当前位置:文档之家› 数值计算方法第五章

数值计算方法第五章

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值计算方法思考题

数值计算方法思考题 第一章 预篇 1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣? 3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。 4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确: (1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。 (5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。 (8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题 ax 2 + bx + c = 0. 下面的公式是熟知的 a ac b b x 242-±-=. 与之等价地有 ac b b c x 422--= . 对于 a = 1, b = -100 000 000 , c = 1 应当如何选择算法? 8.指数函数有著名的级数展开 ++++=!3!213 2x x x e x 如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么? 9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为 ∑==n i i x x x 1 1 它的标准差

1 12)(11??????--=∑-n i i x x n σ 数学上它等价于 1 12211???????????? ??--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失? 第二章 非线性方程求根 1.判断如下命题是否正确: (a) 非线性方程的解通常不是唯一的; (b) Newton 法的收敛阶高于割线法; (c) 任何方法的收敛阶都不可能高于Newton 法; (d) Newton 法总是比割线法更节省计算时间; (e) 如果函数的导数难于计算,则应当考虑选择割线法; (f) Newton 法是有可能不收敛; (g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。如果| g '(x *) | <1,则对任意的初 始值,上述迭代都收敛。 2.什么叫做一个迭代法是二阶收敛的?Newton 法收敛时,它的收敛阶是否总是二阶 的? 3.求解单变量非线性方程的单根,下面的3种方法,它们的收敛阶由高到低次序如何? (a) 二分法 (b) Newton 方法 (c) 割线方法 4.求解单变量非线性方程的解,Newton 法和割线方法,它们每步迭代分别需要计算几 次函数值和导数值? 5.求解某个单变量非线性方程,如果计算函数值和计算导数值的代价相当,Newton 法和割线方法它的优劣应如何评价? 第三章 解线性方程组的直接法 1.用高斯消去法为什么要选主元?哪些方程组可以不选主元? 2.高斯消去法与LU 分解有什么关系?用它们解线性方程组Ax = b 有何不同?A 要满足什么条件? 3.乔列斯基分解与LU 分解相比,有什么优点? 4.哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 5.什么样的线性方程组可用追赶法求解并能保证计算稳定? 6.何谓向量范数?给出三种常用的向量范数。 7.何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (a i j )的三种范数|| A ||1,|| A ||2,|| A ||∞,|| A ||1与|| A ||2哪个更容易计算?为什么? 8.什么是矩阵的条件数?如何判断线性方程组是病态的? 9.满足下面哪个条件可判定矩阵接近奇异? (1)矩阵行列式的值很小。 (2)矩阵的范数小。

数值分析第8章作业

第八章 矩阵特征值问题计算 3.用幂法计算下列矩阵的主特征值及对应的特征向量 12732343()341;()463213331a A b A --???? ????=-=-???? ????--???? 当特征值有3位小数稳定代终止。 解:套用幂法公式 010,,,1,2,.... max()k k k k k v u v Au u k v -≠== = 取0(1,1,1)0T u =≠,将A 1代入上式,计算结果见下表 则1A 的主特征值19.605572λ≈,特征向量1(10.6050.394369)T x ≈- 将2A 代入幂法公式,取0(1,1,1)T u =,计算结果见下表 则2A 主住特征值18.869699λ≈,特征向量1(0.604228,1,0.160881)T x ≈- 4.用反幂法求矩阵 621231111A ?? ??=?? ???? 的最接近于6的特征向量。 解:本题按带原点平移的反幂法计算。平移向量p=6,则将

021231115B A pI ?? ??=-=-?? ??-?? 进行三分解:PB=LU ,其中 1 002310101511 001,10,02 221004 2701005 5P L U ? ??? ????-??? ??? ??????===-???????????? ?? ?? ??? ??? 然后1(1,1,1)T Uv =,解得 1 111,max()v v u v = 1,,,2,3,.... max()k k k k k k k v Ly PU Uv y U k v -=== = 计算结果如下:

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

数值计算第三章答案

证明:如果求积公式()对函数f (x )和g (x )都准确成立,则它对于线性组合af(x)+bg(x) (a,b 均为常数)亦准确成立. 因此,求积公式()具有m 次代数精度的充分必要条件是:它对任一小于等于m 次的多项均能准确成立,但对某个m+1次多项式不能准确成立. ()()不能成立 对与题设矛盾多项式都能准确成立,次多,即对任意的线性组合亦准确成立也能准确成立,则对若对的线性组合亦准确成立对次的多项式准确成立对于任意小于等于不准确成立,对的线性组合亦准确成立对成立次的多项式于等于根据定义可知:对于小次代数精度 机械求积公式具有机械求积公式也成立 对于线性组合同理可得 机械求积公式都成立 对于证明: 1m 1321321320 000 0)1(,,,,,,1,,,,,1,,,,,1),1,0()(2)()()] ()([)()()]()([) ()() ()() ()() ()()(),(1++++=======∴+? ∴?∴==∴?+∴+=+≈+∴≈≈∴≈≈∴∑∑?∑?∑?∑? ∑?∑x m x x x x x x x x x x m x x x x x m j x x f m m x bg x af x bg x af A x bg A x af A dx x bg x af x bg A dx x bg x af A dx x af x g A dx x g x f A dx x f x g x f m m m m m m j n k k k n k k k b a n k k k b a n k k k b a n k k k b a n k k k b a n k k k 直接验证中矩形公式具有一次代数精度,而Simpson 公式则具有3次代数精度。

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

数值分析参考答案(第三章)

第三章 函数逼近与曲线拟合 1. ()sin 2 f x x π =,给出[0,1]上的伯恩斯坦多项式1(,)B f x 及3(,)B f x 。 解: ()sin ,2 f x π = [0,1]x ∈ 伯恩斯坦多项式为 (,)()()n n k k k B f x f P x n ==∑ 其中()(1)k n k k n P x x x k -??=- ??? 当1n =时, 01()(1)0P x x ?? =- ??? 1101()(,)(0)()(1)()1(1)sin(0)sin 022P x x B f x f P x f P x x x x ππ=∴=+??=-?+ ??? = 当3n =时, 3 022 122233 31()(1)01()(1)3(1) 03()(1)3(1) 13()3P x x P x x x x x P x x x x x P x x x ?? =- ?????=-=- ????? =-=- ????? == ???

3 3022322 33223 (,)()() 03(1)sin 3(1)sin sin 6 3 2 3(1)(1)25632221.50.4020.098k k k B f x f P x n x x x x x x x x x x x x x x x π π π =∴==+-+-+= --+-=++≈--∑ 2. 当()f x x =时,求证(,)n B f x x = 证明: 若()f x x =,则 (,)()()n n k k k B f x f P x n ==∑ 001 11(1)(1) 11(1)(1)(1)(1)!(1)[(1)(1)1](1)(1)!1(1) 11(1)1[(1)]n k n k k n k n k k n k n k k n k n k k n k n k k n n k x x k n k n n n k x x n k n n k x x k n x x k n x x x k x x x x -=-=-=-=----=-?? =- ???--+=-----+=---??=- ?-??-??=- ?-?? =+-=∑∑∑∑∑ 3.证明函数1,,,n x x 线性无关 证明: 若20120,n n a a x a x a x x R ++++=?∈ 分别取(0,1,2,,)k x k n = ,对上式两端在[0,1]上作带权()1x ρ≡的内积,得

数值分析第四章习题

第四章 习题 1. 采用数值计算方法,画出dt t t x y x ?= 0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。 〖答案〗 1.6541 2. 求函数 x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。 〖答案〗 s = 5.1354 Warning: Explicit integral could not be found. > In sym.int at 58 s = int(exp(sin(x)^3),x = 0 .. pi) 3. 用quad 求取dx x e x sin 7.15? --ππ的数值积分,并保证积分的绝对精度为910-。 〖答案〗 1.08784943754779 4. 求函数 5.08.12cos 5.1)5(sin )(20 6.02++-=t t t e t t f t 在区间]5,5[-中的最小值点。 〖答案〗

最小值点是 -1.28498111480531 相应目标值是 -0.18604801006545 5. 设 0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。 〖答案〗 数值解 y_05 = 0.78958020790127 符号解 ys = 1/2-1/2*exp(2*t)+exp(t) ys_05 = .78958035647060552916850705213780 6. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。 〖答案〗 x = 0.0667 0.0667 0.0667 7. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。 〖答案〗 解不唯一 x = -0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

