当前位置:文档之家› 第四章 压缩机的主要热力性能参数

第四章 压缩机的主要热力性能参数

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。

二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

压缩机参数

QD压缩机的资料 输入功率(W)制冷量(W)电流(A)制冷剂电源(V)应用类型效能 QD2580680.65R12220V-50Hz LBP L QD3082780.65R12220V-50Hz LBP L QD3686880.68R12220V-50Hz LBP L QD431121180.88R12220V-50Hz LBP L QD521281380.98R12220V-50Hz LBP L QD551251321R12220V-50Hz LBP L QD591371461R12220V-50Hz LBP L QD65145158 1.1R12220V-50Hz LBP L QD66150R12220V-50Hz LBP L QD68R12220V-50Hz LBP L QD75162176 1.2R12220V-50Hz LBP L QD80180R12220V-50Hz LBP L QD85184202 1.3R12220V-50Hz LBP L QD91192216 1.4R12220V-50Hz LBP L QD110232271 1.6R12220V-50Hz LBP L QD1282603062R12220V-50Hz LBP QD142280333 2.1R12220V-50Hz LBP QD168330380 2.3R12220V-50Hz LBP L QD180380440 2.8R12220V-50Hz LBP L QD210435510 3.1R12220V-50Hz LBP L QD66D241232 1.4R22220V-50Hz LBP L QD76D252258 1.6R22220V-50Hz LBP L QD91D286300 2.2R22220V-50Hz LBP L QD100D340370 2.5R22220V-50Hz LBP L QD120D360400 2.5R22220V-50Hz LBP L QD150D460546 3.2R22220V-50Hz LBP L QD168D510580 3.55R22220V-50Hz LBP L QD180D550660 2.96R22220V-50Hz LBP L QD210D655790 3.12R22220V-50Hz LBP L QD238D1P R22220V-50Hz LBP L QD268D1+1/8P R22220V-50Hz LBP L QD308D1+1/4P R22220V-50Hz LBP L QD350D1+3/8P R22220V-50Hz LBP L QM238D1+1/8P R22220V-50Hz LBP H QM268D1+1/4P R22220V-50Hz LBP H QM308D1+1/2P R22220V-50Hz LBP H QM350D1+3/4P R22220V-50Hz LBP H

压缩机五大机组基本参数

压缩机五大机组基本参数 1、空气压缩机 多轴式压缩机,抽凝式汽轮机驱动。 在合成氨装置中每小时需要2.1万Nm3左右的空气,经过空气压缩机压缩到3.65 MPa后,送至空气加热炉加热到520℃后,进入二段转化炉进行造气反应。此外,尿素装置为防止设备和管道的腐蚀,要求原料CO2中氧气的含量不低于0.6%(体积浓度),所以,还要从空气压缩机的三段出口每小时抽出流量为1 172 Nm3的空气送去CO2压缩机一段分离器出口,称为防腐空气(压力:0.83 MPa,流量:1172 Nm3)。进口压力:0.017 MPa 进口温度:19℃ 出口压力:3.65Mpa 出口温度: 蒸汽条件:8.6 Mpa高压蒸汽驱动汽轮机 压缩机形式:两段六级 流量调节方式:入口导叶+变转速 防喘振旁路:两段放空 汽轮机功率:4900 KW 汽轮机转速:10500rpm/min 对进入空气压缩机中的杂质要求:小于0.03mg/m3 2、原料气压缩机 多轴式压缩机,背压式汽轮机驱动。 合成氨生产中氢气的来源为乙炔尾气,即天然气经不完全氧化生产乙炔后所产生的尾气,其成分主要为H2(60%左右)、CO(28%左右)、CO2(3%左右)、CH4(5%左右),以及少量N2、O2、C2H2、C2H4、Ar 等。 正常工况下,19万吨合成氨装置每小时所需的原料气量为5.5万Nm3,原料气经过原料气压缩机压缩到3. 85 MPa后进行脱硫、加氢、加热(在原料气加热炉中加热到520℃)后,进入二段转化炉进行造气反应。进口压力:0.9 MPa 进口温度:30℃ 出口压力:3.85 MPa 出口温度: 蒸汽条件:3.6 MP中压蒸汽驱动汽轮机 压缩机形式:两段五级 流量调节方式:入口导叶+变转速 防喘振旁路:自动 汽轮机功率:4800KW 汽轮机转速:6000rpm/min 3、合成气压缩机 高、低压缸压缩机,抽凝式汽轮机驱动(双出轴结构)。 合成气压缩机即联压机,包括新鲜合成气和循环合成气的压缩。

