当前位置:文档之家› 2、圆周运动专题(含答案)

2、圆周运动专题(含答案)

2、圆周运动专题(含答案)
2、圆周运动专题(含答案)

2、圆周运动专题

水平圆周运动

【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是( D )

A 、物体所受弹力增大,摩擦力也增大了

B 、物体所受弹力增大,摩擦力减小了

C 、物体所受弹力和摩擦力都减小了

D 、物体所受弹力增大,摩擦力不变

【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )

A .在a 轨道上运动时角速度较大

B .在a 轨道上运动时线速度较大

C .在a 轨道上运动时摩托车对侧壁的压力较大

D .在a 轨道上运动时摩托车和运动员所受的向心力较大

【例题】如图所示,两根细线把两个相同的小球悬于同一点,并使两球在同一水平面内做匀速圆周运动,其中小球1的转动半径较大,则两小球转动的角速度大小关系为ω1__________ω2,两根线中拉力大小关系为T 1_________T 2,(填“>”“<”或“=”)

★解析:答案( = > )

θθωtan tan 2

mg h m =

则角速度相等。而θ

cos mg T =

,则周期大于。

【例题】如图所示,水平转台上放有质量均为m 的两小物块A 、B ,A 离转轴距离为L ,A 、B 间用长为L 的细线相连,开始时A 、B 与轴心在同一直线上,线被拉直,A 、B 与水平转台间最大静摩擦力均为重力的μ倍,当转台的角速度达到多大时线上出现张力?当转台的角速度达到多大时A 物块开始滑动?

★解析:ω =

μg

2L

ω′ = 2μg

3L

【例题】如图所示,在光滑的圆锥顶端,用长为L =2m 的细绳悬一质量为m=1kg 的小球,圆锥顶角为2θ=74°。求:(1)当小球ω=1rad/s 的角速度随圆锥体做匀速圆周运动时,细绳上的拉力。(2)当小球以ω=5rad/s 的角速度随圆锥体做匀速圆周运动时,细绳上的拉力。

★解析:答案:26N ,50N

[提示]要先判断小球是否离开圆锥面。[全解]小球在圆锥面上运动时,受到重力G ,细绳的拉力T 和斜面的支持力N 。将这些力分解在水平方向和竖直方向上。 有:θωθθsin cos sin 2

L m N T =- ①

mg N T =-θθsin cos ②

设小球以角速度ω0转动时,小球刚好离开斜面时,此时,由N=0代入①②两式得:

s rad s rad L mg /5.2/25.6cos 0===

θ

ω。

当小球以ω=1rad/s 转动时,由小球在斜面上运动,由①②两式得:

N mg L m T 26cos sin tan sin tan 2

=--=θ

θθθθω;

当小球以ω=5rad/s 转动时,小球将离开斜面,此时受到拉力和重力,设细绳与竖直方向得夹角为α,则αωαsin sin 2L m T =,代入数据解得:T =50N

【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:

(1)线的拉力F ;

(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。

★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2

/r 由几何关系得r=Lsinα

所以,小球做匀速圆周运动线速度的大小为v =

小球运动的角速度

L sin v r ω=

=

=

小球运动的周期22T

ππ

=

点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。

【例题】如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm 处放置一小物块A ,其质量为m =2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力的k 倍(k =0.5),试求

⑴当圆盘转动的角速度ω=2rad/s 时,物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s 2

) ★解析:⑴物体随圆盘一起绕轴线转动,需要向心力,而竖直方向物体受到的重力mg 、支持力N 不可能提供向心力,向心力只能来源于圆盘对物体的静摩擦力.

根据牛顿第二定律可求出物体受到的静摩擦力的大小:f=F 向=mω2

r =1.6N 方向沿半径指向圆心.

⑵欲使物快与盘不发生相对滑动,做圆周运动的向心力不大于最大静摩擦力

所以:kmg

mr F m ≤=2

ω向

解得s

rad r

kg m /5=≤

ω

点评:物体仅在摩擦力作用下做圆周运动,如果是匀速圆周运动摩擦力完全提供向心力与速度垂直,指向圆心;若是加速转动,摩擦力不再指向圆心,摩擦力垂直速度的分力提供向心力,沿速度方向的分力使物体加速。如果做圆周运动的向心力大于最大静摩擦力时就会滑动,做离心运动。

【例6】如图所示,用细绳一端系着的质量为M =0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g =10m/s 2

★解析:要使B 静止,A 必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O . 对于B ,T =mg

对于A ,角速度取最大值时:21ωMr f T =+ 解得:5.61=ωrad/s

角速度取最小值时:2

2ωMr f T =-

解得:9.22=ωrad/s

所以 2.9 rad/s 5.6≤≤ωrad/s

【例题】如图所示,质量相等的小球A 、B 分别固定在轻杆OB 的中点及端点,当杆在光滑水平面上绕O 点匀速转动时,求杆的OA 段及AB 段对球的拉力之比?

