当前位置:文档之家› 压力管道应力分析

压力管道应力分析

压力管道应力分析
压力管道应力分析

第一章任务与职责

1.管道柔性设计的任务

压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;

1)因应力过大或金属疲劳而引起管道破坏;

2)管道接头处泄漏;

3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变

形,影响设备正常运行;

4)管道的推力或力矩过大引起管道支架破坏;

2.压力管道柔性设计常用标准和规范

1)GB 50316-2000《工业金属管道设计规范》

2)SH/T 3041-2002《石油化工管道柔性设计规范》

3)SH 3039-2003《石油化工非埋地管道抗震设计通则》

4)SH 3059-2001《石油化工管道设计器材选用通则》

5)SH 3073-95《石油化工企业管道支吊架设计规范》

6)JB/T 8130.1-1999《恒力弹簧支吊架》

7)JB/T 8130.2-1999《可变弹簧支吊架》

8)GB/T 12777-1999《金属波纹管膨胀节通用技术条件》

9)HG/T 20645-1998《化工装置管道机械设计规定》

10)GB 150-1998《钢制压力容器》

3.专业职责

1)应力分析(静力分析动力分析)

2)对重要管线的壁厚进行计算

3)对动设备管口受力进行校核计算

4)特殊管架设计

4.工作程序

1)工程规定

2)管道的基本情况

3)用固定点将复杂管系划分为简单管系,尽量利用自然补偿

4)用目测法判断管道是否进行柔性设计

5)L型U型管系可采用图表法进行应力分析

6)立体管系可采用公式法进行应力分析

7)宜采用计算机分析方法进行柔性设计的管道

8)采用CAESAR II 进行应力分析

9)调整设备布置和管道布置

10)设置、调整支吊架

11)设置、调整补偿器

12)评定管道应力

13)评定设备接口受力

14)编制设计文件

15)施工现场技术服务

5.工程规定

1)适用范围

2)概述

3)设计采用的标准、规范及版本

4)温度、压力等计算条件的确定

5)分析中需要考虑的荷载及计算方法

6)应用的计算软件

7)需要进行详细应力分析的管道类别

8)管道应力的安全评定条件

9)机器设备的允许受力条件(或遵循的标准)

10)防止法兰泄漏的条件

11)膨胀节、弹簧等特殊元件的选用要求

12)业主的特殊要求

13)计算中的专门问题(如摩擦力、冷紧等的处理方法)

14)不同专业间的接口关系

15)环境设计荷载

16)其它要求

第二章压力管道柔性设计

1.管道的基础条件

包括:介质温度压力管径壁厚材质荷载端点位移等。

2.管道的计算温度确定

管道的计算温度应根据工艺设计条件及下列要求确定:

1)对于无隔热层管道:介质温度低于65℃时,取介质温度为计算温度;介

质温度等于或高于65℃时,取介质温度的95%为计算温度;

2)对于有外隔热层管道,除另有计算或经验数据外,应取介质温度为计

算温度;

3)对于夹套管道应取内管或套管介质温度的较高者作为计算温度;

4)对于外伴热管道应根据具体条件确定计算温度;

5)对于衬里管道应根据计算或经验数据确定计算温度;

6)对于安全泄压管道,应取排放时可能出现的最高或最低温度作为计算温

度;

7)进行管道柔性设计时,不仅应考虑正常操作条件下的温度,还应考虑开车、

停车、除焦、再生及蒸汽吹扫等工况。

3.管道安装温度宜取20℃(除另有规定外)。

4.管道计算压力应取计算温度下对应的操作压力。

5.管道钢材参数按《石油化工管道柔性设计规范》SH/T3041-2002执行

1)钢材平均线膨胀系数可参照附录A选取。

2)钢材弹性模量可参照附录B选取。

3)计算二次应力范围时,管材的弹性模量应取安装温度下钢材的弹性模量。

6.管道壁厚计算

1)内压金属直管的壁厚

根据SH 3059-2001《石油化工管道设计器材选用通则》确定:

当S0< Do /6时,直管的计算壁厚为:

S0= P D0/(2[ζ]tΦ+2PY)

直管的选用壁厚为:S = S0+ C

式中S0――直管的计算壁厚,mm;

P――设计压力,MPa;

D0――直管外径,mm;

[ζ]t――设计温度下直管材料的许用应力,MPa;

Φ――焊缝系数,对无缝钢管,Φ=1;

S――包括附加裕量在内的直管壁厚,mm;

C――直管壁厚的附加裕量,mm;

Y――温度修正系数,按下表选取。

当S0≥D0/6或P/[ζ]t > 0.385时,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。

2)对于外压直管的壁厚

应根据GB 150-1998《钢制压力容器》规定的方法确定。

7.管道上的荷载

管道上可能承受的荷载有:

1)重力荷载,包括管道自重、保温重、介质重和积雪重等;

2)压力荷载,压力荷载包括内压力和外压力;

3)位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等;

4)风荷载;

5)地震荷载;

6)瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;

7)两相流脉动荷载;

8)压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

9)机器振动荷载,如回转设备的振动。

8.管道端点的附加位移

在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:

1)静设备热胀冷缩时对连接管道施加的附加位移;

2)转动设备热胀冷缩在连接管口处产生的附加位移;

3)加热炉管对加热炉进出口管道施加的附加位移;

4)储罐等设备基础沉降在连接管口处产生的附加位移;

5)不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加

位移。

9.管道布置

管道的布置尽量利用自然补偿能力:

1)改变管道的走向,以增加整个管道的柔性;

2)利用弹簧支吊架放松约束;

3)改变设备布置。

4)对于复杂管道可用固定点将其划分成几个形状较为简单的管段,如L形、

Π形、Z形等管段。确定管道固定点位置时,宜使两固定点间的管段能够自然补偿。

10.宜采用计算机分析方法进行详细柔性设计的管道

1)操作温度大于400 ℃或小于-50 ℃的管道;

2)进出加热炉及蒸汽发生器的高温管道;

3)进出反应器的高温管道;

4)进出汽轮机的蒸汽管道;

5)进出离心压缩机、往复式压缩机的工艺管道;

6)与离心泵连接的管道,可根据设计要求或按图1-1 确定柔性设计方法;

图 1-1 与离心泵连接管道柔性设计方法的选择

7)设备管口有特殊受力要求的其他管道;

8)利用简化分析方法分析后,表明需进一步详细分析的管道。

11.不需要进行计算机应力分析的管道

1)与运行良好的管道柔性相同或基本相当的管道;

2)和已分析管道相比较,确认有足够柔性的管道;