最新(完美版)第八章习题答案_数值分析

第八章习题解答 3、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20M λ<<时,均收敛于方程的根。 证明: 设()()x x f x ?λ=-,可知()x ?在(,)-∞∞上可导 对于任意给定的λ值,满足条件'0()m f x M <≤≤时 (1)''()1()x f x ?λ=- 则1'()11M x m λ?λ-≤≤-< 又20M λ<<,M>0 则02M λ<<时,11M λ-<- 所以11'()11M x m λ?λ-<-≤≤-< 若令max{1,1}L M m λλ=--,则可知'()1x L ?≤< (2)由0()(0)'()(0)'()x x x dx x ?????ε=+=+? 则()lim 1x x L x ?→∞??≤< ??? 所以,存在一个数a ,当x a >时,()x x ?< 同时,()x ?在[,]a a -内有界,即存在0b >使得[,]x a a ?∈-,()x b ?< 我们选取 max{,}c a b =,则对任意x 有0()max{,}x c x ?< 则对给定的任意初值0x ,设0max{,}d c x = 则0[,]x d d ∈-,于是在区间[,]d d -上有()x d ?< 即满足映内性 有(1)、(2)可知,()x ?满足收敛定理 迭代序列0{}k k x ∞=收敛于方程的根 6. 给出计算...222+++=x 的迭代格式,讨论迭代格式的收敛性,并证明2=x 解:构造迭代格式10,1,2,k x k +==??? 2k x ≤ 令()x ?=x ?∈?时,()x ??∈? '() x ?=,当x ?∈?时,1 '()12x ?<<

数值分析第一章作业

数值分析第一章作业 1.数值计算方法设计的基本手段是( ). (A) 近似 (B) 插值 (C) 拟合 (D) 迭代 2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ). (A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差 3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ). (A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差 4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响. (A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似 5.当N 充分大时,利用下列各式计算121N N dx I x +=+?,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+ 6. 计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么? (B) 3(3- (D) 99-7.计算球体的体积,已知半径的相对误差限不超过3310-?,则计算所得体积的相对误差限如何估计? 8.设0x >,近似值*x 的相对误差限为δ,试估计*ln x 的误差限. 9.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过δ,则计算所得体积的相对误差限如何估计?. 10.用秦九韶算法求32()431f x x x x =-+-在2x =处的值. 11.已知近似值 1.0000x *=的误差限4()110x ε*-=?,21()16 f x x = ,求(())f x ε*,并说明x *及()f x *的各有几位有效数字. 12. 分析算法011111,,32,1,2,,k k k y y y y y k +-?==???=-=?的数值稳定性.

数值分析第八章常微分方程初值问题的数值解法2011.9

西北工业大学理学院欧阳洁1 常微分方程初值问题的数值解法§3 Runge –Kutta 方法§4 单步法的收敛性、相容性和稳定性§5 线性多步法第八章 §1 常微方分程常微方分程初值问题的数值解法概述§2 几种简单的单步法

西北工业大学理学院欧阳洁2一问题及基本假设 § 1 常微方分程 常微方分程初值问题的数值解法概述 二离散化方法

上述定理称为一阶常微分方程初值问题解 的适定性(存在性、惟一性与稳定性)定理。 对所讨论的一阶常微分方程初值问题,本 章假设该问题是适定的,即解析解y(x)在区间[a,b]上是存在、惟一,且具有充分的光滑度。 因此f(x,y(x))也充分光滑。 西北工业大学理学院欧阳洁4

西北工业大学理学院欧阳洁6 常微分方程初值问题的数值解法分为: ①单(一)步法:计算时,只用到和,即前一步的值。 1+n y n y n n x x ,1+显式单步法的一般形式为②多步法:计算时,除用到和以外,还用到和,即用到前k 步的值。 p n x ?)1;1,2,1(>?=?k k p y p n L 1+n y n y n n x x ,1+对单步法与多步法,有显式与隐式方法之分。显式、隐式多步法的一般形式类似。 隐式单步法的一般形式为) ,,(1h y x h y y n n n n ?+=+),,,(11h y y x h y y n n n n n +++=?数值解法建立的过程:通过一定的离散化方法,将连续性问题的求解转化为有限个离散节点上解析解近似值的求解。 常用的离散化方法: Taylor 展开法;差商直接代替微商;数值积分法。