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

压缩机功率对照表以及压缩机详细技术参数

各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 ... 各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 企业名称产品 规格 制冷剂 汽缸容积 (cm3) 名义功率 (HP) 制冷量 (W) 输入功率 (W) 效率 (W/W) 油的 粘度 电机 类型 湖北南光制冷设备有限公司QD56 R12 5.6 132 120 1.1 32 YUR QD63 R12 6.3 145 132 1.1 32 YUR QD72 R12 7.2 165 150 1.1 32 YUR QD80 R12 8.0 186 165 1.12 32 YUR QD88 R12 8.8 200 180 1.11 32 YUR QD96 R12 9.6 233 208 1.12 32 YUR QD110 R12 11 261 238 1.1 32 YUR QD58 R134a 5.8 132 120 1.1 32 YUR QD71 R134a 7.1 148 134 1.1 32 YUR QD78 R134a 7.8 162 145 1.11 32 YUR QD86 R134a 8.6 185 162 1.14 32 YUR Q-5 R22 5.6 750 315 2.38 32 YYR Q-6 R22 6.7 890 370 2.4 32 YYR Q-7 R22 7.1 1000 410 2.44 32 YYR Q-8 R22 8.6 1150 460 2.5 32 YYR 西安远东公司航空工业总公司QD24 R12 2.4 55 75 0.73 22 RSIR QD30 R12 3.0 75 95 0.78 22 RSIR QD45A R12 4.5 113 116 0.95 22 RSIR QD52A R12 5.2 132 139 0.95 22 RSIR QD57A R12 5.7 142 137 1.05 22 RSIR QD62A R12 6.2 154 154 0.95 32 RSIR QD62G A R12 6.2 154 134 1.07 32 RSCR QD75G R12 7.5 190 168 1.09 32 RSCR

动力电池性能参数

动力电池性能参数 一、电性能 (1) 电动势 电池的电动势,又称电池标准电压或理论电压,为电池断路时正负两极间的电位差。电池的电动势可以从电池体系热力学函数自由能的变化计算而得。 (2) 额定电压 额定电压(或公称电压),系指该电化学体系的电池工作时公认的标准电压。例如,锌锰干电池为 1.5V ,镍镉电池为1.2V ,铅酸蓄电池为2V ,锂离子电池为 (3) 开路电压 电池的开路电压是无负荷情况下的电池电压。开路电压不等于电池的电动势。必须指出,电池的电动势是从热力学函数计算而得到的,而电池的开路电压则是实际测量出来的。 (4) 工作电压 系指电池在某负载下实际的放电电压,通常是指一个电压范围。例如,铅酸蓄电池的工作电压在2V ?1.8V ;镍氢电池的工作电压在 1.5V?1.1V ;锂离子电池的工作电压在 3.6V?2.75V。 (5) 终止电压 系指放电终止时的电压值,视负载和使用要求不同而异。以铅酸蓄电池为例:电动势为2.1V,额定电压为2V,开路电压接近2.15V,工作电压为2V?1.8V,放电终止电压为1.8V?1.5V( 放电终止电压根据放电率的不同,其终止电压也不同)。 (6) 充电电压

系指外电路直流电压对电池充电的电压。般的充电电压要大于电池的开路电压,通常 在一定的范围内。例如,镍镉电池的充电压在1.45V?1.5V ;锂离子电池的充电压在4.1V?4.2V ;铅酸蓄电池的充电压在2.25V?2.5V。 (7) 内阻 蓄电池的内阻包括:正负极板的电阻,电解液的电阻,隔板的电阻和连接体的电阻等。 a. 正负极板电阻 目前普遍使用的铅酸蓄电池正、负极板为涂膏式,由铅锑合金或铅钙合金板栅架和活性物质两部分构成。因此,极板电阻也由板栅电阻和活性物质电阻组成。板栅在活性物质内层,充放电时,不会发生化学变化,所以它的电阻是板栅的固有电阻。活性物质的电阻是随着电池充放电状态的不同而变化的。 当电池放电时,极板的活性物质转变为硫酸铅(PbSO4) ,硫酸铅含量越大,其电阻越大。而电池充电时将硫酸铅还原为铅(Pb) ,硫酸铅含量越小,其电阻越小。 b. 电解液电阻 电解液的电阻视其浓度不同而异。在规定的浓度范围内一旦选定某一浓度后,电解液电 阻将随充放电程度而变。电池充电时,在极板活性物质还原的同时电解液浓度增加,其电阻下降;电池放电时,在极板活性物质硫酸化的同时电解液浓度下降,其电阻增加。 c. 隔板电阻 隔板的电阻视其孔率而异,新电池的隔板电阻是趋于一个固定值,但随电池运行时间的延长,其电阻有所增加。因为,电池在运行过程中有些铅渣和其他沉积物在隔板上,使得隔板孔率有所下降而增加了电阻。