★解析:A 、B 小球受力如图所示,在竖直方向上A 与B 处于平衡状态.在水平方向上根据匀速圆周运动规律:T A -T B =mω2OA ,T B =mω2OB ,OB =2OA

解之得:T A ∶T B = 3∶2

[点评]本题是连接体问题,求解时必须一个一个地研究,对每一个物体列方程,用两个物体物理量间的联系再列方程,联立方程求解.【例题】如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求:

(1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?

★解析:(1)当B 绳恰好拉直,但T B =0时,细杆的转动角速度为ω1, 有: T A cos30°=mg

210

30sin 30

sin A A L m T ω=

解得:ω1=2.4rad/s

当A 绳恰好拉直,但T A =0时,细杆的转动角速度为ω2, 有:mg T B =045cos

220

30sin 45

sin A B L m T ω=

解得:ω2=3.15(rad/s )

要使两绳都拉紧2.4 rad/s≤ω≤3.15 rad/s (2)当ω=3 rad/s 时,两绳都紧.

?=?+?30sin 45sin 30sin 2

A B A L m T T ω

mg T T B A =?+?45cos 30cos

T A =0.27N , T B =1.09N

[点评]分析两个极限(临界)状态来确定变化范围,是求解“范围”题目的基本思路和方法. 竖直面上的圆周运动 1、竖直平面内:

(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:

①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其

做圆周运动的向心力,即r

mv mg 2

临界

= ?rg =临界υ(临界υ是小球通过最高点的最小速

度,即临界速度)。

②能过最高点的条件:临界υυ≥。 此时小球对轨道有压力或绳对小球有拉力

mg r

v

m

N -=2

③不能过最高点的条件:临界υυ<(实际上小球还没有到最高点就已脱离了轨道)。 (2)图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:

①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度0=临界υ。 ②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是:

当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ; 当0

v

m mg N 2

-=,大小随速度的增大而减小;

其取值范围是mg>N>0。 当rg =

υ时,N=0;

当v>rg 时,杆对小球有指向圆心的拉力mg r

v

m

N -=2

,其大小随速度的增大而增大。

③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是:

当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg 。 当0

v

m mg N 2

-=,大小随速度的

增大而减小,其取值范围是mg>N>0。 当v=gr 时,N=0。

当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg r

v

m

N -=2

,其大小随

G

F

速度的增大而增大。

=gr。

④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力。在最高点的v

临界

当v=gr时,小球将脱离轨道做平抛运动

注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛

。要具体问题具体分析,但分析方法仑兹力的合力等于向心力,此时临界速度gR

V

是相同的

【例题】一小球用轻绳悬挂于某固定点。现将轻绳水平拉直,然后由静止开始释放小球。考虑小球由静止开始运动到最低位置的过程(AC)

(A)小球在水平方向的速度逐渐增大

(B)小球在竖直方向的速度逐渐增大

(C)到达最低位置时小球线速度最大

(D)到达最低位置时绳中的拉力等于小球的重力

【例题】如图,细杆的一端与一小球相连,可绕过O点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是(AB)

A.a处为拉力,b处为拉力

B.a处为拉力,b处为推力

C.a处为推力,b处为拉力

D.a处为推力,b处为推力

【例题】如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C 时,对管壁下部的压力为0.75mg.求A、B两球落地点间的距离.

★解析:两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平抛运动,A 、B 两球落地点间的距离等于它们平抛运动的水平位移之差. 对A 球:3mg +mg =m

R

v A 2

v A =gR 4

对B 球:mg -0.75mg =m

R

v B 2

v B =

gR 4

1

s A =v A t =v A

g R 4=4R

s B =v B t =v B g

R 4=R (2分)∴s A -s B =3R

[点评]竖直面内的非匀速圆周运动往往与其它知识点结合起来进行考查,本题是与平抛运动相结合,解这类题时一定要先分析出物体的运动模型,将它转化成若干个比较熟悉的问题,一个一个问题求解,从而使难题转化为基本题.本题中还要注意竖直面内的非匀速圆周运动在最高点的两个模型:轻杆模型和轻绳模型,它们的区别在于在最高点时提供的力有所不同,轻杆可提供拉力和支持力,而轻绳只能提供拉力;本题属于轻杆模型.

