当前位置:文档之家› 哈尔滨工程大学工程热力学绝密课件007

哈尔滨工程大学工程热力学绝密课件007

哈尔滨工程大学工程热力学绝密课件007
哈尔滨工程大学工程热力学绝密课件007

哈工大工程热力学习题

第3章 热力学第一定律 本章基本要求 深刻理解热量、储存能、功的概念,深刻理解内能、焓的物理意义 理解膨胀(压缩)功、轴功、技术功、流动功的联系与区别 本章重点 熟练应用热力学第一定律解决具体问题 热力学第一定律的实质: 能量守恒与转换定律在热力学中的应用 收入-支出=系统储能的变化 = +sur sys E E 常数 对孤立系统:0=?isol E 或 0=?+?sur sys E E 第一类永动机:不消耗任何能量而能连续不断作功的循环发动机。 3.1系统的储存能 系统的储存能的构成:内部储存能+外部储存能 一.内能 热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和,单位质量工质所具有的内能,称为比内能,简称内能。U=mu 内能=分子动能+分子位能 分子动能包括: 1.分子的移动动能 2。分子的转动动能. 3.分子内部原子振动动能和位能 分子位能:克服分子间的作用力所形成 u=f (T,V) 或u=f (T,P) u=f (P,V)

注意: 内能是状态参数. 特别的: 对理想气体u=f (T) 问题思考: 为什么? 外储存能:系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。 宏观动能:2 2 1mc E k = 重力位能:mgz E p = 式中 g —重力加速度。 系统总储存能:p k E E U E ++= 或mgz mc U E ++ =2 2 1 gz c u e ++ =2 21 3.2 系统与外界传递的能量 与外界热源,功源,质源之间进行的能量传递 一、热量 在温差作用下,系统与外界通过界面传递的能量。 规定: 系统吸热热量为正,系统放热热量为负。 单位:kJ kcal l kcal=4.1868kJ 特点: 热量是传递过程中能量的一种形式,热量与热力过程有关,或与过程的路径有关. 二、功 除温差以外的其它不平衡势差所引起的系统与外界传递的能量. 1.膨胀功W :在力差作用下,通过系统容积变化与外界传递的能量。 单位:l J=l Nm 规定: 系统对外作功为正,外界对系统作功为负。

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

工程热力学教学课件.docx

第一章、基本概念 1、边界 边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。 2、六种系统(重要!) 六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。 a.系统与外界通过边界:功交换、热交换和物质交换. b.闭口系统不一定绝热,但开口系统可以绝热。 c.系统的取法不同只影响解决问题的难易,不影响结果。 3、三参数方程 a.P=B+Pg b.P=B-H 这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。正用1,负用2。 ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。 第二章、气体热力性质 1、各种热力学物理量 P:压强[单位Pa] v:比容(单位m^3/kg) R:气体常数(单位J/(kg*K))书25页 T:温度(单位K) m:质量(单位kg) V:体积(单位m^3)

M:物质的摩尔质量(单位mol) R:8.314kJ/(kmol*K),气体普实常数 2、理想气体方程: Pv=RT PV=m*R。*T/M Qv=Cv*dT Qp=Cp*dT Cp-Cv=R 另外求比热可以用直线差值法! 第三章、热力学第一定律 1、闭口系统: Q=W+△U 微元:δq=δw+du (注:这个δ是过程量的微元符号)2、闭口绝热 δw+du=0 3、闭口可逆 δq=Pdv+du 4、闭口等温 δq=δw 5、闭口可逆定容 δq=du 6、理想气体的热力学能公式

dU=Cv*dT 一切过程都适用。为什么呢?因为U是个状态量,只与始末状态有关、与过程无关。U是与T相关的单值函数,实际气体只有定容才可以用 6、开口系统 ps.公式在书46页(3-12) 7、推动功 Wf=P2V2-P1V1(算是一个分子流动所需要的微观的能量) a、推动功不是一个过程量,而是一个仅取决于进出口状态的状态量。 b、推动功不能够被我们所利用,其存在的唯一价值是使气体流动成为开系。 8、焓(重要!) 微观h=u+PV U分子静止具有的内能 PV分子流动具有的能量 a、焓是一个状态量,对理想气体仍然为温度T的单值函数。 b、焓在闭口系统中无物理意义,仅作为一个复合函数。 9、技术功 从技术角度,可以被我们利用的功 Wt=0.5△c^2+g△Z+Ws(轴功) q=△h+Wt当忽略动位能时,Wt=Ws q=△h+Ws=△PV+△u+w(膨胀功) 10、可逆定容的方程 Ws=-∫VdP 表示对外输出的轴功。 与dU相同,dh=CpdT对一切理想气体成立 第四章 理想气体的热力过程及气体压缩

