 .(2012大纲文))已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =

4.(2012安徽文)公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =

5 .(2012新课标理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a += 6.(2012重庆理)在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = 7.(2012福建理)等差数列{}n a 中,15410,7a a a +==,则数列{}n a 的公差为

8.(2012大纲理))已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +??????的前100项和为

9.(2012福建理)已知ABC ?

得三边长成公比为,则其最大角的余弦值为___.

10.(2012重庆文)首项为1,公比为2的等比数列的前4项和4S =___. 11.

11.(2012课标文))等比数列{n a }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______

12.(2012年高考(浙江理))设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若

2232S a =+,4432S a =+,则

q =______________.

13 .(2012福建文)数列{}n a 的通项公式cos 2

n n a n π

=,其前n 项和为n S ,则2012S 等于

14 .(2012课标文)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为

二、解答题

15. 【2012高考江苏20】已知各项均为正数的两个数列{}n a 和{}n b 满足:2

2

1n

n n n n b a b a a ++=

+,*N n ∈,、设

n n n a b b +=+11

,*N n ∈,求证:数列2

n n b a ????

??

?? ?

??

????

是等差数列.

15.(2012重庆文)已知{}n a 为等差数列,且13248,12,a a a a +=+=

(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.

16.(2012浙江文)已知数列{a n }的前n 项和为S n ,且S n =22n n +,n∈N﹡,数列{b n }满足a n =4log 2b n +3,n∈N ﹡.

(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .

17.(2012湖北文)已知等差数列{}n a 前三项的和为3-,前三项的积为8.

(1) 求等差数列{}n a 的通项公式;(2)若231,,a a a 成等比数列,求数列{}n a 的前n 项和.

18.(2012大纲文)已知数列{}n a 中,11a =,前n 项和2

3

n n n S a +=.(Ⅰ)求23,a a ;(Ⅱ)求{}n a 的通项公式.

19.(2012辽宁理)在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.

(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.

20.(2012年高考(山东文))(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知

sin (tan tan )tan tan B A C A C +=.(Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .

21.(2012年高考(山东文))已知等差数列{}n a 的前5项和为105,且1052a a =

(Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .

22(2012陕西理)设{}n a 的公比不为1的等比数列,其前n 项和为n S ,且534,,a a a 成等差数列.

(1)求数列{}n a 的公比 (2)证明:对任意k N +∈,21,,k k k S S S ++成等差数列.

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

数列知识点及常用结论

数列知识点及常用结论 一、等差数列 (1)等差数列的基本公式 ①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差) ()n m a a n m d =+- (从第m 项m a 开始为等差) ()n m n m n m a a nd a a n m d a a d n m -=?? =+-??-=?-? ②前n 项和公式:11()(1)22 n n n a a n n S na d +-= =+ (2)证明等差数列的法方 . ①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)?{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )?{}n a 为等差数列 ③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ?{}n a 为等差数列 即:通项公式位n 的一次函数,公差d p =,首项1a p q =+ ④前n 项和公式法:2 n S pn qn =+ (p , q 为常数) ?{}n a 为等差数列 即:关于n 的不含常数项的二次函数 (3)常用结论 < ①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列. ②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +. 特别的,当n+m=2k 时,得n m a a +=2k a ③在等差数列{}a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

数列知识点及常用结论

数列知识点及常用结论 一、等差数列 (1)等差数列的基本公式 ①通项公式:1(1)n a a n d =+- (从第1项1a 开始为等差) ()n m a a n m d =+- (从第m 项m a 开始为等差) ()n m n m n m a a nd a a n m d a a d n m -=?? =+-??-=?-? ②前n 项和公式:11()(1)22 n n n a a n n S na d +-= =+ (2)证明等差数列的法方 ①定义法:对任意的n ,都有1n n a a d +-=(d 为常数)?{}n a 为等差数列 ②等差中项法:122n n n a a a ++=+(n ∈*N )?{}n a 为等差数列 ③通项公式法:n a =pn+q (p ,q 为常数且p ≠0) ?{}n a 为等差数列 即:通项公式位n 的一次函数,公差d p =,首项1a p q =+ ④前n 项和公式法:2 n S pn qn =+ (p , q 为常数) ?{}n a 为等差数列 即:关于n 的不含常数项的二次函数 (3)常用结论 ①若数列{}n a ,{}n b 为等差数列,则数列{}n a k +,{}n k a ,{}n n a b ±,{}n ka b + (k , b 为非零常数)均为等差数列. ②若m+n=p+q (m ,n ,p ,q ∈*N ),则n m a a +=p q a a +. 特别的,当n+m=2k 时,得n m a a +=2k a ③在等差数列{}n a 中,每隔k(k ∈*N )项取出一项,按原来的顺序排列,所得的数列仍为等差数列,且公差为(k+1)d(例如:1a ,4a ,7a ,10a ??????仍为公差为3d 的等差数列)