【例题】小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB=d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图所示。试求d 的取值范围。

★解析:为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:

m

d

L V m

mg D

-≤2

根据机械能守恒定律可得

[])(212d L d mg mV

D

--=

由以上两式可求得:L d L ≤≤5

3

答案:

L d L ≤≤5

3

【例题】[06全国卷II.23]如图所示,一固定在竖直平面内的光滑半圆形轨道ABC ,其半径R =0.5m ,轨道在C 处与水平地面相切。在C 放一小物块,给它一水平向左的初速度v0=5m/s ,结果它沿CBA 运动,通过A 点,最后落在水平地面上的D 点,求C 、D 间的距离s 。取重力加速度g =10m/s 2。

★解析:设小物块的质量为m ,过A 处时的速度为v ,由A 到D 经历的时间为t ,有

2

2

011222

m v m v m gR =+ ①

2R =

12

gt 2 ②

s =vt ③

由①②③式并代入数据得s =1m ④

【例题】AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求

⑴小球运动到B 点时的动能;

⑵小球下滑到距水平轨道的高度为R /2时速度的大小和方向;

⑶小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?

★解析:⑴E K =mgR ⑵v=gR 沿圆弧切线向下,与竖直成30o ⑶N B =3mg N C =mg

【例题】如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。一质量m=0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上向左作加速度a =3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。求A 、C 间的距离(取重力加速度g=10m/s 2

)。

【答案】1.2m

【例题】游乐场的过山车的运动过程可以抽象为图所示模型。弧形轨道下端与圆轨道相接,使小球从弧形轨道上端A 点静止滑下,进入圆轨道后沿圆轨道运动,最后离开。试分析A 点离地面的高度h 至少要多大,小球才可以顺利通过圆轨道最高点(已知圆轨道的半径为R ,不考虑摩擦等阻力)。

★解析:由机械能守恒定律得; mgh =mg 2R +

2

12

m v ①

在圆轨道最高处: mg =m

2

0v R

v =v 0③ h =

52

R ④

【例题】如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C

点处,

不计空气阻力,求:

(1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?

★解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =2

2

1

B mv

小球在B 点时,根据向心力公式有;

R v m

mg F B N 2

=-

mg R

v m

mg F B N 32=+=

(2)小球由B →C 过程,水平方向有:s =v B ·t 竖直方向有:2

21gt R H =-

解得R R H s )(2-=

【例题】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A 球的质量为m 1,B 球的质量为m 2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0.设A 球运动到最低点时,B 球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1、m 2、R 与v 0应满足的关系式是______.

★解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题. A

球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此

A

时两球作用于圆管的合力为零,B 球对圆管的压力一定是竖直向上的,所以圆管对B 球的压力一定是竖直向下的.

由机械能守恒定律,B 球通过圆管最高点时的速度v 满足方程

2

0222

22

122

1v m R g m v m =

?+

根据牛顿运动定律 对于A 球,R v m g m N 2

01

11=-

对于B 球,R

v

m g m N 2222=+

又 N 1=N 2 解得 0)5()

(212

021=++-g m m R

v m m

【例题】如图所示,游乐列车由许多节车厢组成。列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L>2πR )。已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。试问:列车在水平轨道上应具有多大初速度V 0,才能使列车通过圆形轨道?