D~5.72~3~250天然气压缩机~计算书

第一部分热力计算 一、初始条件 1.排气量:Q N=20Nm3/min 2.压缩介质:天然气 (气体组分:CH4:94%;CO2:0.467%;N2:4.019%;C2H6:1.514%) 3.相对湿度:ψ=100% 4.吸入压力:P S0=0.4 MPa(绝对压力) 5.排出压力:P d 0=25.1 MPa(绝对压力) 6.大气压力:P0 =0.1 MPa(绝对压力) 7.吸入温度:t S0=35℃(T S0=308°K) 8.排气温度:t d0=45℃(T d0=318°K) 9.压缩机转速:n=740rpm 10.压缩机行程:S=120mm 11.压缩机结构型式:D型 12.压缩级数:4级 13.原动机:低压隔爆异步电机,与压缩机直联 14.一级排气温度:≤130℃ 二、初步结构方案 三、初始条件换算(以下计算压力均为绝对压力) Q= Q N×[P0×T S0/(P S0-ψ×P sa)×T0]

进气温度状态下的饱和蒸汽压为P sa =0.005622 MPa P 0 =0.1MPa T 0=273°K 其余参数详见初始条件。 Q= 20×[0.1×308/(0.4-1×0.005622)×273]=5.72m 3/min 四、 级数的选择和各级压力 要求为四级压缩 总压缩比ε0=01 4S d P P =0.425.1 =62.75 ε10=ε20=ε30=ε40=4 75.62=2.8145 求出各级名义压力如下表 五、 计算各级排气温度 查各组分气体绝热指数如下: CH 4: 94% K=1.308; CO 2: 0.467% K=1.30 N 2: 4.019% K= 1.40; C 2H 6: 1.514% K=1.193 11-K =∑1r i -Ki =11.3080.94- +1.310.00467- +11.40.04019- +1 1.1930.01514 - =3.2464