哈工大工程热力学教案

绪论 (2学时) 一、基本知识点 基本要求 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 ·理解热能利用的两种主要方式及其特点 ·了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 电能一一机械能 锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热 锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电 冰箱一一-(耗能) 制冷 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 (1).热能:能量的一种形式 (2).来源:一次能源:以自然形式存在,可利用的能源。

如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 (3).利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 过程的方向性:如:由高温传向低温 能量属性:数量属性、,质量属性 (即做功能力) 注意: 数量守衡、质量不守衡 提高热能利用率:能源消耗量与国民生产总值成正比。 6.本课程的研究对象及主要内容 研究对象:与热现象有关的能量利用与转换规律的科学。 研究内容: (1).研究能量转换的客观规律,即热力学第一与第二定律。

(2).研究工质的基本热力性质。 (3).研究各种热工设备中的工作过程。 (4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。 7..热力学的研究方法与主要特点 (1)宏观方法:唯现象、总结规律,称经典热力学。 优点:简单、明确、可靠、普遍。 缺点:不能解决热现象的本质。 (2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。 优点:可解决热现象的本质。缺点:复杂,不直观。 主要特点:三多一广,内容多、概念多、公式多。 联系工程实际面广。条理清楚,推理严格。 二、重点、难点 重点:热能利用的方向性及能量的两种属性 难点:使学生认识到学习本课程的重要性,激发学生的学习兴趣和学习积极性,教会学生掌握专业基础课的学习方法。 四、德育点

哈工大工程热力学教案-第1章 基本概念

第1章基本概念 本章基本要求: 深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。本章重点: 取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系,系统与外界的作用: 热交换、功交换、质交换。 二、闭口系统和开口系统(按系统与外界有无物质交换) 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统

绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换 =系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分 可压缩系统:由可压缩流体组成的系统。 简单可压缩系统:与外界只有热量及准静态容积变化 均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。 非均匀系统:由两个或两个以上的相所组成的系统。 单元系统:一种均匀的和化学成分不变的物质组成的系统。 多元系统:由两种或两种以上物质组成的系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 注意: 系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。思考题: 孤立系统一定是闭口系统吗。反之怎样。 孤立系统一定不是开口的吗。 孤立系统是否一定绝热。

第7章,工程热力学(哈工大)

第7章 水 蒸 汽 7.1 本章基本要求 理解水蒸汽的产生过程,掌握水蒸汽状态参数的计算,学会查水蒸汽图表和正确使用水蒸汽h -s 图。 掌握水蒸汽热力过程、功量、热量和状态参数的计算方法。 自学水蒸汽基本热力过程(§7-4)。 7.2 本章难点 1.水蒸汽是实际气体,前面章节中适用于理想气体的计算公式,对于水蒸汽不能适用,水蒸汽状态参数的计算,只能使用水蒸汽图表和水蒸汽h-s 图。 2.理想气体的内能、焓只是温度的函数,而实际气体的内能、焓则和温度及压力都有关。 3.查水蒸汽h -s 图,要注意各热力学状态参数的单位。 7.3 例题 例1:容积为0.63m 的密闭容器内盛有压力为3.6bar 的干饱和蒸汽,问蒸汽的质量为多少,若对蒸汽进行冷却,当压力降低到2bar 时,问蒸汽的干度为多少,冷却过程中由蒸汽向外传出的热量为多少 解:查以压力为序的饱和蒸汽表得: 1p =3.6bar 时,"1v =0.51056kg m /3 "1h =2733.8kJ /kg 蒸汽质量 m=V/"1v =1.1752kg 查饱和蒸汽表得: 2p =2bar 时,'2v =0.0010608kg m /3 "2v =0.88592kg m /3 '2 h =504.7kJ /kg ''2 h =2706.9kJ /kg 在冷却过程中,工质的容积、质量不变,故冷却前干饱和蒸汽的比容等于冷却后湿蒸汽的比容即: "1v =2x v