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

数列知识点及常用结论

数列知识点及常用结论 -、等差数列 (1)等差数列的基本公式 ①通项公式:a^ a i (n - 1)d (从第1项印开始为等差) a n = a m - (n- m)d (从第m项a m开始为等差) 比代二nd a n=a m+( n-m)d=仁a n-a m d = ---- — m L.n ②前n项和公式:皿且2訂务 2 2 (2)证明等差数列的法方 ①定义法:对任意的n,都有a ni -a. =d(d为常数)二{a.}为等差数列 ②等差中项法:2a n^a n■ a n 2(n,N )= {a n}为等差数列 ③通项公式法:a n=pn+q (p , q为常数且p z 0)u {a n}为等差数列 即:通项公式位n的一次函数,公差d = p,首项a^ p q 2 ④前n项和公式法:S n = p n +qn (p , q为常数)={a n}为等差数列 即:关于n的不含常数项的二次函数 (3)常用结论 ①若数列{a n}, {b n}为等差数列,则数列{a n k} , {kLa n} , {a n - b n}, {ka n b} (k , b为非零常数)均为等差数列. ②若m+n=p+q (m, n, p, q N*),贝U a. a m=a p a q. 特别的,当n+m=2k时,得a n' a m= 2a k

③在等差数列{a n}中,每隔k(k ? N*)项取出一项,按原来的顺序排列,所得的数列仍 为等差数列,且公差为(k+1)d(例如:a1, a4, a7, a10 仍为公差为3d的等差数列) ④若数列{a*}为等差数列,则记2 =6 ? a?山. 宀比,S2k -S k二a k i ? a k 2宀.... 宀a2k, 2 S3k _S2^a2k 1 a2k 2 .... ' a3k,则S k , Sk , S k 仍成等差数列,且公差为k d S ⑤若S n为等差数列{a n}的前n项和,则数列{」}也为等差数列. n f S|,( n = 1) ⑥a n二此性质对任何一种数列都适用 ! S n - S二,(n-2) ⑦求S n最值的方法: a兰0 I:若a i>0,公差d<0,则当彳时,则S n有最大值且S k最大; (A卑兰0 N _ 0 若a i<0,公差d>0,则当时,贝V S n有最小值,且S k最小; I a k i 一0 II :求前n项和S n pn ? qn的对称轴,再求出距离对称轴最近的正整数k , 当n二k时,S k为最值,是最大或最小,通过S n的开口来判断。 二、等比数列 (1)等比数列的基本公式 ①通项公式:n 1 a n =aq (从第1项a i开始为等比) a二a q (从第m项a开始为等差) ②前n项和公式: —,(q ~1),Sfq-1) (2)证明等比数列的法方 ①定义 法:对任意的n,都有a n 1 = qa n(a n = 0)= 色」=q (q = 0)= {a n}为等比数列a n

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

数列知识点总结及题型归纳总结

数列知识点总结及题型归纳总结

高三总复习----数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数 列; 数列中的每个数都叫这个数列的项。记作n a ,在数 列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… 数列①的通项公式是n a = n (n ≤7,n N + ∈), 数列②的通项公式是n a = 1n (n N + ∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表 示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,1.4,

1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一 个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常 数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系: 1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和3 22+=n s n ,求数列}{n a 的通

数列全章知识点总结

数列知识点题型方法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n = ∈+,则在数列{}n a 的最大项为__(125); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为___(n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数 列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是(A ) A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = 210n +;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 8 33 d <≤ 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2n n n S na d -=+。如(1)数列 {}n a 中,*11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和15 2n S =-,则13a =-,10n =; (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答:2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、 d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率 为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数 列。

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

相关主题
文本预览
相关文档 最新文档