数值计算方法第四章

58 第四章 函数插值 插值是对函数进行近似的基本方法,本章介绍了代数插值时常用的Lagrange 插值法、Newton 插值法、Hermite 插值法和三次样条插值法,并相应的介绍了差商,差分和插值余项等概念. §4.1 引 言 在科学与工程计算中,常会遇到如下问题:已知)(x f y =在区间[,]a b 上的一系列点{}n i i x 0=处的函数值{}n i i y 0=,需要利用这些数据来求某点)(i x x x ≠处的函数值 的近似值.若能利用这组数据建立一个近似)(x f 的函数)(x φ,)(x f 的值就可以用 )(x φ近似求出. 已知函数)(x f 在区间],[b a 上1+n 个互异节点{}n i i x 0=处的函数值{}n i i y 0=.若函 数集合Φ中函数()x φ满足条件 ()() (0,1,2,,)i i x f x i n φ== (4.1) 则称)(x φ为)(x f 在Φ中关于节点{}n i i x 0=的一个插值函数,并称)(x f 为被插值函数,],[b a 为插值区间,{}n i i x 0=为插值节点.式(4.1)被称为插值条件. 函数集合Φ可以有不同的选择,最常用的是形式简单的多项式函数集合.将多项式作为插值函数进行插值的方法称为代数插值.针对区间],[b a 上1+n 个互异节点,代数插值就是要确定一个不超过n 次的多项式 n n x a x a a x +++= 10)(φ (4.2) 使其满足插值条件(4.1),即选取参数{}0n i i a =,满足线性方程组 000 1111111n n n n n n n a y x x a y x x a y x x ??????? ??????????? =?????? ???????????? ?? (4.3)

常州大学数值分析课后习题答案第二章第三章第四章节

数值分析作业 第二章 1、用Gauss消元法求解下列方程组: 2x 1-x 2 +3x 3 =1, (1) 4x 1+2x 2 +5x 3 =4, x 1+2x 2 =7; (2) 解: A=[2 -1 3 1;4 2 5 4;1 2 0 7] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 2 -1 3 1 4 2 5 4 1 2 0 7

x = 9 -1 -6 11x1-3x2-2x3=3, (2)-23x 1+11x 2 +1x 3 =0, x 1+2x 2 +2x 3 =-1; (2) 解: A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1] n=size(A,1);x=zeros(n,1);flag=1; % 消元过程 for k=1:n-1 for i=k+1:n if abs(A(k,k))>eps A(i,k+1:n+1)= A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); else flag=0; return end end end % 回代过程 if abs(A(n,n))>eps x(n)=A(n,n+1)/A(n,n); else flag=0; return end for i=n-1:-1:1 x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); end return x A = 11 -3 -2 3 -23 11 1 0 1 2 2 -1 x = 0.2124 0.5492 -1.1554 4、用Cholesky分解法解方程组 3 2 3 x1 5 2 2 0 x2 3 3 0 12 x3 7

《数值分析》第四章答案

习题4 1. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。再给13169=建立3次插值公式,给出相应的结果。 解:x x f =)( 2 12 1)(- = 'x x f ,2 34 1 )(- -=''x x f ,2 58 3)(- = '''x x f , 2 7) 4(16 15)(- - =x x f ,72380529.10)115(=f 1000=x , 121 1=x , 144 2=x , 1693=x 10 0=y , 111=y , 12 2=y , 13 3=y ) )(())(() )(())(() )(())(()(1202102 2101201 2010210 2x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= ) 121144)(100144()121115)(100115(12) 144121)(100121()144115)(100115(11) 144100)(121100()144115)(121115(10)115(2----? +----? +----? =L =23 44)6(1512) 23(21)29(1511) 44)(21()29)(6(10?-?? +-?-?? +----? 72276.1006719.190683.988312.1=-+= ))()((!3)()()(2102x x x x x x f x L x f ---'''= -ξ ,144100<<ξ ) 44115()121115()100115()(max 61 )115()115(1441002-?-?-?'''≤ -≤≤x f L f x 2961510 83615 ?????≤ - 001631 .010 1631.02 =?=- 实际误差 22101045.0)115()115(-?=-L f

相关主题
文本预览
相关文档 最新文档