3)对具有同一直径、同一壁厚、无支管、两端固定、无中间约束并能满足

式(1) 和式(2) 要求的非极度危害或非高度危害介质管道。

D o·Y/(L-U)2 ≤208.3 ――(1)

Y = (⊿X2+⊿Y2+⊿Z2)1/2――(2)

――管道外径,mm;

式中:D

O

Y――管道总线位移全补偿值,mm;

Δx、Δy、Δz分别为管道沿坐标轴x、y、z方向的线位移全补偿

值,mm;

L――管系在两固定点之间的展开长度,m;

U――管系在两固定点之间的直线距离,m。

式( l )不适用于下列管道:

(1)在剧烈循环条件下运行,有疲劳危险的管道:

(2)大直径薄壁管道(管件应力增强系数i≥5):

(3)不在这接固定点方向的端点附加位移量占总位移量大部分的管道;

(4)L/U>2.5的不等腿"U"形弯管,或近似直线的锯齿状管道。

12.管道端点无附加角位移时管道线位移全补偿值计算

当管道端点无附加角位移时,管道线位移全补偿值应按下列公式计算:⊿X=⊿X B-⊿X A-⊿X t AB

⊿Y=⊿Y B-⊿Y A-⊿Y t AB

⊿Z=⊿Z B-⊿Z A-⊿Z t AB

⊿X t AB =α1(X B– X A)(T –T0)

⊿Y t AB=α1(Y B– Y A)(T –T0)

⊿Z t AB =α1(Z B– Z A)(T –T0)

式中:

⊿X、⊿Y、⊿Z ――分别为管道沿坐标轴X、Y、Z方向的线位移全补偿值,mm:

⊿X A、⊿Y A、⊿Z A――分别为管道的始端A沿坐标轴X、Y、Z方向的附加线位移,mm;

⊿X B、⊿Y B、⊿Z B――分别为管道的末端B沿坐标轴X、Y、Z方向的附加线位移,mm;

⊿X t AB、⊿Y t AB、⊿Z t AB――分别为管道AB沿坐标轴X、Y、Z方向的热伸长值,mm;

αt――管道材料在安装温度与计算温度间的平均线膨胀系数,mm/mm·℃;

X A、Y A、Z A――管道始端A的坐标值,mm;

X B、Y B、Z B――管道末端B的坐标值,mm;

T――管道计算温度,℃;

T0――管道安装温度,℃。

13.例题

利用判别式解题有两种方法:

第一种方法注意如下四点和上面“+”、“-”号的取值。

1)假定一个始端,一个终端

2)始端固定,终端放开

3)热膨胀方向由始端向终端

4)热伸长量取正直

第二种方法注意如下四点。和SH/T 3041-2002中的公式一致

1)假定一个始端,一个终端

2)始端固定,终端放开

3)热膨胀方向由始端向终端

4)建立坐标系,端点附加位移和热伸长量与坐标轴同向取“+”,与坐

标轴反向取“-”。

上题计算如下:

⊿Y=⊿Y B-⊿Y A-⊿Y t AB= 0-4-12 = -16 mm

⊿Y=⊿Y B-⊿Y A-⊿Y t AB= 4-(-5)-(-20) = 29 mm

⊿Z=⊿Z B-⊿Z A-⊿Z t AB= 2-0-(-24) = 26 mm

Y=(⊿Y2+⊿Y2+⊿Z2)1/2= [(-16)2+292+262]1/2= 42.1 mm

D O.Y/(L-U)2= 159*42.1/(14-8.4)2= 6693.9/31.36 = 213.45 > 208.3

所以需要进行详细分析,与上面的计算结果不同。这里需要说明的是,不是

计算过程错误,而是新旧标准管径取的不一致,新标准为外径。

第三章补偿器的选用

首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器获得柔性。

1.补偿器的形式

压力管道设计中常用的补偿器有三种:

Π型补偿器、波形补偿器、套管式或球形补偿器

2.Π型补偿器

Π型补偿器结构简单、运行可靠、投资少,在石油化工管道设计中广泛采用。采用Π形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应在Π型补偿器两侧设置导向架。

3.波形补偿器

波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。

1)波形补偿器条件

(1)比用弯管形式补偿器更为经济时或安装位置不够时。

(2)连接两个间距小的设备的管道。其补偿能力不够时。

(3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。

(4)为了保护有严格受力要求的设备嘴子。

2)波形补偿器的形式及适用条件

(1)直管段使用轴向位移型;

(2)两个方向位移的L形,Z形管段使用角型;

(3)三个方向位移的Z形管段使用万向角型;

(4)吸收平行位移的使用横向型。

3)选用无约束金属波纹管膨胀节时应注意的问题

(1)两个固定支座之间的管道中仅能布置一个波纹管膨胀节;

(2)固定支座必须具有足够的强度,以承受内压推力的作用;

(3)对管道必须进行严格地保护,尤其是靠近波纹管膨胀节的部位应设置导

向架,第一个导向支架与膨胀节的距离应小于或等于4DN,第二个导向支架与第一个导向支架的距离应小于或等于14DN,以防止管道有弯曲和径向偏移造成膨胀节的破坏;

4)带约束的金属波纹管膨胀节的类型

带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点处,而是由约束波纹管膨胀节用的金属部件承受。

(1)单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收

单平面角位移;

(2)单式万向铰链型膨胀节,由一个波纹管及万向环、销铀和铰链组

成,能吸收多平面角位移;

(3)复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能

吸收多平面横向位移和拉杆问膨胀节本身的轴向位移;

(4)复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板

组成,能吸收单平面横向位移和膨胀节本身的轴向位移;

(5)复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板

组成,能吸收互相垂直的两个平面横向位移和膨胀节本身的轴向位移;

(6)弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作

波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹付和平衡波纹管外端间装有拉杆。此种膨胀节能吸收轴向位移和/或横向位移。拉杆能约束波纹管压力推力. 常用于管道方向改变处;

(7)直管压力平衡型膨胀节,一般位于两端的两个工作波纹管及有效面积等

于二倍工作波纹管有效面积、位中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连拔起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。

5)波纹管膨胀节在施工安装中应注意的问题

(1)膨胀节的施工和安装应与设计要求相一致;

(2)膨胀节的安装使用应严格按照产品安装说明书进行;

(3)禁止采用使膨胀节变形的方法来调整管道的安装偏差;

(4)固定支架和导向支架等应严格按照设计图纸进行施工,需要改动时应经

原分析设计人员认可;

(5)膨胀节上的箭头表示介质流向,应与实际介质流向相一致,不能装反;

(6)安装铰链型膨胀节时,应按照施工图进行,铰链板方向不能装错;