锅炉燃烧反应热力特性参数

锅炉燃烧反应热力特性参数 在锅炉炉膛中,参加炉免烧烧化学反应的物质就是燃料(煤、油、气等)和燃烧所需的空气(或氧气)。所以,对锅炉这样一个特定的对象,可以用反应物释热功率的特性参数炉膛容积热负荷(热强度)及炉排面积热负荷(热强度)来表征锅炉燃烧化学反应的速度。 锅炉炉膛容积热负荷是锅炉设计和运行中的最重要的热力特性参数之一。特别对于锅炉火室燃烧来说,尤其重要。在锅炉设计中,总是根据经验性的qv值去确定锅炉炉膛的大小V。对于一个确定参数的锅炉,qv值的大小取决于燃料的燃烧特性及燃烧方式。炉膛容积热负荷愈高,说明炉膛容积v相对较小,炉子比较紧凑。另一方面,在炉膛内停留时间,其中vr为实际烟气量)减少,即意味着在单位炉膛容积内,单位时间里要燃烧更多的燃料,放出更多的热量。显然热负荷愈高的锅炉炉内温度水平愈高。如果设计中确定的qv值与燃料特性、锅炉容量、燃烧方式的实际情况不相符合,出现理论值与实践的脱离。如果qv过大,则在锅炉投入运行后就可能因为炉膛容积v过小,燃料在炉内停留时间太短而来不及燃尽,造成较大的不完全燃烧热损失,使锅炉经济性下降;在锅炉投入运行以后,由于锅炉负荷的变化(升或降负荷运行时)或燃料的改变等因素都会引起锅炉实际的容积热负荷的改变,要注意实际qv值对锅炉安全、经济运行的影响。为了保证锅炉的正常运行,实际的qv是不允许有过大的变化的。因此,锅炉一旦设计制成,投入运行之后,从燃烧的观点来看,锅炉的负荷和燃料品种不允许有过大幅度的变化。 容积热负荷qv是锅炉设计很重要的综合性指标,其数值的大小与炉型、煤种、容量及燃烧方式、燃烧工况有关。 Qv的选取一般有两个基本原则,即燃烧和烟气在锅炉炉膛内的冷却条件。根据我国的实践,对于锅炉容量的固态除渣煤粉炉,按上述两方面原则选用的qv值计算决定,随着容量的增加,从燃烧的角度,炉膛容积v随锅炉容量大致成比例地相应增加,但是炉膛冷却壁面积大致只随锅炉容量2/3次方的比例增长。显然,燃烧和冷却两个基本原则不再相一致了。此时,可以先按推荐的统计值qv估算炉膛容积v,然后以取决于炉膛冷却条件的炉膛出口烟气温度校核最后确定;对于D》2000吨/时的锅炉,qv随锅炉容量的变化不大。 对于火床炉,qv仅是一个参考性指标。因为燃煤绝大部分是在火床上完成燃烧过程的,所以炉膛容积v的大小对燃气来说并不是主要的控制参量。燃煤主要不在空间燃烧,故炉膛容积完全可以设计小一些。因此,qv值反而比煤粉炉高。考虑到火订炉qv值中的放热量BQ不是炉膛空间放热量的真正值,所以对炉膛容积热负荷qv这一个参数指标已不能完全反映出炉膛的热力工作状况,通常引入炉膛截面热负荷QF来核定炉膛燃烧器区域的截面积F。有时还要引入燃烧器区域壁面热负荷Q,作为qv和qf的补充热力特性指标。 锅炉炉膛截面热负荷QF是指炉燃烧器区域单位锅炉炉膛截面积上燃料燃烧放热的热功率式中F—燃烧器区域的炉膛栱截面积,F 是炉膛宽度B与深度A的乘积。很显然,对确定参数的锅炉,qf愈大,则燃燃器区域炉膛截面积相对较小,该区燃烧化学反应强烈,温度水平高。它直接影响到燃烧火焰的稳定性和炉膛面的结渣状况。我国220吨/时的锅炉炉膛截面积相对偏大,一般不以qf 来核定炉膛截面积F。但对大容量锅炉和液态除渣炉,总是以qr值来确定炉膛的截的截面积F。 一般来说,当燃用劣质煤时,为保证炉内有足够高的温度水平,促成燃烧的稳定和强化,在炉膛内不结渣的前提下,qr和qf应选用较高的值为好。

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

冰箱冰柜压缩机性能参数表

冰箱冰柜压缩机性能参数表 文本标签:冰箱冰柜压缩机 型号输入功率(W)制冷量 (W) 电流(A)制冷剂电源(V) QD2580680.65R12220V-50Hz QD3082780.65R12220V-50Hz QD3686880.68R12220V-50Hz QD431121180.88R12220V-50Hz QD521281380.98R12220V-50Hz QD551251321R12220V-50Hz QD591371461R12220V-50Hz QD65145158 1.1R12220V-50Hz QD66150R12220V-50Hz QD68R12220V-50Hz QD75162176 1.2R12220V-50Hz QD80180R12220V-50Hz QD85184202 1.3R12220V-50Hz QD91192216 1.4R12220V-50Hz QD110232271 1.6R12220V-50Hz QD1282603062R12220V-50Hz QD142280333 2.1R12220V-50Hz QD168330380 2.3R12220V-50Hz QD180380440 2.8R12220V-50Hz QD210435510 3.1R12220V-50Hz 文本标签:冰箱冰柜压缩机 型号输入功率(W)制冷量 (W) 电流(A)制冷剂电源(V)

QD66D241232 1.4R22220V-50Hz QD76D252258 1.6R22220V-50Hz QD91D286300 2.2R22220V-50Hz QD100D340370 2.5R22220V-50Hz QD120D360400 2.5R22220V-50Hz QD150D460546 3.2R22220V-50Hz QD168D510580 3.55R22220V-50Hz QD180D550660 2.96R22220V-50Hz QD210D655790 3.12R22220V-50Hz QD238D1P R22220V-50Hz QD268D1+1/8P R22220V-50Hz QD308D1+1/4P R22220V-50Hz QD350D1+3/8P R22220V-50Hz QM238D1+1/8P R22220V-50Hz QM268D1+1/4P R22220V-50Hz QM308D1+1/2P R22220V-50Hz QM350D1+3/4P R22220V-50Hz QD150H295330 2.1R134a220V-50Hz QD168H303350 2.2R134a220V-50Hz QD180H349410 2.7R134a220V-50Hz QD210H400412 3.1R134a220V-50Hz QD25H69590.62R134a220V-50Hz QD30H75750.62R134a220V-50Hz QD55H1151400.9R134a220V-50Hz QD59H1271550.9R134a220V-50Hz QD65H1361671R134a220V-50Hz QD75H153189 1.1R134a220V-50Hz QD85H170212 1.2R134a220V-50Hz QD91H190228 1.4R134a220V-50Hz QD110H230283 1.6R134a220V-50Hz QD128H2573212R134a220V-50Hz QD142H276347 2.1R134a220V-50Hz 文本标签:冰箱冰柜压缩机

