当前位置:文档之家› 电磁场与电磁波课件 第三章 静态场及其边值问题的解

电磁场与电磁波课件 第三章 静态场及其边值问题的解

电磁场与电磁波(第三版)课后答案第9章

第九章习题解答 9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强 时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为 j k r j θ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。由 s i n θ= 得 045θ= 此时接收台偏离正南方向045±。 9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。 解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。 当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。 9.3 如题9.3图所示一半波天线,其上电流分布为() 11cos 2 2m I I kz z ??=-<< ??? (1)求证:当0r l >>时, 020 cos cos 22sin jkr m z I e A kr πθμπθ -?? ? ??= ? (2)求远区的磁场和电场; (3)求坡印廷矢量; (4)已知22 c o s c o s 20.609sin d π πθθθ ?? ? ?? =? ,求辐射电阻; (5)求方向性系数。 题9.3(1) 图 解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为

《电磁场与电磁波》(第四版)习题集:第8章 电磁辐射

第8章 电磁辐射 前面讨论了电磁波的传播问题,本章讨论电磁波的辐射问题。时变的电荷和电流是激发电磁波的源。为了有效地使电磁波能量按所要求的方向辐射出去,时变的电荷和电流必须按某种特殊的方式分布,天线就是设计成按规定方式有效地辐射电磁波能量的装置。 本章先讨论电磁辐射原理,再介绍一些常见的基本天线的辐射特性。 8.1滞后位 在洛仑兹条件下,电磁矢量位A 和标量位?满足的方程具有相同的形式 22 2t ?ρ ?μεε??-=-? (8.1.1) J A A μμε-=??-?222 t (8.1.2) 我们先来求标量位?满足的方程式(8.1.1)。该式为线性方程,其解满足叠加原理。设标量位?是由体积元'V ?内的电荷元'q V ρ?=?产生的,'V ?之外不存在电荷,则由式(8.1.1)'V ?之外的标量位?满足的方程 22 20t ? ?με??-=? (8.1.3) 可将q ?视为点电荷,它所产生的场具有球对称性,此时标量位?仅与r 、t 有关,与θ和φ无关,故在球坐标下,上式可简化为 222 210r r r r t ?? με?????-= ?????? (8.1.4) 设其解()() ,,U r t r t r ?= ,代入式(8.1.4)可得 012 2222=??-??t U v r U (8.1.5) 其中,με 1 = v 。该方程的通解为 (),()()r r U r t f t g t v v =-++ (8.1.6) 式中的()r f t v -和()r g t v +分别表示以()r t v -和()r t v +为变量的任意函数。所以q ?周围的 场为 ()11,()()r r r t f t g t r v r v ?= -++ (8.1.7) 式(8.1.7)中第一项代表向外辐射出去的波,第二项代表向内汇聚的波。在讨论发射天线的 电磁波辐射问题时,第二项没有实际意义,取0=g ,而f 的具体函数形式需由定解条件来确定。此时 ()1,()r r t f t r v ?= - (8.1.8)

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量:

《电磁场与电磁波》 习题解答选

《电磁场与电磁波》(陈抗生)习题解答 第一章 引言——波与矢量分析 1.1 . ,,/)102102cos(102 6300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0 x 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向; 波的幅度 m /V 10E E 3y 。 s /m 10102102k V ;102k ; MHZ 1HZ 1021022f 82 6 P 2 66 1.2 写出下列时谐变量的复数表示(如果可能的话) ) 6 sin()3 sin()()6(cos 1)()5() 2 120cos(6)()4(cos 2sin 3)()3(sin 8)()2() 4 cos(6)()1( t t t U t t D t t C t t t A t t I t t V (1)解: 4/)z (v j 23234 sin j 64cos 6e 6V 4 j (2)解:)2 t cos(8) t (I 2 )z (v j 8e 8I j 2

(3)解:) t cos 13 2t sin 13 3( 13)t (A j 32e 13A 2)z () 2t cos(13)t (A 13 3 cos ) 2 (j v 则则令 (4)解:)2 t 120cos(6) t (C j 6e 6C 2 j (5)(6)两个分量频率不同,不可用复数表示 1.3由以下复数写出相应的时谐变量] ) 8.0exp(4)2 exp(3)3() 8.0exp(4)2(1)1(j j C j C j C (1)解: t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j t sin t cos )Ce (RE )t (C t j (2)解:)8.0t cos(4)e e 4(RE )Ce (RE ) t (C t j 8.0j t j (3)解:)8.0t (j ) 2t (j t j 8 .0j j t j e 4e 3e )e 4e 3(Ce 2 得:)t cos(3)8.0t cos(4)8.0t cos(4)2 t cos(3)Ce (RE )t (C t j 1.4 ] Re[, )21(,)21(000000 B A B A B A B A z j y j x B z j y j x A ,,,求:假定 解:1B A B A B A B A z z y y x x