(7)在管道系统(包括管道、膨胀节和支架等)安装完毕,系统试压之前,应

将膨胀节的运输保护装置拆除或松开。按照国标GB/T 12777的规定,运输保护装置涂有黄色油漆,应注意不能将其他部件随意拆除;

(8)对于复式大拉杆膨胀节,不能随意松动大拉杆上的螺母,更不能将大拉

杆拆除;

(9)装有膨胀节的管道,做水压试验时,应考虑设置适当的临时支架以承受

额外加到管道和膨胀节上的荷载。试验后应将临时支架拆除。

3.套管式或球形补偿器

套管式或球形补偿器因填料容易松弛,发生泄漏,在石化企业中很少采用。在有毒及可燃介质管道中严禁采用填料函式补偿器。

4.冷紧

1)冷紧

冷紧可降低操作时管道对连接设备或固定点的推力和力矩,防止法兰连接处弯矩过大而发生泄漏。冷紧是将管道的热应变一部分集中在冷态,在安装时(冷态)使管道产生一个初位移和初应力的一种方法。

当管道沿坐标轴X、y、Z方向的冷紧比不同时,每个方向的冷紧值应根据该方向的冷紧进行计算。当管道上有几个冷紧口时,沿坐标轴X、y、Z方向的冷紧值分别为各冷紧口在相应坐标轴方向冷紧值的代数和。

管道采用冷紧时,热态冷紧有效系数取2/3,冷态取1。

2)连接转动设备的管道不应采用冷紧

由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成后要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。

3)自冷紧

如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧。但冷紧不改变热胀应力范围。

4)冷紧比

冷紧比是冷紧值与全补偿量的比值。

对于材料在阳变温度下工作的管道,冷紧比宜取0.7。对于材料在非蠕变温度下工作的管道,冷紧比宜取0.5。

第四章支吊架选用

1.管道跨距

管道基本跨距的确定实际上就是管系承重支架(或起承重作用的支架)的位置和数量的确定,也就是说管系中承重支架的位置和数量应满足管道基本跨距的要求。为了简化计算,对于水平连续敷设的管道,以三跨连续梁作为计算模型,并按承受均布载荷(指管道自重、介质重和隔热材料重之和)分别根据刚度条件和强度条件计算其最大允许跨距,取(Ll和L2)两者之间的小值。

(l)刚度条件:

Ll = 0.039(EtI/ q)1/4 (装置内)

L’l = 0.048(EtI/ q)1/4 (装置外)

式中

L1、L'1――装置内(外)由刚度条件决定的跨距,m;

E t――管材在设计温度下的弹性模量,MPa;

I――管子扣除腐蚀裕量及负偏差后的断面惯性矩,mm4;

q――每米管道的质量,N/m。

(2)强度条件:

L2= 0.1([ζ]t W/q)1/2(不考虑内压)

L2= 0.071([ζ] t W/q)1/2(考虑内压)

式中

[ζ]t――管材在设计温度下的许用应力,MPa;

W――管子扣除腐蚀裕量及负偏差后的抗弯断面模数,mm3。

I和W分别按以下二式计算:

I =π(D o4-D i4)/64

W =π(D o4-D i4)/32D o

式中Di――管道内径,mm;

Do――管道外径,mm。

2.管道支吊架的形式:

管道支吊架的用途为:

1)承受管道的重量荷载(包括自重、介质重和隔热材科重等);

2)限制管道的位移,阻止管道发生非预期方向的位移;

3)用来控制管道的振动、摆动或冲击。

因此,管道支撑的位置确定、支撑型式的确定以及管道支吊架本身的强度设计也主要是围绕着上述支吊架的三个功能展开的。根据管道支吊架的用途可以分为三大类:

固定架限制了三个方向的线位移和三个方向的角位移;导向架限制了两个方向的线位移;支托架(或单向止推架)限制了一个方向的线位移。

3.承重支吊架

以支撑管道自重及其它持续载荷为目的的支吊架统称为承重支吊架,它主要用于防止管道因自重及其它持续载荷(如介质重、隔热材料重、雪载荷等)而导致的管道强度或刚度超出标准要求。

根据管道相对于支撑结构的空间位置不同,承重支吊架可分为支架和吊架两大类。支撑件将管道支撑在它的上方时,这类支撑件叫做支架。用可以空间摆动的支撑件(吊杆)将管道吊在其下面支撑时,这类支撑件叫做吊架。支架和吊架都可以完全或部分限制管道的向下位移,但二者的支撑效果有所不同。支架因与支撑管道之间可能存在摩擦而使得管道的水平位移受到一定的阻碍,同时产生摩擦力。支架的刚度也比较大,故其稳定性较好。吊架对管道的约束刚度相对较小(除竖直方向外),也不存在摩擦力,如果在一根较长的管道中吊架用的太多,会使管系不稳定,故在一条管道中,一般不宜均用吊架进行支撑。根据承受管道重量的特点不同,承重支吊架又分为刚性支吊架、可调刚性支吊架、可变弹簧支吊架和恒力弹簧支吊架四类。

1)刚性支吊架

刚性支吊架仅限制管道一个方向(通常为-Y方向)的自由度。它常用于管道在支撑点无向上垂直热位移和附加位移的情况下,或用于支撑点有较小的向下位移和附加位移但不会由此在管系中造成较大的管系力的情况下。刚性支吊架是应用最多的一种支吊架。根据应用场合和生根条件的不同,常用的刚性支吊架系列有平(弯)管支托、假管支托、悬臂支架、临管支架等。

2)可调刚性支吊架

可调刚性支吊架是一般刚性支吊架的一种特殊型式,即通过旋拧可调螺丝,使支吊架的高度在一定范围内得到调整,用于有少量竖直方向的热位移或附加位移的场合。在工作工况下,当支撑点有竖直方向的热位移或附加位移时,会使管道脱离支架(俗称支架脱空)而起不到支撑作用,或使支架被顶死而产生较大的管系力,此时应采用下面将要介绍的弹簧支吊架。如果支撑点竖直方向的热位移或附加位移比较小而且又位于容易接近的地方时,采用可调刚性支吊架比弹簧支吊架会更经济、更方便。

3)可变弹簧支吊架

可变弹簧支吊架适用于支撑点有垂直位移、用刚性支吊架会脱空或造成过大热胀推力的场合。与恒力弹簧支吊架相比,使用可变弹簧支吊架会造成一定的荷载转移。为防止过大的荷载转移,可变弹簧支吊架的荷载变化率应控制在25%以下。当然,有时根据实际需要而有意识地去分配管系在各支撑点的载荷,即有意识地给定一个较大的安装载荷而获得较大的载荷转移。常用强型的可变弹簧支吊架有支、吊两种,根据载荷情况和受力条件还可采用串联和并联两种型式。