制冷压缩机变工况运行的热力性能研究

文章编号:0253-4339(2009)06-0015-05 DOI 编码:10.3969/j.issn. 0253-4339. 2009. 06. 015 制冷压缩机变工况运行的热力性能研究 沈 希 王晓燕 黄跃进 顾江萍 (浙江工业大学机械工程学院 杭州 310014) 摘 要 制冷系统在实际运行时其工作状况是大幅度变化的,针对压缩机变工况运行时机理模型难以全面反映实际运行的复杂因素而造成精度不高问题,依据变质量系统热力学理论,采用机理分析和实验拟合相结合的灰箱方法,将控制模型中的主要参数多项式化,提出制冷压缩机的主要热力性能(制冷量和功耗)与热力参数(吸气和排气压力)之间的模型结构和定量关系。理论计算结果与实验测试结果的吻合性较好,证明了该定量关系的可行性和准确性。关键词 热工学;制冷压缩机;变工况;热力性能 中图分类号:TB652; TH457 文献标识码:A Thermodynamic Performance of Refrigeration Compressor Running at Variable Condition Shen Xi Wang Xiaoyan Huang Yuejin Gu Jiangping (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China ) Abstract It is necessary to develop a performance model of a refrigerating compressor running at variable condition in order to enhance its calculation accuracy. In this paper, the ash box method of mechanism analysis and experiment is adopted, and the main parameters in the control model are expressed by polynomials from the thermodynamics theory of variable mass systems. The quantitative relations are deduced between the primary thermodynamic performance of the compressor(refrigerating capacity and energy consumption) and the thermodynamic parameters (suction pressure and discharge pressure). The numerical results are in agreement with the experimental data. Keywords Pyrology; Refrigeration compressor; Variable condition; Thermodynamic performance 在制冷系统设计和优化过程中,需要对制冷系统的组成部件及系统的运行规律进行模型和基本关系的研究。制冷压缩机是压缩式制冷系统的关键部件和动力源,但其处于高温高压、油气混合、瞬变温压等状况下,并且在实际运行时其工作状况是大幅度变化的,因此对其研究尤其困难和复杂,目前此方面的研究工作相对少一些。这里仅对制冷压缩机相关的几个主要热力学参数之间的基本关系做一些分析。在制冷压缩机模型和基本关系的研究中,文献[1-2]将神经网络和模糊建模方法运用到制冷压缩机热力性能的计算中,提出了传统理论模型和神经网络或模糊建模相结合的新型压缩机热力计算模型。文献[3]对活塞式压缩机的绝热吸气和等温排气工况进行了较深入的热力学分析。文献[4]对压缩机的热力性能进行了仿真计算。文献[5]对制冷压缩机变转速工况下进行了实验研究。文献[6]通过压缩机的热力性能模拟程序,定量地分析 了冷凝温度和蒸发温度变化时往复压缩机的变工况特性。文献[7]对制冷压缩机的变工况运行的性能曲线进行了研究。这里在前人工作的基础上,根据工程热力学和传热学理论,对制冷压缩机的机理模型进行工程处理,采用机理分析和实验拟合相结合的灰箱方法,获得在变工况条件下制冷压缩机的主要热力性能制冷量和功率消耗与吸、排气压力之间的定量关系。 1 制冷量和功耗与吸气、排气压力之间的定量关系 1.1 制冷量与吸、排气压力之间的定量关系 制冷压缩机是压缩式制冷系统中重要组成部分,其工作能力以单位时间内所产生的制冷量Q 0(W )来衡量。其基本关系如下式表示: 收稿日期:2009年4月12日 作者联系方式:E - mail: gjpcf@https://www.doczj.com/doc/2710313260.html,