电磁场与电磁波部分课后答案_郭辉萍版1-6章

第一章 习题解答 1.2解:⑴.A a =A A =149A ++ =(x a +2y a -3z a )/14 ⑵cos A B θ =A ·B /A B A B θ=135.5o ⑶A ·B =-11, A ?B =-10x a -y a -4z a ⑷A ·(B ?C )=-42 (A ?B )·C =-42 ⑸A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2x +2y =c 1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。 解:等值面方程为ln (2x +2 y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2 y +2z =14 1.9求标量场ψ(x,y,z )=62 x 3 y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32 x +y a (3y+z )+z a (3z -x)

错误!未找到引用源。验证散度定理。 解:⑴??s d A =?? 曲+A d S ?? xoz +A d S ?? yoz +A d S ?? 上+A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A d S ?? xoz = (3)y z dxdz +? xoz =-6 A d S ?? yoz =- 2 3x dydz ? yoz =0 A d S ?? 上 +A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下 =272π ? ?s d A =193 ⑵dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2 a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y ????S s d A =2S y dS ? =22sin S d d θ ρρρθ? =44a π 即:??l l d A =????S s d A ,得证。 1.15求下列标量场的梯度: ⑴u=xyz+2 x u ?=x a u x ??+y a u y ??+z a u z ??=x a (yz+zx)+y a xz+z a xy ⑵u=42 x y+2 y z -4xz u ?=x a u x ??+y a u y ??+z a u z ??=x a (8xy-4z)+y a (42 x +2yz)+z a (2y -4x) ⑶u ?=x a u x ??+y a u y ??+z a u z ??=x a 3x+y a 5z+z a 5y

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波(第三章)

第3章习题 习题3.3 解: (1) 由?-?=E 可得到 a <ρ时, 0=-?=?E a >ρ时, φρφρ?φρsin 1cos 12222??? ? ??-+???? ??+-=-?=a A e a A e E (2) 圆柱体为等位体且等于0,所以为导体制成,其电荷面密度为 φεεερρρρcos 2000A E e E e a a n s -=?=?=== 习题3.5 证: 根据高斯定律q S d D S =?? ,得 0R r <时。ρππ344312 r D r =,则0 01113,3εερεερr r r D E r D === 0R r >时。ρππ3443022 R D r =,则203002 223023,3r R D E r R D ερερ=== 则中心点的电位为 20 0200 203 020 13633)0(0 ερεερερεερ?R R dr r R dr r dr E dr E r R R R r R += +=+=?? ??∞ ∞ 习题3.8

解: 根据高斯定律q S d D S =?? ,得同轴线内、外导体间的电场强度为 περ ρ2)(l q E = 内、外导体间的电压为 a b q d q Ed U l b a b a l ln 22περπερ ρ= ==?? 则同轴线单位长度的电容为 ) /ln(2a b U q U Q C l πε = == 则同轴线单位长度的静电储能为 )/ln(422212122 2 a b q d q dV E W l b a l V e περπρπερεε=??? ? ??==?? 习题3.11 解: (1) 设同轴电缆中单位长度的径向电流为I ,电流密度 )(2c a I e J <<=ρπρ ρ 介质中的电场 )(21 1 1b a I e J E <<==ρπρσσρ )(22 2 2c b I e J E <<==ρπρσσρ 而 ? ?+= ?+?=b a b a b c I a b I d E d E U ln 2ln 221 210πσπσρρ ) /ln()/ln(2120 21b c a b U I σσσπσ+=

电磁场与电磁波课后习题答案第一章

第一章 给定三个矢量A u r ,B u r ,C u r : A u r =x a u u r +2y a u u r -3z a u u r B u r = -4y a u u r +z a u u r C u r =5x a u u r -2z a u u r 求:⑴矢量A u r 的单位矢量A a u u r ; ⑵矢量A u r 和B u r 的夹角AB θ; ⑶A u r ·B u r 和A u r ?B u r ⑷A u r ·(B u r ?C u r )和(A u r ?B u r )·C u r ; ⑸A u r ?(B u r ?C u r )和(A u r ?B u r )?C u r 解:⑴A a u u r =A A u r u r =u r (x a u u r +2y a u u r -3z a u u r ) ⑵cos AB θu r u r =A u r ·B u r /A u r B u r AB θ=135.5o ⑶A u r ·B u r =-11, A u r ?B u r =-10x a u u r -y a u u r -4z a u u r ⑷A u r ·(B u r ?C u r )=-42 (A u r ?B u r )·C u r =-42 ⑸A u r ?(B u r ?C u r )=55x a u u r -44y a u u r -11z a u u r (A u r ?B u r )?C u r =2x a u u r -40y a u u r +5z a u u r 有一个二维矢量场F(r)r =x a u u r (-y )+y a u u r (x),求其矢量线方程,并定性画出该矢量场图形。 解:由dx/(-y)=dy/x,得2x +2y =c 求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。 解:等值面方程为ln (2x +2y +2 z )=c