★解析:列车开上圆轨道时速度开始减慢,当整个圆轨道上都挤满了一节节车厢时,列车速度达到最小值V ,此最小速度一直保持到最后一节车厢进入圆轨道,然后列车开始加速。由于轨道光滑,列车机械能守恒,设单位长列车的质量为λ,则有:

gR R LV

LV .2.2

12

12

2

0πλλλ+=

要使列车能通过圆形轨道,则必有V>0,解得L

g R

V π20>

【例题】如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R 。一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h 的取值范围。

★解析:2.5R ≤h ≤5R

【例题】如图所示,质量为m 的小球由光滑斜轨道自由下滑后,接着又在一个与斜轨道相连的竖直的光华圆环内侧运动,阻力不计,求

⑴小球至少应从多高的地方滑下,才能达到圆环顶端而不离开圆环 ⑵小球到达圆环底端时,作用于环底的压力

★解析:⑴小球在下滑的过程中机械能守恒,设地面为零势能面,小球下落的高度为h ,小球能到达环顶端市的速度最小为v 2。

小球到达环顶端而不离开的临界条件为重力恰好全部提供向心力 R

mv mg 2

=

即gR v =

小球在开始的机械能为E 1=mgh 小球在环顶端的机械能为

2

21212mv R mg E +

?=

根据机械能守恒 E 1=E 2

整理得:h =2.5R ,即小球至少从离底端2.5R 出滑下才能到达环顶而不离开圆环。 ⑵当环从h =2.5R 处下滑到底部速度为v B ,由机械能守恒得

mgh mv

B

=221

即gh v B 2=

小球在底端受到重力mg 和支持力N ,小球作圆周运动所需要的向心力由支持力和重力提供,即 R

mv mg N B 2

=

-

整理得:N =6mg

圆环对小球的支持力与小球对圆环的压力是作用力反作用力,所以小球作用于圆环的压力为6mg

圆周运动中的多解问题

由于圆周运动的周期性,往往会导致一个问题的多解

【例题】如图所示,某圆筒绕中心轴线沿顺时针方向做匀速圆周运动,筒壁上有两个位于同一圆平面内的小孔A 、B ,A 、B 与轴的垂直连线之间的夹角为θ,一质点(质量不计)在某时刻沿A 孔所在直径方向匀速射入圆筒,恰从B 孔穿出,若质点匀速运动的速度为v ,圆筒半径为R .则,圆筒转动的角速度为____________。

★解析:由于圆周运动的周期性,圆筒转过的角度可能为πθπ2?++n (n =1,2,3,…)。 答案:

v R

n 2)12(π

θ++(n =1,2,3,…)

【例题】如图为测定子弹速度的装置,两个薄圆盘分别装在一个迅速转动的轴上,两盘平行.若圆盘以转速3600r /min 旋转,子弹以垂直圆盘方向射来,先打穿第一个圆盘,再打穿第二个圆盘,测得两盘相距1m ,两盘上被子弹穿过的半径夹角15°,则子弹的速度的大小为_____________。

【答案】

),3,2,1,0(,m/s 2411440 =+k k

【例题】如图所示,半径为R 的圆板做匀速运动,当半径OB 转到某一方向时,在圆板中心正上方h 处以平行于OB 方向水平抛出一球,小球抛出时的速度及圆盘转动的角速度为多少时,小球与圆盘只碰撞一次,且落点为B 。

★解析:设小球落到圆盘上B 点的时间为t ,则vt R =,2

2

1gt h =

。圆盘转动时间也为t ,

所以,t n ωπ=2·

。由上述三式即可求解。 答案:h

g n h

g R 2,2π

B

呼和浩特圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。则下列说法正确的是( ) A .当ω=2rad/s 时,T 3+1)N B .当ω=2rad/s 时,T =4N C .当ω=4rad/s 时,T =16N D .当ω=4rad/s 时,细绳与竖直方向间夹角 大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为0ω,则有 cos T mg θ= 2 0sin sin T m l θωθ= 解得 053 2 rad/s 3 ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则 cos sin T N mg θθ+= 2sin cos sin T N m l θθωθ-= 代入数据整理得 (531)N T = A 正确, B 错误; CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则 cos T mg α= 2sin sin T m l αωα= 解得

16N T =,o 5 arccos 458 α=> CD 正确。 故选ACD 。 2.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( ) A .当23g r μω=时,A 、B 即将开始滑动 B .当2g r μω=32 mg μ C .当g r μω=C 受到圆盘的摩擦力为0 D .当25g r μω=C 将做离心运动 【答案】BC 【解析】 【详解】 A. 当A 开始滑动时有: 2033A f mg m r μω==?? 解得: 0g r μω= 当23g g r r μμω=