水的热力学性质介绍

物质常用状态参数:温度、压力、比体积(密度)、内能、焓、熵。(只需知道其中两参数)比容和比体积概念完全相同。建议合并。单位质量的物质所占有的容积称为比容,用符号"V" 表示。其数值是密度的倒数。 比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比。比热容是表示物质热性质的物理量。通常用符号c表示。比热容与物质的状态和物质的种类有关。 三相点是指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现;而汞的三相点在?38.8344℃及0.2MPa出现。 临界点:随着压力的增高,饱和水线与干饱和蒸汽线逐渐接近,当压力增加到某一数值时,二线相交即为临界点。临界点的各状态参数称为临界参数,对水蒸汽来说:其临界压力为22.11999035MPa,临界温度为:374.15℃,临界比容0.003147m3/kg。 超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体。由于它兼有气体和液体的双重特性,即密度接近液体,粘度又与气体相似,扩散系数为液体的10~100倍,因而具有很强的溶解能力和良好的流动、输运性质。 当一事物到达相变前一刻时我们称它临界了,而临界时的值则称为临界点。 临界点状态:饱和水或饱和蒸汽或湿蒸汽 在临界点,增加压强变为超临界状态;增加温度变为过热蒸汽状态。 为什么在高压下,低温水也处于超临界?(如23MP,200℃下水状态为超临界?)应该是软件编写错误。 超临界技术: 通常情况下,水以蒸汽、液态和冰三种常见的状态存在,且是极性溶剂,可以溶解包括盐在内的大多数电解质,对气体和大多数有机物则微溶或不溶。液态水的密度几乎不随压力升高而改变。但是如果将水的温度和压力升高到临界点 (Tc=374.3℃,Pc=22.1MPa)以上,水的性质发生了极大变化,其密度、介电常数、黏度、扩散系数、热导率和溶解性等都不同于普通水。水的存在状态如图:

汽轮机热力性能数据

资料编号:57.Q151-01 N135-13.24/535/535 135MW中间再热凝汽式空冷 汽轮机热力性能数据 产品编号:Q151 中华人民共和国 上海汽轮机有限公司发布

资料编号:57.Q151-01 COMPILING DEPT.: 编制部门: COMPILED BY: 编制: CHECKED BY: 校对: REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

资料编号:57.Q151-01 目次 1 说明 2 主要热力数据汇总 2.1 基本特性 2.2 配汽机构 2.3 主要工况热力特性汇总 2.4 通流部分数据 2.5 各级温度、压力及功率 2.6 各抽汽口口径及流速 3 汽封漏气量及蒸汽室漏气量 3.1 汽封计算 3.2 蒸汽室及中压进口漏汽量 4 汽轮机特性曲线 4.1 调节级后及各抽汽点压力曲线 4.2 调节级后及各抽汽点温度曲线 4.3 各加热器出口给水温度曲线 4.4 进汽量与汽耗、热耗及功率的关系曲线 4.5 高中压缸汽封漏汽量及低压缸汽封供汽量曲线 4.6 调节级后压力和汽轮机功率曲线 4.7 汽轮机内效率曲线 5 热平衡图 5.1 额定工况(THA) 5.2 铭牌工况(TRL) 5.3 最大连续功率工况(TMCR) 5.4 阀门全开工况(VWO) 5.5 75%THA工况 5.6 50%THA工况 5.7 40%THA工况 5.8 30%THA工况 5.9 高加全部停用工况

资料编号:57.Q151-01 1 说明 本机组是上海汽轮机有限公司采用美国西屋公司的先进技术和积木块的设计方法,设计制造的额定功率为135MW,是超高压、一次再热、双缸双排汽、直接空冷凝汽式汽轮机。机组型号为N135-13.24/535/535 1.1 主要技术参数 额定功率135MW 主汽门前蒸汽额定压力13.24MPa(a) 主汽门前蒸汽额定温度535℃ 再热汽门蒸汽额定温度535℃ 工作转速3000r/min 旋转方向从汽轮机端向发电机端看为顺时针 额定平均背压15kPa 夏季平均背压35kPa 额定工况给水温度241.1 ℃ 回热级数二高、三低、一除氧 给水泵驱动方式电动机 额定工况蒸汽流量422.285 t/h 额定工况下净热耗8706.5 kJ/kW.h (2079.5 kcal/kW.h) 低压末级叶片高度435mm