电磁场与电磁波理论(第二版)(徐立勤-曹伟)第3章习题解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?r r 和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+r r r 0202εερA -=Φ?-= (2) ()x y z E A e yz e xz e xy Φ=-?=-++r r r r r 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++??r r r r 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+-=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+-r r r r r 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+r r r r V /m 。试求0z <时的D r 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+r r r r 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

电磁场与电磁波习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F v 的散度处处为0,即0F ??≡v ,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F v 的旋度处处为0,即0F ??≡v ,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=???r v v ? 和 斯托克斯定理:s C F dS F dl ???=???r v v v ? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==??r r ?和 0l E dl ?=?r r ?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=u r 和0E ??=u r 。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为e 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E ρ=5x y z xe ye e --+r r r 。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

教学大纲电磁场与电磁波基础_解读

参考书目:路宏敏,《电磁场与电磁波基础》,科学出版社,2011“电磁场 理论”部 分考查 内容 为: 1、基本 概念和 理论 2、静电 场 3、恒定 电流场 4、 Maxwell 方程组 5、平面 电磁波 课程内 容实施 进度计 划: 课次内容 1 一、场的概念 二、标量场的方向导数与梯度

三、例题讲解 2 一、矢量场的通量与散度 二、矢量场的环量与旋度 三、例题讲解 3 一、曲线坐标系中的梯度、散度、旋度 二、亥姆霍兹定理 4 一、库仑定律与电场强度 三、Gauss’s Law 三、静电场的旋度、电位 四、例题讲解 5 一、电偶极子 二、电介质中的场方程 三、静电场的边界条件 四、例题讲解 6 一、导体系统的电容 二、静电场能量 三、电场力 四、例题讲解 7 一、电流强度与电流密度 二、电流连续性方程

三、导体中的恒定电流场 欧姆定律; 电动势; Joule’s Law; 基本方程; 边界条件 四、恒定电流场与静电场的比拟 8 一、磁感应强度 1、Ampere’s Force Law 2、The Biot-Savart Law 3、洛仑兹力公式 二、恒定磁场的基本方程 1、磁通连续性原理(Gauss’s Law for magnetic fields ) 2、Ampere’s circuital Law 三、Magnetic Vector Potential 9 一、a magnetic dipole 二、Maxwell’s equations in magnetic medium 1、磁化强度与磁化电流; 2、磁场强度、磁导率; 3、磁介质中恒定磁场的基本方程 三、boundary conditions for magnetic fields

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 三章习题解答

三章习题解答 3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。 解 由点电荷q 和q -共同产生的电通密度为 33[]4q R R π+- +- = -=R R D 22322232 () (){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量 d d z z S S S Φ====??D S D e g g 223222320()[]2d 4()() a q a a r r r a r a ππ--=++? 2212 1)0.293()a qa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314r a Ze r r r π?? =- ??? D e ,试证明之。 解 位于球心的正电荷Ze 球体内产生的电通量密度为 12 4r Ze r π=D e 原子内电子云的电荷体密度为 33 3434a a Ze Ze r r ρππ=-=- 电子云在原子内产生的电通量密度则为 3223 4344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π??=+=- ??? D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为3 0C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空 间各部分的电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场的叠加。 在b r >区域中,由高斯定律0 d S q ε= ?E S g ?,可求得大、小圆柱中的正、负电荷在点P 产生 题3.1 图 题3. 3图()a

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

1 电磁场与电磁波第一章习题答案

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ?B ⑷A ·(B ?C )和(A ?B )·C ; ⑸A ?(B ?C )和(A ?B )?C 解:⑴A a =A A (x a +2y a -3z a ) ⑵cos AB θ =A ·B /A B AB θ=135.5o ⑶A ·B =-11, A ?B =-10x a -y a -4z a ⑷A ·(B ?C )=-42 (A ?B )·C =-42 ⑸A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2x +2y =c 1.6求数量场ψ=ln (2x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =14 1.9求标量场ψ(x,y,z )=62x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) ⑵验证散度定理。 解:⑴??s d A = A d S ?? 曲+A dS ?? xoz +A d S ?? yoz +A d S ?? 上+A d S ?? 下 A d S ?? 曲=232(3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz =(3)y z dxdz +?xoz =-6 A d S ?? yoz =-23x dydz ?yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 ⑵dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2L xdx xy dy +? =44a π A ?? =z a 2y