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为口,则在过碗底时滑块受到摩擦力的大小为( ) v2v2V2 A.(! mg B.(i m— C .口m(g+ ) D .口m(——g) R R R 2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的 临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力大小是() A. 0 B . mg C . 3mg D . 5mg 3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v o,则: (1)当小球以2v o的速度经过轨道最高点时,对轨道的压力为多少? (2)当小球以后吩的速度经过轨道最低点时.轨道对小球的弾力为事少? 4、如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运 动, 小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 小球的质量为M=5kg 1 5、如图所示,位于竖直平面上的丄圆弧轨道光滑,半径为R, OB沿竖直 4 方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达 B点时的速度为,2gR,最后落在地面上C点处,不计空气阻力,求: (1) 小球刚运动到B点时的加速度为多大,对轨道的压力多大; (2) 小球落地点C与B点水平距离为多少。 6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L, 当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低 点B时,线恰好断裂,球落在地面上的C点,C点距悬点0的水平距离为S (不计 空气阻力).求: (1)小球从A点运动到B点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨道A端与水平面 相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的 压力恰好为零,g取10m/s 2,求: (1)小球经B点时的速度大小;(2)小球落地点到A点的距离. 时,对管壁上部的压力为3mg , b通过最高点A时,对管壁下部的压力为 0.75mg ,求: (1) a球在最高点速度. (2) b球在最高点速度. (3) a、b两球落地点间的距离

高考专题复习:圆周运动(精选.)

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3-4

圆周运动典型例题学生版(含答案)

圆周运动专题总结 知识点一、匀速圆周运动 1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运 动。 2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向 心加速度方向,时刻沿半径指向圆心,时刻变化 3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度 v 、加速度a 、合外力、动量是不断变化的。 4、受力提特点: 。 随堂练习题 1.关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .物体做匀速圆周运动是变加速曲线运动 D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( ) A .物体由于作圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力即为其所受合外力 D .做匀速圆周运动的物体的向心力是个恒力 3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中 不变的是(A )速度 (B )动能 (C )加速度 (D )向心力 知识点二、描述圆周运动的物理量 ⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。 ⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”, 其本质就是“瞬时速度”。 ⑶方向:沿圆周上该点的 方向 ⑷大小:=v = ⒉角速度 ⑴物理意义:角速度反映了物体绕圆心转动的快慢。 ⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值 ⑶大小:=ω = ,单位: (s rad ) ⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。 ⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ): 表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

物理圆周运动经典习题(含详细答案).

圆周运动练习题 1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向 的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力 加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故. 家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八 次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调 查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低 图4-2-12 3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的 边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度 为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2r 1 n

圆周运动专题汇编(必须掌握经典题目)

r m 高一期末考试题目 圆周运动专题汇编 ——高一必须掌握的经典题目 一、选择题[共53题] .............................................................................................................. 1 二、填空题[共9题] ................................................................................................................ 9 三、实验题[共2题] .............................................................................................................. 11 四、计算题[共6题] .............................................................................................................. 12 [编者按]高一不可能一步达到高三的水平,到底需要掌握哪些题型?打开历年的高一中考、末考题目,就可以心中有数了。这是笔者从138套历年全国各地高一期末考试题目中挑选的题目,选择题[共53题],填空题[共9题],实验题[共2题],计算题[共6题],共70道,不涉及与机械能联系的题目,汇编成一体,供讲新课的老师参考。 一、选择题[共53题] 1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( ) A .小球在最高点时所受向心力一定为重力 B .小球在最高点时绳子的拉力不可能为零 C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gL D .小球在圆周最低点时拉力可能等于重力 2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r , 如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A . g mr m M + B .g mr m M + C .g mr m M - D . mr Mg 3.关于匀速圆周运动的向心加速度,下列说法正确的是: A .大小不变,方向变化 B .大小变化,方向不变 C .大小、方向都变化 D .大小、方向都不变 4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有: A .车对两种桥面的压力一样大 B .车对平直桥面的压力大 C .车对凸形桥面的压力大 D .无法判断 5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时: A .衣物受到重力、筒壁的弹力和摩擦力的作用 B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的

高考物理一轮复习圆周运动专题训练(附答案)

高考物理一轮复习圆周运动专题训练(附答 案) 质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。以下是圆周运动专题训练,请考生认真练习。 1.(2019湖北省重点中学联考)由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是() A.P、Q两点的角速度大小相等 B.P、Q两点的线速度大小相等 C.P点的线速度比Q点的线速度大 D.P、Q两物体均受重力和支持力两个力作用 2.(2019资阳诊断)水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径Rr=21。当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为1,木块的向心加速度为a1,若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为2,木块的向心加速度为,则() A.=Rr=21 B.=2 C.=1 D.=a1 3.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径RB=4RA、RC=8RA,如图3所示。当自