热力管道PE-RT II型技术指标

热力管道PE-RT II型技术指标 热力管道PE-RT II型结构——外护管 热力管道PE-RT II型即PE-RT II型热力管, 热力管道的外护管在保温层外,主要作用是阻挡外力和环境对保温材料和PE-RT II型管的破坏和影响。 高密度聚乙烯外护管是以高密度聚乙烯(HDPE)为原料采用先进设备及工艺进行生产,产品质量符合 GB/T13663-2000、GB/T29047标准。 聚乙烯外护管具有机械强度高、耐冲击、奶环境应力开裂、耐腐蚀、耐低温、施工简便、密封无渗漏等特点,使用寿命50年。 外护管主要指标

热力管道PE-RT II型结构——保温层 保温层在工作管与外护管之间,为保持管道输送介质温度而设置的保温材料层。 保温层采用硬质聚氨酯泡沫塑料,充分填满PE-RT II 型管与套管之间的间隙,并具有一定的粘接强度,使耐热聚乙烯PE-RT II型管材、外套管及保温层三者之间形成一个牢固的整体。聚氨酯泡沫保温层具有良好的机械性能和绝热性能,通常情况下可耐温120℃通过改性或与其他隔热材料组合可耐温180℃ 聚氨酯保温层主要技术指标 聚氨酯节能保温材料特点: 1.导热系数小,聚氨酯泡沫的的导热系数在所有保温材料中几乎是最低的,因此能使物料的热损失减少到最低限度。 2、防水、防腐、耐老化,由于聚氨酯泡沫的闭孔率可达92%以上,因此,用聚氨酯泡沫作为热力管道的保温层,

不仅可以起到保温隔热的作用,而且能有效的防治水、湿气以及其他种种腐蚀性液、气的渗透,防止微生物的滋生和发展。 3、适应性强,聚氨酯泡沫能与各种材料进行牢固的粘合,因此,作为热力管道的保温层几乎无需考虑防腐层与之粘合的问题。聚氨酯保温层的适应温度为+120℃~196℃,短时(十几小时)可达190℃. 热力管道PE-RT II型结构——PE-RT II型工作管 工作管是保温复合材料管中用于输送介质的管材,应符合GB/T28799.2-2012的规定。 PE-RT II型管又名“耐热聚乙烯PE-RT II型管”,使用的是进口耐热聚乙烯(PE-RT II)原材料,由聚乙烯和丁烯(己烯)任意一种共聚而成,二型耐热聚乙烯管材无需交联即具有优良的长期静液压强度,可焊接性,并可采用所有的熔接方法,PE-RT II型材料抗冲击、耐开裂、耐划伤强度性极好,且柔韧性和长期蠕变性能好,具有与传统高密度聚乙烯相同的良好的耐低温(-40℃)性能,长期工作的最低温度为-30℃,并能耐高温其属性耐热、环保,因此适用于工业用及民用建筑冷热水管路系统、饮用水系统、北方城镇供热系统二次管网温泉热水管道系统以及中央空调进回水管道系统等工程。 工作管(PE-RT II)管材主要技术指标

压缩机热力学计算解读

2 热力学计算 2.1 初步确定各级排气压力和排气温度 2.1.1 初步确定各级压力 本课题所设计的压缩机为单级压缩 则: 吸气压力:P s =0.1Mpa 排气压力:P d =0.8Mpa 多级压缩过程中,常取各级压力比相等,这样各级消耗的功相等,而压缩机的总耗功也最小。各级压力比按下式确定。 z i t εε= (2-1) 式中: i ε—任意级的压力比; t ε—总压力比; z —级数。 总压力比:t ε= 0.8/0.1=8 各级压力比: 83.28==ε i 压缩机可能要在超过规定的排气压力值下工作,或者所用的调解方式(如余隙容积调节和部分行程调节)要引起末级压力比上升而造成末级气缸温度过高,末级压力比值取得较低,可按下式选取: Z =εε t i )75.0~9.0( (2-2) 则各级压力比: ε 2=2.12~2.55=2.5 ε 1 =3.2 各级名义进、排气压力及压力比已经调整后列表如下 表2-1 各级名义进、排气压力及压力比 级数 名义进气压力 p 1(MPa ) 名义排气压力 p 2(Mpa ) 名义压力比 ε Ⅰ 0.1 0.32 3.2 Ⅱ 0.32 0.8 2.5