或"1v =''2 2'22)1(v x v x +- 由于"1v ≈''22v x =≈"2 "12v v x 0.5763 取蒸汽为闭系,由闭系能量方程 w u q +?= 由于是定容放热过程,故0=w 所以 1212u u u q -=?= 而u =h -pv 故 )()("11"1222v p h v p h q x x ---= 其中:2x h =''2 2'22)1(h x h x +-=1773.8kJ /kg 则 3.878-=q kJ /kg Q=mq=1.1752?(-878.3) =-1032.2kJ 例2:1p =50bar C t 01400=的蒸汽进入汽轮机绝热膨胀至2p =0.04bar 。设环境温度C t 0020=求: (1)若过程是可逆的,1kg 蒸汽所做的膨胀功及技术功各为多少。 (2)若汽轮机的相对内效率为0.88时,其作功能力损失为多少 解:用h -s 图确定初、终参数 初态参数:1p =50bar C t 01400=时,1h =3197kJ /kg 1v =0.058kg m /3 1s =6.65kJ /kgK 则1111v p h u -==2907 kJ /kg6.65kJ /kgK 终态参数:若不考虑损失,蒸汽做可逆绝热膨胀,即沿定熵线膨胀至2p =0.04bar ,此过程在h-s 图上用一垂直线表示,查得2h =2020 kJ /kg 2v =0.058kg m /3 2s =1s =6.65kJ /kgK 2222v p h u -==1914 kJ /kg 膨胀功及技术功:21u u w -==2907-1914=993 kJ /kg 21h h w t -==3197-2020=1177 kJ /kg 2)由于损失存在,故该汽轮机实际完成功量为

哈工大工程热力学习题

工程热力学试题 一.是非题(10分) 1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。( ) 2.闭口系统进行一放热过程,其熵一定减少( ) 3.容器中气体的压力不变,则压力表的读数也绝对不会改变。( ) 4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为 ( ) 5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统 进行分析,其结果与所取系统的形式无关。 ( ) 6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变 化是一样的。 ( ) 7.对于过热水蒸气,干度 ( ) 8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量 将增大,但最多增大到临界流量。( ) 9.膨胀功、流动功和技术功都是与过程的路径有关的过程量 ( ) 10.已知露点温度、含湿量即能确定湿空气的状态。 ( ) 二.选择题(10分) 1.如果热机从热源吸热100kJ,对外作功100kJ,则( )。 (A) 违反热力学第一定律; (B) 违反热力学第二定律; (C) 不违反第一、第二定律;(D) A和B。 2.压力为10 bar的气体通过渐缩喷管流入1 bar的环境中,现将喷管尾 部截去一小段,其流速、流量变化为()。 (A)流速减小,流量不变(B)流速不变,流量增加 (C)流速不变,流量不变(D)流速减小,流量增大 3.系统在可逆过程中与外界传递的热量,其数值大小取决于()。 (A)系统的初、终态;(B)系统所经历的过程; (C)(A)和(B);( D)系统的熵变。 4.不断对密闭刚性容器中的汽水混合物加热之后,其结果只能是( )。

(A)全部水变成水蒸汽 (B)部分水变成水蒸汽 (C)部分或全部水变成水蒸汽 (D)不能确定 5.( )过程是可逆过程。 (A).可以从终态回复到初态的 (B).没有摩擦的 (C).没有摩擦的准静态过程 (D).没有温差的 三.填空题 (10分) 1.理想气体多变过程中,工质放热压缩升温的多变指数的范围 _________ 2.蒸汽的干度定义为_________。 3.水蒸汽的汽化潜热在低温时较__________,在高温时较 __________,在临界温度为__________。 4.理想气体的多变比热公式为_________ 5.采用Z级冷却的压气机,其最佳压力比公式为_________ 四、名词解释(每题2分,共8分) 1.卡诺定理: 2..理想气体 3.水蒸气的汽化潜热 5.含湿量 五简答题(8分) 1. 证明绝热过程方程式。

哈工大工程热力学习题

工程热力学试题 一.是非题 (10分) 1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。( ) 2.闭口系统进行一放热过程,其熵一定减少( ) 3.容器中气体的压力不变,则压力表的读数也绝对不会改变。( ) 4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为k k p p T T 1 121 2 -??? ? ??= ( ) 5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统进行分析,其结果与所取系统的形式无关。 ( ) 6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变化是一样的。 ( ) 7.对于过热水蒸气,干度1>x ( ) 8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。( ) 9.膨胀功、流动功和技术功都是与过程的路径有关的过程量 ( ) 10.已知露点温度d t 、含湿量d 即能确定湿空气的状态。 ( ) 二.选择题 (10分) 1.如果热机从热源吸热100kJ ,对外作功100kJ ,则( )。 (A ) 违反热力学第一定律; (B ) 违反热力学第二定律; (C ) 不违反第一、第二定律;(D ) A 和B 。 2.压力为10 bar 的气体通过渐缩喷管流入1 bar 的环境中,现将喷管尾部截去一小段,其流速、流量变化为( )。 (A ) 流速减小,流量不变 (B )流速不变,流量增加 (C ) 流速不变,流量不变 (D ) 流速减小,流量增大 3.系统在可逆过程中与外界传递的热量,其数值大小取决于( )。 (A ) 系统的初、终态; (B ) 系统所经历的过程;