4)恒力弹簧支吊架

恒力弹簧支吊架适用于管道支撑点垂直位移量较大或管系受为要求较苛刻的场合。通过采用恒力弹簧支吊架,可以避免管道支撑点冷态和热态的受力变化太大而导致管系本身的应力或相连设备的受力超标。恒力弹簧的恒定度应小于或等于6%,以保证支吊点发生位移时,支承力的变化很小。恒力弹簧支吊架一般采用描架型式,且根据受力情况可并联使用。

如果认为刚性支吊架的刚度理论上为无穷大的话,那么恒力弹簧支吊架的刚度理论上则为零,而可变弹簧支吊架的刚度介于二者之间,它等于弹簧产生单位变形所需要的力。

4.限位支吊架

以限制和约束因热胀而引起的管系位移为目的支吊架称为限位支吊架。管系受热而发生热胀时,管系中的各点将发生位移。在管系中适当设置限位支吊架,可控制支撑点的位移或某些方向的位移,使管系的变形或各点的位移朝着有利于保护敏感设备或有利于热补偿的方向进行。根据对管系热位移约束的方式不同,限位支吊架又可分为固定支架、导向支架和止推支架三种。

1)固定支架

固定支架可限制管道支撑点三个方向的线位移和三个方向的

角位移,因此它常用于管道上不允许有任何位移的地方。固定支架一般同时又能起承重作用。常用的固定支架型式有焊接型管托和螺拴固定管托两种。

2)导向支架

导向支架可限制管道支撑点两个方向的线位移,因此常用于引导管道位移方向、使管道能沿轴向位移而不能横向位移的情况。当用于水平情况时,导向支架又同时能起承重作用。常用的导向支架型式有管托型导向支架、光管型导向支架、管卡型导向支架等型式。

3)止推支架

止推支架常代替固定支架用于限制管道的轴向位移。根据限位方式的不同,常用的止推支架又分为"+X/+Z"和"-X/-Z"双向止推支架和"+X/+Z"或"-X/-Z"单向止推支架两种。常用的止推支架为单向止推架,它可限制管道支撑点一个方向的线位移。

5.防振支架

专门用于控制管道振动的支吊架叫做防振支架。防振支架常用于控制或缓解往复式机泵迸出口管道或由地震、风载荷、水击、安全阀排出反力引起的管道振动场合。应该说,前面所讲的支吊架类型中,除吊架以外,其它支架都在某种程度上起到防振作用,但它们中要么防振作用的效果不好,要么会带来其它问题(如降低或限制了管系的热补偿能力),因此,工程上对于防振情况则给出了专用支架。常用的防振支架主要有两类,其一是防振管卡,其二是阻尼器。

1)防振管卡

防振管卡能有效地控制管系的高频率强迫振动。防振管卡与固定支架不同,它允许管道有一定的轴向位移而使管系不会因热胀而破坏。防振管卡与一般的刚性承重支架和导向支架不同它对管道施加了较大的刚度约束(从型式和数量上实现),且增加了架对管道的阻尼作用从而有效地阻滞了管系的振动。

2)阻尼器

阻尼器与减振支架的最大区别遮于它给予了管系较大的自由度,因而对连续强迫型高频机械振动的抑制效果较差,它常用于缓解瞬间激振(如主汽门突然关闭、泵突然停车、地震、水锤等)引起的有阻尼自由振动。工程上应用的阻尼器有油压式阻尼器、摩擦式阻尼器等。

6.目前工程上常用的弹簧支吊架主要有两类:

即可变弹簧支吊架和恒力弹簧支吊架,而且已形成标准系列。对应的国家标准为GB10181《恒力弹簧支吊架》和GB10182《可变弹簧支吊架》。

1)可变弹簧支吊架的工作原理

可变弹簧支吊架的核心部件是一个被控制的圆柱弹簧,当被支撑管道发生竖向位移时,会带动圆柱弹簧的控制板使弹簧压缩或被拉长。

由虎克定律可知,此时弹簧压缩或伸长所需要的力(也等于对管子的作用力)可用下式表示:

F=k·δ

式中

F――弹簧被压缩或被拉长δ量时所需要的力,N;

K――弹簧刚度,N/mzm

δ――弹簧被压缩或被拉伸的变形量,mm。

弹簧刚度是一个只与弹簧自身参数(如弹簧直径、弹簧材料等)有关的物理量,一旦弹簧参数一定,它是个常数(在其允许总变形量的30%~70%范围内是个常数)。因此,此时弹簧对管道的作用力则与变形量成正比。工程上正是糊糊的这一性质来进行有垂直位移的管道支撑的。

对于标准弹簧支吊架来说,弹簧都是经过预压缩然后装入弹簧箱中的。因此,对于同样一个变形量δ,此时压缩弹簧所需耍的力F应按下式计算:

F = (δ1+δ)k = δ1k+δ·k = F1+kδ

式中

δ1――弹簧预压缩的变形量,mm

F1――弹簧预压缩时的压缩力,N;

F、δ、k――意义同前。

设F为弹簧支吊架的工作载荷,并用符号FG表示:设F1为弹簧支吊架的安装荷载,并用FA表示:设S为弹簧在由安装载荷变为工作载荷时的变形量,并在弹簧被压缩时取正号,被拉伸时取负号。S在管道支撑中即为管道支撑点的竖直位移量,支撑点的竖直位移向上时取正号,向下时取负号。可变弹簧支吊架的选型公式为:

F A = kδ+F G

2)常用可变弹簧支吊架系列

国家标准GB1018S共给出了A、B、C、D、E、F、G七种标准型式,见图所示。

A型――上螺纹悬吊型;

B型――单耳悬吊型;

C型――双耳悬吊型;

D型――上调节搁置型;

E型――下调节搁置型;

F型――支撑搁置型;

G型――并联悬吊型。

7.可变弹簧支吊架的选用

工程上,一般按热态吊零的载荷分配原则确定弹簧支吊架的受力。所谓热态吊零,是指弹簧支吊架在热态时承受的力应等于冷态时由管系分配给它的力。按这样的原则确定的弹簧支吊架受力使得整个管系中各支撑点承受的自重力在热态时比较均匀,但在热态时管系中各点的总载荷会因位移荷载的作用而不再均匀甚至会出现严重的不合理现象,为此,工程上有时也采用冷态吊零的载荷分配原则。所谓冷态吊零是指弹簧支吊架在冷态时承受的载荷取冷态时由管系分配给它的载荷。与热态吊零相反,此时在热态情况下管系各支撑点承受的自重载荷已不在均匀,而总载荷(包括位移载荷)则是自然分配。