行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比aAaB∶aC等于() A.11∶8 B.41∶4 C.41∶32 D.12∶4 对点训练:水平面内的匀速圆周运动 4.山城重庆的轻轨交通颇有山城特色,由于地域限制,弯道半径很小,在某些弯道上行驶时列车的车身严重倾斜。每到这样的弯道乘客都有一种坐过山车的感觉,很是惊险刺激。假设某弯道铁轨是圆弧的一部分,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢地面与水平面夹角)为,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为() A. 2 B.4 C. 5 D.9 5.(多选)绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动() A.转速相同时,绳长的容易断 B.周期相同时,绳短的容易断 C.线速度大小相等时,绳短的容易断 D.线速度大小相等时,绳长的容易断 6.(多选)(2019河南漯河二模)两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。设法让两个

(完整版)高考第二轮复习专题:圆周运动

高考第二轮复习专题: ——物体的圆周运动 圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方 向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。 它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2=?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧 是一轮轴,大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。因为a 、c 两点在同一皮带 上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。 所以选项C 正确,选项A 、B 错误。 设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为r v a A 2=;D 点的向心加速度大小为:r v r r r a D 2 22)2(4=?=?=ωω。所以选图3-1

圆周运动经典习题带详细答案

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重 力加速度为g =10 m/s 2 ,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在某区湘府路上的离奇交通事故. 家住公路拐弯处的先生和先生家在三个月连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能(东)高外(西)低 D .公路在设计上可能外(西)高(东)低 图4-2-12 3. (2010·部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长 略大于球的直径.某同学拿着该盒子在竖直平面做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2 r 1 n

圆周运动基础练习题

圆周运动练习题 1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C ) A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力 B .物体所受的合外力提供向心力 D .向心力的大小—直在变化 2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC ) A .半径一定,角速度与线速度成反比 B .半径一定,角速度与线速度成正比 C .线速度一定,角速度与半径成反比 D .角速度一定,线速度与半径成正比 3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B) A .时针和分针的角速度相同 B .分针角速度是时针角速度的12倍 C .时针和分针的周期相同 D .分针的周期是时针周期的12倍 4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比?A ∶?B =3∶2,则下列说法正确的是(选BC ) A .它们的半径之比R A ∶R B =2∶3 B .它们的半径之比R A ∶R B =4∶9 C .它们的周期之比T A ∶T B =2∶3 D .它们的周期之比T A ∶T B =3∶2 5. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C ) A .摆球A 受重力、拉力和向心力的作用; B .摆球A 受拉力和向心力的作用; C .摆球A 受拉力和重力的作用; D .摆球A 受重力和向心力的作用。 6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A ) A . F f 甲小于F f 乙 B . F f 甲等于F f 乙 C . F f 甲大于F f 乙 D . F f 甲和F f 乙大小均与汽车速率无关 7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D ) A .a 处 B .b 处 C .c 处 D .d 处 8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2, 那么在此位置座椅对游客的作用力相当于游客重力的 (选C ) A .1倍 B .2 倍 C .3倍 D .4倍 9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的4 3,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零 D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)

圆周运动专题训练(含答案)

圆周运动专题训练(含答案) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

圆周运动专题训练<含答案) (时间:45分钟,满分:100分> 一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意> 1.发射人造卫星是将卫星以一定的速度送入预 定轨道.发射场一般选择在尽可能靠近赤道的地 方,如图1所示.这样选址的优点是,在赤道附近 (>b5E2RGbCAP A.地球的引力较大 B.地球自转线速度较大图1 C.重力加速度较大 D.地球自转角速度较大 解读:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选 B.p1EanqFDPw 答案:B 2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2>(>DXDiTa9E3d A.汽车在地面上速度增加时,它对地面的压力增大 B.当汽车离开地球的瞬间速度达到28 440 km/h C.此“航天汽车”环绕地球做圆周运动的最小周期为1 h D.在此“航天汽车”上弹簧测力计无法测量力的大小