电磁场与电磁波(西安交大第三版)第3章课后答案

第3章习题 3-1 半径为a 的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率ω旋转形成电流,求电流面密度。 解:圆盘以角频率ω旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为 ? ωρρ?r v J s s s == 3-2 在铜中,每立方米体积中大约有28 105.8?个自由电子。如果铜线的横截面为2 10cm ,电 流为A 1500。计算 1) 电子的平均漂移速度; 2) 电流密度; 解:2)电流密度 m A S I J /105.110 10150064?=?== - 1) 电子的平均漂移速度 v J ρ= , 3102819/1036.1105.8106.1m C eN ?=???==-ρ s m J v /101.110 36.1105.14 10 6-?=??==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电 流强度为A μ50,计算传输带上的电荷面密度。 解:电流面密度为 m A L I J S /7.1663 .050μ=== 因为 v J S S ρ= 2/33.820 7.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U 是运动电荷的平均运动速度,证明: 0=??+??+??t U U ρρρ 解:如果ρ是运动电荷密度,U 是运动电荷的平均运动速度,则电流密度为 U J ρ= 代入电荷守恒定律 t J ??-=??ρ 得 0=??+??+??t U U ρ ρρ 3-5 由m S /1012.17 ?=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。 求两端面之间的电阻。 解:用两种方法

电磁场与电磁波基础知识总结

电磁场与电磁波总结 第一章 一、矢量代数 A ?B =AB cos θ A B ?=AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ?r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元?θθd drd r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 = ?? A l l d Γ max n 0 rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????=++????A 22111()(sin )sin sin ????=++????A r A r A A r r r r ? θθθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ? ρ?ρρ ?ρ?????=???e e e A 21s i n s i n r r z r r A r A r A ρ?θθθ?θ??? ??=???e e e A 4. 矢量场的高斯定理与斯托克斯定理 ?=??? ?A S A S V d dV ?=?????A l A S l S d d 四、标量场的梯度 1. 方向导数与梯度 00()()lim ?→-?=??l P u M u M u l l cos cos cos ????= ++????P u u u u l x y z αβγ cos ??=?e l u u θ grad ????= =+????e e e +e n x y z u u u u u n x y z 2. 计算公式 ????=++???e e e x y z u u u u x y z 1????=++???e e e z u u u u z ρ?ρρ? 11sin ????=++???e e e r u u u u r r r z θ? θθ 五、无散场与无旋场

电磁场与电磁波第三章习题及参考答案

第3章习题 3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面 密度。 解:圆盘以角频率 旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为 ? ωρρ?r v J s s s ==ρ ρ 3-2 在铜中,每立方米体积中大约有28 105.8?个自由电子。如果铜线的横截面为2 10cm ,电 流为A 1500。计算 1) 电流密度; 2) 电子的平均漂移速度; 解:1)电流密度 m A S I J /105.110 10150064?=?== - 2) 电子的平均漂移速度 v J ρ=, 3102819/1036.1105.8106.1m C eN ?=???==-ρ s m J v /101.110 36.1105.1410 6-?=??==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电 流强度为A μ50,计算传输带上的电荷面密度。 解:电流面密度为 m A L I J S /7.1663.050μ=== 因为 v J S S ρ= 所以 2/33.820 7.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U ρ 是运动电荷的平均运动速度,证明: 0=??+??+??t U U ρρρρρ 证:如果ρ是运动电荷密度,U ρ 是运动电荷的平均运动速度,则电流密度为 U J ρρρ= 代入电荷守恒定律 t J ??-=??ρρ 得 0=??+??+??t U U ρρρρρ 3-5 由m S /1012.17 ?=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。 求两端面之间的电阻。

合工大电磁场与电磁波第6章答案

第6章习题答案 6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是 )3 sin(),(π ω+ -=kz t E t z E m 若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求: (1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E (3)时间经过μs 1.0之后电场)0,0(E 值在什么地方? (4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω== =r c f k )m/s (105.1/8?==r p c v ε )m (12== k π λ )Ω(60120πεμπη=r r = (2)∵ 62002 10265.02 121-?=== m r m av E E S εεμη ∴ (V/m)1000.12-?=m E )V/m (1066.83 sin )0,0(3-?==π m E E (3) 往右移m 15=?=?t v z p (4) 在O 点左边m 15处 6-2 一个在自由空间传播的均匀平面波,电场强度的复振幅是 米伏/1010) 202 ( j 4 20j 4 y x e e E z z e e πππ----+= 试求: (1)电磁波的传播方向? (2)电磁波的相速?=p v 波长?=λ频率?=f (3)磁场强度?=H (4)沿传播方向单位面积流过的平均功率是多少? 解:(1) 电磁波沿z 方向传播。 (2)自由空间电磁波的相速m/s 1038 ?==c v p

相关主题
文本预览
相关文档 最新文档