为防止可变弹簧支吊架引起管系在热态或冷态时有较大的载荷转移,工程上常控制它的载荷变化率不超过25%。根据这一限制条件,就可以确定弹簧支吊架的刚度k。在确定弹簧支吊架的刚度时应遵守这样一个原则:在弹簧支吊架能满足管系热态和冷态的承载要求而且载荷变化率不超过规定值的情况下,应尽可能选用刚度最小(指最小规格和最小允许位移值)的弹簧。按这样的原则选取的弹簧支吊架,其安装尺寸最小,价格最便宜,而且实际的载荷变化率最小。

1)串联可变弹簧支吊架的选用

当管系中某点的垂直位移量较大时,从标准弹簧支吊架表中可能已选不到合适的弹簧支吊架,即要么找不到最大工作位移能满足载荷要求的标准系列,

要么因刚度较大而使载荷变化率超出标准要求,此时可考虑采用串联可变弹簧

支吊架。弹簧串联时,应选最大载荷相同的弹簧,即弹簧的牌号相同,以保证每个弹簧的工作载荷和安装载荷都落在允许范围内,而此时每个弹簧变形量则按其刚度的大小成反比分配。

2)并联可变弹簧支吊架的选用

当管道支撑点的载荷超出标准可变弹簧支吊架的最大允许载荷时,或者受支撑条件(如竖管支撑)、生根条件等限制不宜采用单个可变弹簧支吊架进行支撑时,可选用两个或两个以上的可变弹簧支吊架并联支撑。可变弹簧支吊架并联使用时,各弹簧应为同一型号,以避免各弹簧支承力不同而导致管子的倾斜或偏转。并联时的各弹簧变形量相同,均等于管道在支撑点的位移量。并联后的弹簧支吊架总刚度等于各分弹簧支吊架的刚度之和,即n个弹簧支吊架并联时其总刚度为k = k1+k2+……+k n,而各分弹簧承受的载荷平均分配,并等于总载荷的1/n。

3)可变弹簧支吊架的安装要求

可变弹簧支吊架在安装前务必要压缩到要求的安装定位刻度(与安装载荷对应的刻度值),并用定位销进行定位。设置定位销的另一个作用是使可变弹簧支吊架起暂时成为一个刚性支架,可以防止诸如水压试验等非工作工况下因管道载荷临时增加而引起的不利影响,对于大直径气体管道更应考虑这个问题。管系在工作状态下,有时也会出现非预期的载荷突然增加现象,如减压转油线的"淹塔"现象。"淹塔"现象会造成管内液体的突然骤增,从而使其弹簧支吊架承受的载荷也骤然增大,弹簧支吊架的变形量也将随之增大,使管系出现较大的载荷转移,从而可能造成相邻支架或设备接口处的超载破坏。对于可能出现上述现象的管系,工程上常在弹簧支吊架的附近设置保险杆,以控制弹簧的最大变形量,即当弹簧支吊架的变形量超过某一规定值时,保险杆将受力而成为刚性支撑。可变弹簧支吊架的定位销应在管系水压试验之后、装置开车升温之前拆除。

8.恒力弹簧支吊架

当管系在支撑点的竖向位移较大而选用可变弹簧会引起较大的载荷转移时,应考虑选用恒力弹簧支吊架。所谓的竖向位移较大只是一个相对概念,关键要看若选用可变弹簧支吊架时是否会引起较大的载荷转移,而且较大的载荷转移能否为管系自身强度和边界条件所接受。如果管系的柔性不好,刚度较大,那么既使在较小的位移值情况下,也会引起支撑点热态和冷态的载荷差值较大,

管道设计资料-压力管道应力分析[汇编]

压力管道应力分析部分 第一章任务与职责 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性 ,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1)因应力过大或金属疲劳而引起管道破坏; 2)管道接头处泄漏; 3)管道的推力或力矩过大 , 而使与管道连接的设备产生过大的应力或变形 ,影响设备正常运行; 4)管道的推力或力矩过大引起管道支架破坏; 2.压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》 8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10)GB 150-1998《钢制压力容器》 3.专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4.工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系 ,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型 U型管系可采用图表法进行应力分析 6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置

压力管道应力分析的内容及特点 马佳

压力管道应力分析的内容及特点马佳 发表时间:2019-10-10T10:51:38.057Z 来源:《建筑学研究前沿》2019年13期作者:马佳 [导读] 压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。 新疆天麒工程项目管理咨询有限责任公司 834000 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应力,分成局部薄膜弯曲一次应力、一次应力与总体薄膜一次应力导致压力管道变形与破裂的关键原因在于被一次应力所影响,压力管道承受的一次应力大小若是比压力管道材料具备的塑性变形值大的状况下便会产生这种现象,进而致使运输流体在压力管道中对正常运行工程项目产生影响与损失。所以想要防止产生一次应力超出管材具备的塑性变形值,应该压力管道承受的外界力严格控制,而且在对压力管道选取管材时保证相较于外界力管材具备的塑性变形值更大。 2.2压力管道二次应力分析内容 像气体一样,被温度所影响,流体的体积大小将受到影响,因为对于液体来讲,压力管道具备的变形性特别小,在低温或高温的状况下,压力管道会出现热胀冷缩的状况,而且因为温度等原因导致连接于压力管道的设备出现初始位移,因为管道在这些状况下形成的变形致使被约束于外界条件,如土建结构、设备管口等,使应力形成,二次应力是因为附加位移与热胀冷缩等形成的。二次应力最基本的不同在于,二次应力没有一次应力存在的无自限性,而且二次应力不会由于改变外界力的大小而受到改变,若是外界力导致产生局部屈服的状况下,管道出现变形直到外界力和一次应力处于平衡状态,也不会影响到二次应力。在压力管道存在很大的塑性变形值的基础上,压力管道受到初次荷载的状况下,导致破坏压力管道的原因不是二次应力,压力管道受到多次变化的荷载的状况下,导致压力管道不断降低塑性变形值,使管道产生疲劳破坏的状况,压力管道会受到二次压力重要的破坏,关于管道受到二次应力而遭到破坏的状况,并非是受到一次应力限定的破坏时间,是因为循环次数与交变的应力导致的。 2.3压力管道峰值应力分析内容 在局部范畴中压力管道遭受的应力便是峰值应力,并非是压力管道承受的最大应力值,因为压力管道具有十分复杂的形状,会产生形状突变如急转等状况,受影响于突然产生变化的荷载致使峰值应力受力于压力管道,导致产生峰值的原因紧密关系着压力管道中构成设备仪器的形式,峰值压力不会导致压力管道产生破裂与变形的现象,然而在压力管道产生疲劳受力的状况下,若是受到峰值应力将导致压力管道破裂的状况形成。 3应力分析压力管道的特点探讨 伴随我国目前不断发展的科学技术和应力分析压力管道方面不断提高的技术水平,应力分析压力管道的状况下越发能够有效、清楚的将相关应力处理,然而在处理压力管道应力管道应力方面相比于西方发达国家还有明显的差异存在,导致产生差异的关键原因在于规范的校核原则不足。应力分析压力管道的过程中,设计人员通常情况下对局部薄膜应力和一次弯曲应力分析忽视,无法对产生一次应力的原因与受力全面的了解,进而致使对压力管道分析的数据有一定程度的差错产生,使工作人员编制的后期数据报告存在错误,从而使正常运行