解读:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π错误!=2π错误!=2π错误!=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍然产生弹力,选项D错误.RTCrpUDGiT 答案:B 3.(2018·上海高考>月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则5PCzVD7HxA (> A.g1=aB.g2=a C.g1+g2=aD.g2-g1=a 解读:月球因受地球引力的作用而绕地球做匀速圆周运动.由牛顿第二定律可知地球对月球引力产生的加速度g2就是向心加速度a,故B选项正确.jLBHrnAILg 答案:B 4.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h处平抛一物体,射程为60 m,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 (>xHAQX74J0X A.10 mB.15 m C.90 mD.360 m 解读:由平抛运动公式可知,射程x=v0t=v0错误!,

匀速圆周运动临界问题专题

匀速圆周运动临界专题 任务一:水平面内的圆周运动:物体在水平面内做的一般是匀速圆周运动.这样的物体在竖直方向上受力平衡,在水平方向上受的合外力提供它做圆周运动所需的向心 力. 同学们通过下面的练习,体会下面在水平面内的匀速圆周运动特点。 1.如图所示,水平转盘上放一小木块。转速为60rad/ min时,木块离轴8cm恰 好与转盘无相对滑动,当转速增加到120rad/min时,为使小木块刚好与转盘保 持相对静止,那么木块应放在离轴多远的地方?(注:汽车在水平面上转弯类 ............. 似这种情况) ...... 任务二:竖直平面内的圆周运动:物体在竖直面内作圆周运动的情况关键在于:最高点和最低点的状态分析。依据物体在圆周最高点的受力状态可以大致分为:物体最高点无支撑力的情况(例:绳球模型)和物体最高点有支撑力的情况(例:杆球模型) 图1绳球模型图3轻杆模型图4圆管轨道 1.如图1、2 所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情况 ○1临界条件 ○2能过最高点的条件,此时绳或轨道对球分别产生______________ ○3不能过最高点的条件 2.如图3、4所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情况 竖直平面内的圆周运动,往往是典型的变速圆周运动。对于物体在竖直平面内的变速圆周运 动问题,中学阶段只分析通过最高点和最低点的情况,并且经常出现临界状态,下面对这类 问题进行简要分析。 ○1能过最高点的条件,此时杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? (第1题)

圆周运动经典题型归纳

一、圆周运动基本物理量与传动装置 1共轴传动 例1.如图所示,一个圆环以竖直直径AB为轴匀速转动,则环上M、N两 点的角速度之比为_____________,周期之比为___________,线速度之比 为___________. 2皮带传动 例二.图示为某一皮带传动装置。主动轮的半径为r1,从动轮的半径为r2。已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。下列说法正确的是 A.从动轮做顺时针转动 B.从动轮做逆时针转动 C.从动轮的转速为n D.从动轮的转速为n 3齿轮传动 例3如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在 过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转 速为n1.求: (1)B齿轮的转速n2; (2)A、B两齿轮的半径之比; (3)在时间t内,A、B两齿轮转过的角度之比 4、混合题型 图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两 轮用皮带传动,三轮半径关系是rA=rC=2rB;若皮带不打滑,则A、B、 C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc= ; 线速度之比va:vb:vc= 二、向心力来源 1、由重力、弹力或摩擦力中某一个力提供 例1:洗衣机的甩干桶竖直放置.桶的内径为20厘米,工作被甩的衣物 贴在桶壁上,衣物与桶壁的动摩擦因数为.若不使衣物滑落下去,甩干 桶的转速至少多大 2、在匀速转动的水平盘上,沿半径方向放着三个物体A,B,C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。他们到转轴的距离的关系为Ra<Rb<Rc,当转盘的转速逐渐增大时,哪个物体先开始滑动,相对盘向哪个方向滑 A. B先滑动,沿半径向外 B B先滑动,沿半径向内 C C先滑动,沿半径向外 D C先滑动,沿半径想内 3、一质量为的小球,用长的细线拴住在竖直面内作圆周运动,(1)当小球恰好能通过最高点时的速度为多少(2)当小球在最高点速度为4m/s时,细线的拉力是多少(取g=10m/s 2 ) 2、向心力由几个力的合力提供 (1)由重力和弹力的合力提供

圆周运动专题训练(含答案)