2.1.2 初步确定各级排气温度 各级排气温度按下式计算: 1n n d s i T T ε-= (2-3) 式中:T d —级的排气温度,K ; T s —级的吸气温度,K ; n —压缩过程指数。 在实际压缩机中,压缩过程指数可按以下经验数据选取。 对于大、中型压缩机:n k = 对于微、小型空气压缩机:(0.9~0.98)n k = 空气绝热指数k =1.4,则(0.9~0.98)(1.26~1.372)n k ==,取n =1.30 各级名义排气温度计算结果列表如下。 一级的吸气温度T s1=210C+273=294(K ) 一级的排气温度T d1==X =-2 .323 .0113.11 1 294ε T s 382(K) 二级的吸气温度T s2=400C+273=313(K ) 二级的排气温度:=X =-5 .223 .0113.12 2 313ε T s 471(K)=386(K) 表2-2 各级排气温度 级数 名义吸气温度T 1 压缩过程指数n n n 1-')(ε 名义排气温度T 2 ℃ K ℃ K Ⅰ 21 294 1.30 1.31 130 382 Ⅱ 40 313 1.30 1.313 1.23 386 2.2 确定各级的进、排气系数 2.2.1 计算容积系数v λ 容积系数是由于气缸存在余隙容积,使气缸工作容积的部分容积被膨胀气体占据,而对气缸容积利用率产生的影响。 )1(11 --=m v εαλ (2-4) 式中: v λ—容积系数; α —相对余隙容积; ε — 压力比。 各级膨胀过程指数m 按下表计算。

压缩机的基本性能参数

压缩机相关的参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量 ,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地 用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2 热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度 五、指示功率和指示效率

各种压缩机比较

各种压缩机比较

————————————————————————————————作者: ————————————————————————————————日期:

离心式、活塞式、螺杆式压缩机在制冷中的原理和优缺陷以及它们的应用范围 离心式压缩机属速度型,活塞式、螺杆式压缩机属容积型 离心式压缩机主要靠高速叶片将能量传递给管道中连续流动的制冷剂气体使之获得极大的速度,同时提高压力.具有制冷量大,单位功率机组的重量轻,体积小,占地少,没有气阀,活塞,活塞环等易损零件,可实现无油压缩,运转平稳可靠,设备基础轻,供气脉动性小维护费用低等优点.不足之处是效率较低,单机容量必须较大,变工况适应能力不强,而且噪声较活塞式大. 螺杆式压缩机属容积型回旋式压缩机中的一种,由于不出现余隙容积中剩余气体的再膨胀过程,在转子,机壳之间具有很小的间隙,相互之间没有滑动摩擦所以内效率和机械效率都比较高.由于它无吸排气阀装置,易损件少维护管理方便,使用寿命长,目前已得到广泛应用而且必将获得进一步推广.不足之处是噪声较大,单机容量不宜太小. 活塞式压缩机是传统型容积式压缩机,目前使用最为广泛.这种机型工艺比较成熟,有宽阔的工作压力范围,变工况适应性较强,热效应较螺杆式压缩机稍低,额定转速一般较低,输气有脉动,运转有一定的振动.且结构较复杂,易损件多,维修周期短.噪声相对于离心式压缩机和螺杆式压缩机要低,在中小型制冷中占主导地位. 一般来说,离心式压缩机和螺杆式压缩机适用于大型制冷空调设备,活塞式压缩机常用于中小型制冷空调设备. 螺杆机的特点与应用范围 螺杆机的优点:1.可靠性高,零部件少,没有易损件,因而它运转可靠,寿命长,优耐特斯螺杆机达30年。 2.操作维护方便,自动化程度高,操作人员无需经过长时间专业培训,实现无人值守运转。 3.动力平衡性好,没有不平衡惯性力,机器可平稳地高速工作,实现无基础运转。 4.适应性强,具有强制输气的特点,容积流量几乎不受排气压力的影响,在宽广的工况范围 内能保持较高的效率,在压缩机结构不做任何改动的情况下,适用于多种工况,所以易于 定型批量生产。 5.多相混输,转子齿面间实际上留有间隙,因而能耐液体冲击,可压送含液体的气体,含 粉尘气体,易聚合气体等。 螺杆机的缺点:1.造价高,由于螺杆机的转子齿面是一空间曲面,需利用特制刀具在价格昂贵的专用设备上 进行加工,另外对螺杆机汽缸的加工精度也有较高要求。

相关主题
文本预览
相关文档 最新文档