管道应力分析程序使用说明

管道应力分析程序(GLIF)使用说明 第一章概述 本程序吸收了国内管道应力计算程序和美国2010管道应力计算程序的优点,采用结构程序设计方法,开发的符合《火力发电厂汽水管道应力计算技术规定(SDGJ6-90)》的程序。 11功能 程序计及了内压、自重、外载、设备接口附加位移、冷紧、安全阀排放产生的载荷、以及风载、静力地震载荷等,既能对持续荷载,又能对临时荷载、偶然荷载进行分析计算。 程序可对正常运行条件下的热状态、冷状态,由热至冷及由冷至热状态进行计算。其中对冷状态考虑了管道运行初期和应变达到自均衡后两种情况。 程序可对水压试验工况进行分析计算。程序可对异常运行条件下的安全阀排放荷载、风载、地震荷载的静力分析计算。 本程序管道结构分析和应力验算更趋于精细和合理,提高了管道投资的经济性和运行的安全性。 12特点 程序的编制,按功能采用模块型结构,使其可读性和可维护性好。尽量用标准语言而避免采用依赖于机型和硬件的特殊语句,使程序可

移植性好。程序功能强,使用简便,程序对管道的结构没有限制,按管道的设计模型组织数据文件,为CAD绘图创造了良好条件。输入灵活易学,输出集中简明。输入数据、输出成果的单位可分别选取工程制和法定单位制。程序应力验算符合SDGJ6-90标准,为了使用户计算方便、便于掌握程序按照定工况进行组织,可自动检查出输入数据的错误。减少对错误题目进行运算的可能性,节省时间和费用。 13计算内容 a.管道在工作状态下,由持续荷载(即内压、自重等)作用下产 生的应力进行验算,计算持续荷载对设备或端点的推力。 b.管道在运行初期工作状态下,计算管道约束装置的荷载及管道 对设备(或端点)的推力。考虑自重、热膨胀、有效冷紧和端点附加位移的影响。 c.管道应变自均衡后在冷状态下,计算管道刚性约束装置的荷载 及管道对设备(或端点)的推力。 d.管道由冷状态到工作状态的热位移计算,按管道沿坐标轴的全 补偿值和钢材在20℃时的弹性模量计算,并考虑弹簧附加力的影响。 e.管道热膨胀应力范围的验算。 f.管道在运行初期冷状态下,计算管道约束装置的荷载及对设备 (或端点)的推力。 g.管道由于冷紧和弹簧附加力作用下的冷位移的计算,以其作为

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工 业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面 着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度 较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键 是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管 道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数 据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个 生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十 分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金 工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因 为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受 影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实 际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存 在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分 了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外 力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载 与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供 给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的 震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应 力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用 方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰 值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、 应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在 外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的 平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压 力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压 力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外 界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应

压力管道应力分析计算软件在工程设计中应用的探讨

压力管道应力分析计算软件在工程设计中应用的探讨 摘要:随着新工艺和新设备的出现,发电、化工、海洋、石油、市政等领域, 管道的压力、温度、管径和壁厚不断加大,敷设的方式也越来越复杂。传统手工 进行管道应力分析的计算已不能满足实际的需要,各设计和研究单位借助专门的 管道应力分析软件进行计算已成为常态。 关键词:压力管道;应力分析;计算软件;工程应用 导言 上世纪60年代以来,随着发电、化工、市政等领域新工艺和新设备的不断出现,管道的压力、温度提高,管径和壁厚不断加大,管道应力分析也受到越来越 多的重视。由于计算机的不断普及,国际上出现了一批管道应力分析专用计算机 程序。国内虽然也出现了一些自行编制的管道应力分析程序但大多应用于少数特 定领域,与国外软件相比较,软件功能、开发完善、标准规范、技术支持等方面,还存在一定差距,实际使用中,大多数设计单位还是使用国外成熟的管道应力分 析软件。 1 管道应力分析的原则 管道应力分析主要保证管道在设计条件下具有足够的柔性,防止管道因热胀 冷缩、管道支承或端点附加位移造成应力问题。 2 压力管道应力分析的内容和目的 2.1管道应力分析的内容 管道应力分析分为静力分析和动力分析。 静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算;2)管道热 胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算;3)管道对设备作 用力的计算;4)管道支吊架的受力计算;5)管道上法兰的受力计算。 动力分析包括:l)管道自振频率分析;2)管道强迫振动响应分析;3)往复 压缩机(泵)气(液)柱频率分析;4)往复压缩机(泵)压力脉动分析。 2.2 管道应力分析的目的 管道应力分析的目的:1)使管道和管件内的应力不超过许用应力值2)使与 管系相连的设备的管口荷载在制造商或规范规定的许用范围内;3)使与管系相 连的设备管口的局部应力在规定的允许范围内;4)计算管系的支架和约束的设 计荷载;5)进行操作工况碰撞检查而确定管子的位移量;6)优化管系设计。 3 工程设计中常用的压力管道应力分析软件 目前各大设计单位对压力管道应力分析计算基本采用计算机,但采用的软件 各院不尽相同,计算软件的开发品种较多。在压力管道计算方面采用软件情况: 化工、医药、机械行业设计采用美国的CAESAR II,AutoPipe较多,市政热水、蒸 汽及石油输送管道常用sisKMR、START软件。国内自主开发的软件有RJCAD热力 工程设计软件,主要用于热力管网的计算。 3.1.CAESAR II管道应力分析软件 CAESAR II软件历史久远,功能强大,包含动态和静态管道应力分析,在化工,石油,海洋工程方面有很多应用,在国内电力行业也有很多成功应用。 CAESARII可进行管系在承受自重、压力载荷、热载荷、地震载荷等静态载荷,和水锤、蒸汽锤以及安全阀泄放等动态载荷下的应力分析。软件的功能特点如下:

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

压力管道的强度计算.