圆周运动专题训练(含答案) (时间:45分钟,满分:100分) 一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意) 1.发射人造卫星是将卫星以一定的速度送入预定轨道.发射场一 般选择在尽可能靠近赤道的地方,如图1所示.这样选址的优点是, 在赤道附近() A.地球的引力较大 B.地球自转线速度较大图1 C.重力加速度较大 D.地球自转角速度较大 解析:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选B. 答案:B 2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2)() A.汽车在地面上速度增加时,它对地面的压力增大 B.当汽车离开地球的瞬间速度达到28 440 km/h C.此“航天汽车”环绕地球做圆周运动的最小周期为1 h D.在此“航天汽车”上弹簧测力计无法测量力的大小 解析:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到 第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π r3 GM= 2πR3 gR2=2π R g=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍 然产生弹力,选项D错误. 答案:B 3.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则 () A.g1=a B.g2=a C.g1+g2=a D.g2-g1=a

(完整版)圆周运动经典习题

1.物体做匀速圆周运动的条件是[] A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用 B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用 C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用 D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用 2.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。如果适当减少砝码个数,让小球再做匀速圆周运动,则小球有关物理量的变化情况是 A.向心力变小 B.圆周半径变小 C.角速度变小 D.线速度变小 3.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道 A.将向圆周内偏移 B.将向圆周外偏移 C.线速度增大,保持原来的运动轨道 D.线速度减小,保持原来的运动轨道 4.关于洗衣机脱水桶的有关问题,下列说法中正确的是 ( ) A.如果衣服上的水太多脱水桶就不能进行脱水 B.脱水桶工作时衣服上的水做离心运动,衣服并不做离心运动 C.脱水桶工作时桶内的衣服也会做离心运动。所以脱水桶停止工作时衣服紧贴在桶壁上 D.白色衣服染上红墨水时,也可以通过脱水桶将红墨水去掉使衣服恢复白色 5,下列关于骑自行车的有关说法中,正确的是 ( ) A.骑自行车运动时,不会发生离心运动 B.自行车轮胎的破裂是离心运动产生的结果 C.骑自行车拐弯时摔倒一定都是离心运动产生的 D.骑自行车拐弯时速率不能太快,否则会产生离心运动向圆心的外侧跌倒 6.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是[] A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损 D.以上三种说法都是错误的 7.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过[] 8.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/s B. 乙球运动时,线速度大小为6m/s C. 甲球运动时,线速度大小不变 D. 乙球运动时,角速度大小不变 9.如图11,轻杆的一端与小球相连接,轻杆另一端过O 平面内做圆周运动。当小球达到最高点A、最低点B时,杆对 小球的作用力可能是: A. 在A处为推力,B处为推力 B. 在A处为拉力,B处为拉力 a r 图6 8 2 甲 乙 /m·s-2 /m B O O A 11 A

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

圆周运动专题汇编

Ⅰ Ⅱ Ⅲ 圆周运动专题汇编 一、线速度和角速度问题 1.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点.左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r .b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点的向心加速度小于d 点的向心加速度 2.下图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮, Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为 ( ) A . 2 3 1r r nr π B . 1 3 2r r nr π C . 1 3 22r r nr π D . 2 3 12r r nr π 3.如图为常见的自行车传动示意图。A 轮与脚登子相连,B 轮 与车轴相连,C 为车轮。当人登车匀速运动时,以下说法中正确的是 A.A 轮与B 轮的角速度相同 B.A 轮边缘与B 轮边缘的线速度相同 C.B 轮边缘与C 轮边缘的线速度相同

D.A 轮与C 轮的角速度相同 4.图3所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置。P 是轮盘的一个齿,Q 是飞轮上的一个齿。下列说法中正确的是( ) A .P 、Q 两点角速度大小相等 B .P 、Q 两点向心加速度大小相等 C .P 点向心加速度小于Q 点向心加速度 D .P 点向心加速度大于Q 点向心加速度 5.如图所示为一种“滚轮——平盘无极变速器”的示意图, 它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果认为滚轮不会打滑,那么主动轴转速n 1、从动轴转速n 2、 滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是 ( ) A . n 2=n 1x r B.n 2=n 1r x C.n 2=n 1x 2 r 2 D.n 2=n 1 x r 6.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r ,c 点和d 点 分别位于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则下列中正确的是: ( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点向心加速度大小是d 点的4倍 7.如图所示,自行车的传动是通过连接前、后齿轮的金属链条来实现的。下列关于自行车 Q 图 3 P Q

匀速圆周运动的多解问题 专题辅导 不分版本

匀速圆周运动的多解问题 郭建 白头然 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少? 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件? 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,…

相关主题
文本预览
相关文档 最新文档