压力管道的强度计算 1.承受内压管子的强度分析 按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。该应力超过某一限度,将使管道整体变形直至破坏。 承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。则3个主应力的平均应力表达式为 管壁上的3个主应力服从下列关系式: σθ>σz>σr 根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为 σe=σθ-σr≤[σ] 将管壁的应力表达式代入上式,可得理论壁厚公式

图2.1 承受内压管壁的应力状态 工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式 2.管子壁厚计算 承受内压管子理论壁厚公式,按管子外径确定时为 按管子内径确定时为 式中: S l——管子理论壁厚,mm;

P——管子的设计压力,MPa; D w——管子外径,mm; D n——管子内径,mm; φ——焊缝系数; [σ]t——管子材料在设计温度下的基本许用应力,MPa。 管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。因此,工程上采用的管子壁厚计算公式为 S j=S l+C (2-3) 式中:S j——管子计算壁厚,mm; C——管子壁厚附加值,mm。 (1)焊缝系数(φ) 焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。 根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1] 对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取: ①双面焊的全焊透对接焊缝: 100%无损检测φ=1.0; 局部无损检测φ=0.S5。 ②单面焊的对接焊缝,沿焊缝根部全长具有垫板: 100%无损检测φ=0.9; 局部无损检测φ=0.8; (2)壁厚附加量(C) 壁厚附加量C,是补偿钢管制造:工艺负偏差、弯管减薄、腐蚀、磨损等的减薄量,以保证管子有足够的强度。它按下列方法计算: C=C1+C2 (2-4) 式中:C1——管子壁厚负偏差、弯管减薄量的附加值,mm; C2——管子腐蚀、磨损减薄量的附加值,mm。 ①管子壁厚负偏差和弯管减薄量的附加值: 在管子制造标准中,允许有一定的壁厚负偏差,为了使管子在有壁厚负偏差时的最小壁厚不小于理论计算壁厚,管子计算壁厚中必须计人管子壁厚负偏差的附加值。 在管子标准中,壁厚允许负偏差一般用壁厚的百分数表示,令α为管子壁厚负偏差百分数,则得

压力管道应力分析报告部分

爪力管逍应力分析部分 第一章任务与职责 1.管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、压和外载或因管逍支架受限和管道端点的附加位移而发生下列情况: 1)因应力过大或金属疲劳而引起管道破坏: 2)管道接头处泄漏: 3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行: 4)管道的推力或力矩过大引起管道支架破坏: 2.压力管道柔性设计常用标准和规 1)GB 50316-2000《工业金属管道设计规》 2)SH./T 3041-2002《石油化工管道柔性设计规》 3)SH 3039-2003《石油化工非埋地管道抗震设计通则》 4)SH 3059-2001《石油化工管道设计器材选用通则》 5)SH 3073-95《石油化工企业管逍支吊架设计规》 6)JB/T 8130. 1-1999《恒力弹簧支吊架》 7)JB/T 8130. 2-1999《可变弹簧支吊架》 8)GB/T 12777-1999《金属波纹管膨胀宵通用技术条件》 9)HG/T 20645-1998《化工装置管道机械设计规定》 10)GB 150-1998《钢制压力容器》 3.专业职责 1)应力分析(静力分析动力分析) 2)对重要管线的壁厚进行计算 3)对动设备管口受力进行校核讣算 4)特殊管架设计 4.工作程序 1)工程规定 2)管逍的基本情况 3)用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4)用目测法判断管逍是否进行柔性设汁 5)L型U型管系可采用图表法进行应力分析 6)立体管系可采用公式法进行应力分析 7)宜采用计算机分析方法进行柔性设计的管道 8)采用CAESAR II进行应力分析9)调整设备布置和管道布垃

压力管道考试试题材料应力原题(终审稿)

压力管道考试试题材料 应力原题 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

山东三维石化工程股份有限公司 2016全国压力管道设计审批人员培训教材考核试卷-材料、管道器材 姓名:成绩: 一、判断题 (每题1分,共20分) 1.对于奥氏体不锈钢材料,当使用温度大于540℃时,应考虑使用高碳(含碳量大 于0.04%)不锈钢。( ) 2.蠕变和应力松弛两种现象的实质是相同的。( ) S浓度大于50ppm(质量分数)时即可构成湿硫化氢应力腐蚀开3.游离水中溶解的H 2 裂的环境条件。( ) 4.按照SH/T3041的规定,进行管道柔性设计时,计算温度的选取计及正常操作温 度即可,不必考虑开车、停车、除焦及蒸汽吹扫等工况的温度。( ) 5.氢腐蚀是一次脆化,是可逆的,而氢脆是永久脆化,是不可逆的。( ) 6.与转动机器相连的管道不宜采用冷紧。( ) 7.经常在阳光照射下的泵入口的液化烃管道需保温。( ) 8.金属材料的强度越高发生氢脆的可能性越小。( )

9.管内介质温度等于或高于400℃的碳素钢材质的管道不宜采用焊接型支吊架。 ( ) 10.构件或物体在外力作用下产生变形,当外力除去后,构件或物体的形状不能复 原,这种变形成为弹性变形。( ) 11.Q235B钢板不得用于毒性程度为高度和极度危害介质的管道。( ) 12.调整支吊架的形式和位置不能增加管道的自然补偿能力。( ) 13.超低碳不锈钢不宜在425℃以上长期使用。( ) 14.在管道柔性中,计算温度取正常操作温度是安全的。( ) 15.随着碱液浓度的提高,苛性钠碱液管道的使用温度随之提高。( ) 16.管内介质温度等于或高于400℃的碳素钢材质的管道不宜采用焊接型支吊架。 ( ) 17.凹凸面法兰应采用带内环型缠绕式垫片。( ) 18.管道中多设弹簧支吊架会更安全。( ) 19.倒吊桶式、杠杆浮球式及自由浮球式等三种疏水阀属于热静力型疏水阀。 ( )

PDMS11.6管道应力分析接口用户指南

psi116/psi_user_guide116 Issue 201106 Rev 1 PDMS 11.6管道应力分析接口用户指南 NOTE: AVEVA Solutions has a policy of continuing product development: therefore, the information contained in this document may be subject to change without notice. AVEVA SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While every effort has been made to verify the accuracy of this document, AVEVA Solutions shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance or use of this material. This manual provides documentation relating to products to which you may not have access or which may not be licensed to you. For further information on which Products are licensed to you, refer to your license conditions. Copyright 1991 through 2006 AVEVA Solutions Limited All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of AVEVA Solutions. The software programs described in this document are confidential information and proprietary products of AVEVA Solutions or its licensors. For details of AVEVA's worldwide sales and support offices, see our website at: https://www.doczj.com/doc/2e10382808.html, PSI 11.6 User Guide Contents-i Contents 1 Introduction (1) 1.1 About this User Guide (1) 1.2 Overview of the PSI application (1) 2 Starting the application (2) 3 The Groups Tab (5) 3.1 Creating a Stress Group (5) 3.2 Adding and Removing Members (5) 3.3 Rebuild Selected Group (7) 3.4 Find a Group (7) 4 The Display Tab (8) 4.1 Graphics (8) 4.2 Animation (10) 4.2.1 Animation Speed (10) 4.2.2 Processing Order (11) 4.3 Active Stress Group (11) 5 Menus and

压力管道应力分析的内容及特点

龙源期刊网 https://www.doczj.com/doc/2e10382808.html, 压力管道应力分析的内容及特点 作者:裴宝玲 来源:《中国科技纵横》2015年第19期 【摘要】伴随时代的不断进步,科学技术不停发展,我国社会的工业工程发展迅速。将 科技化的生产力逐渐融合到现代工业生产过程中的同时,压力管道的使用也越来越多样化。压力管道是一个复杂的连通系统,能够承受来自外界和内部的共同压力,为工业执行工作操作起到重要的支撑作用。为了更好的运用压力管道的应力作用,必须要进行对应力操作的分析,了解和掌握压力管道的应力工作内容以及特点,才能更好的完成工业技术的升级,保证良好的工作效率,提升社会生产力。进而,促进我国社会的经济建设和发展。 【关键词】压力管道应力分析内容特点 随着科技的不断发展,在工业生产中越来越多的应用到压力管道。压力管道作为工业承载和运输作业的重要途径,能够有效的监管和保护工业工作的正常实施。压力管道在经历外界的空气压力、温度、湿度等方面的环境刺激,还需要接受来自内部的流通物质压力,接受双重压力的控制后还能够充分的保证工业操作的安全性,就是压力管道的应力作用。本文针对压力管道的应力工作内容进行分析,寻找和归纳压力管道的应力操作特点,为更好的实施工业职能操作奠定良好的技术基础。 1压力管道的工作原理以及应力作用的概念 1.1压力管道的工作原理 压力管道的工作原理非常复杂,需要经受内外压力的同时进行正常的输送工作。压力管道的输送功能不限制于材料的性质,能够通过合理的流量控制,进行材料的融合,进一步进行分离工作,实施合理的排出运送,保证材料的整体流量控制。压力管道的工作原理是繁琐复杂的,经过非常严格的步骤控制,有输送管道进行流通,再由阀门进行控制,每个节点都要保证没有老化的胶垫和螺栓进行防渗漏的封闭保护。在流通的过程中,要保证管道的每个环节都紧密有效的相互作用,才能控制管道内和管道外的压力不会造成管道的破裂情况出现[1]。 压力管道是一条系统生产线,因此它具有自己独特的特点。首先,因为管道的连接性,注定了它的功能是具有相互作用力的,无论哪个节点出现问题,都会导致压力管道工作的全面瘫痪或者是出现问题。压力管道存在工作中的风险,因为它的独特结构,决定了它的工作特性。管道都是长链接的状态,而且没有过多空间利用。在压力管道工作运行中,需要承受外界的自然情况侵袭,可能会出现雨水的拍打,暴风的席卷,超高的温度等等,这些情况对压力管道都会造成一定的压力,影响实际的压力管道工作效果,也可能造成管道的损坏。各种情况的干扰就更需要管道保证坚实的工作性能,需要有各种各样的辅助材料支持,保证在细节上做到精

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

管道应力分析和计算

新生培训教材 管道应力分析和计算 (机务专业篇) 国核电规划设计研究院机械部 二零一零年十一月 北京

校核人: 编写人:

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2 管道的柔性分析与计算 2.1 管道的柔性 2.2 管道的热膨胀补偿 2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法 2.9 管道对设备的推力和力矩的计算 3 管道的应力验算

3.1 管道的设计参数 3.2 钢材的许用应力 3.3 管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7 力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程及其勘误 (2)ASME B 31.1-2007动力管道 (3 ) DL/T 5054-1996 火力发电厂汽水管道设计技术规定 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或用户有要求时,可采用B 31.1进行管道应力验算。 1.5.3 应力 在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。 内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,以“σ”表示。

管道应力分析

第一章任务与职责 1. 管道柔性设计的任务 压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况; 1) 因应力过大或金属疲劳而引起管道破坏; 2) 管道接头处泄漏; 3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行; 4) 管道的推力或力矩过大引起管道支架破坏; 2. 压力管道柔性设计常用标准和规范 1) GB 50316-2000《工业金属管道设计规范》 2) SH/T 3041-2002《石油化工管道柔性设计规范》 3) SH 3039-2003《石油化工非埋地管道抗震设计通则》 4) SH 3059-2001《石油化工管道设计器材选用通则》 5) SH 3073-95《石油化工企业管道支吊架设计规范》 6) JB/T 8130.1-1999《恒力弹簧支吊架》 7) JB/T 8130.2-1999《可变弹簧支吊架》 8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》 9) HG/T 20645-1998《化工装置管道机械设计规定》 10) GB 150-1998《钢制压力容器》 3. 专业职责 1) 应力分析(静力分析动力分析) 2) 对重要管线的壁厚进行计算 3) 对动设备管口受力进行校核计算 4) 特殊管架设计 4. 工作程序 1) 工程规定 2) 管道的基本情况 3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿 4) 用目测法判断管道是否进行柔性设计 5) L型U型管系可采用图表法进行应力分析

6) 立体管系可采用公式法进行应力分析 7) 宜采用计算机分析方法进行柔性设计的管道 8) 采用CAESAR II 进行应力分析 9) 调整设备布置和管道布置 10) 设置、调整支吊架 11) 设置、调整补偿器 12) 评定管道应力 13) 评定设备接口受力 14) 编制设计文件 15) 施工现场技术服务 5. 工程规定 1) 适用范围 2) 概述 3) 设计采用的标准、规范及版本 4) 温度、压力等计算条件的确定 5) 分析中需要考虑的荷载及计算方法 6) 应用的计算软件 7) 需要进行详细应力分析的管道类别 8) 管道应力的安全评定条件 9) 机器设备的允许受力条件(或遵循的标准) 10)防止法兰泄漏的条件 11)膨胀节、弹簧等特殊元件的选用要求 12)业主的特殊要求 13)计算中的专门问题(如摩擦力、冷紧等的处理方法) 14)不同专业间的接口关系 15)环境设计荷载 16)其它要求 第二章压力管道柔性设计 1. 管道的基础条件 包括:介质温度压力管径壁厚材质荷载端点位移等。

相关主题
文本预览
相关文档 最新文档