哈工大工程热力学教案-第5章 热力学第二定律

第5章热力学第二定律 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无的概念。 基本知识点: 5.1 自然过程的方向性 一、磨擦过程 功可以自发转为热,但热不能自发转为功 二、传热过程 热量只能自发从高温传向低温 三、.自由膨胀过程 绝热自由膨胀为无阻膨胀,但压缩过程却不能自发进行 四、混合过程 两种气体混合为混合气体是常见的自发过程 五、燃烧过程 燃料燃烧变为燃烧产物(烟气等),只要达到燃烧条件即可自发进行 结论:自然的过程是不可逆的 5.2 热力学第二定律的实质 一、.热力学第二定律的实质

克劳修斯说法:热量不可能从低温物体传到高温物体而不引起其它变化 开尔文说法:不可能制造只从一个热源取热使之完全变为机械能,而不引起其它变化的循环发动机。 二、热力学第二定律各种说法的一致性 反证法:(了解) 5.3 卡诺循环与卡诺定理 意义:解决了热变功最大限度的转换效率的问题 一.卡诺循环: 1、正循环 组成:两个可逆定温过程、两个可逆绝热过程 过程a-b :工质从热源(T1)可逆定温吸热 b-c :工质可逆绝热(定'熵)膨胀 c-d :工质向冷源(T2)可逆定温放热 d-a :工质可逆绝热(定熵)压缩回复到初始状态。 循环热效率: 1 2101q q q w t -==η

)(11a b s s T q -==面积abefa )(22d c s s T q -==面积cdfec 因为 )()(d c a b s s s s -=- 得到 1 21T T t - =η 分析: 1、热效率取决于两热源温度,T1、T2,与工质性质无关。 2、由于T1,∞≠ T2≠0,因此热效率不能为1 3、若T1=T2,热效率为零,即单一热源,热机不能实现。 逆循环: 包括:绝热压缩、定温放热。 定温吸热、绝热膨胀。 致冷系数:212212021T T T q q q w q c -=-==ε 供热系数2 11211012T T T q q q w q c -=-==ε 关系:112+=c c εε 分析:通常T2>T1-T2 所以: 11>c ε 卡诺定理: 1、所有工作于同温热源、同温冷源之间的一切热机,以可逆热机的热效率为最高。 2.在同温热源与同温冷源之间的一切可逆热机,其热效率均相等. 5.4 熵与熵增原理 一、熵的导出

哈工大工程热力学教案

绪论(2学时) 一、基本知识点 基本要求 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 ·理解热能利用的两种主要方式及其特点 ·了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 电能一一机械能 锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热 锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电 冰箱一一-(耗能) 制冷 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 (1).热能:能量的一种形式 (2).来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 (3).利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 过程的方向性:如:由高温传向低温 能量属性:数量属性、,质量属性 (即做功能力) 注意: 数量守衡、质量不守衡 提高热能利用率:能源消耗量与国民生产总值成正比。 6.本课程的研究对象及主要内容 研究对象:与热现象有关的能量利用与转换规律的科学。 研究内容: (1).研究能量转换的客观规律,即热力学第一与第二定律。

(2).研究工质的基本热力性质。 (3).研究各种热工设备中的工作过程。 (4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。 7..热力学的研究方法与主要特点 (1)宏观方法:唯现象、总结规律,称经典热力学。 优点:简单、明确、可靠、普遍。 缺点:不能解决热现象的本质。 (2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。 优点:可解决热现象的本质。缺点:复杂,不直观。 主要特点:三多一广,内容多、概念多、公式多。 联系工程实际面广。条理清楚,推理严格。 二、重点、难点 重点:热能利用的方向性及能量的两种属性 难点:使学生认识到学习本课程的重要性,激发学生的学习兴趣和学习积极性,教会学生掌握专业基础课的学习方法。 四、德育点 ·通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的爱国热情 ·通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性,向学生渗透爱课程、爱专业教育 五、练习与讨论 讨论题:能源与环境、节能的重要性、建筑节能、辩证思维 学习方法:物理概念必须清楚,记住一般公式,注意问题结果的应用。 第1章基本概念 本章基本要求: 深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。 本章重点: 取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。 1. 1 热力系统 一、热力系统

哈工大工程热力学教案-第2章 理想气体的性质

第2章理想气体的性质 本章基本要求: 熟练掌握理想气体状态方程的各种表述形式,并能熟练应用理想气体状态方程及理想气体定值比热进行各种热力计算。并掌握理想气体平均比热的概念和计算方法。 理解混合气体性质,掌握混合气体分压力、分容积的概念。 本章重点:气体的热力性质,状态参数间的关系及热物性参数,状态参数(压力、温度、比容、内能、焓、熵)的计算。 2.1 理想气体状态方程 一、理想气体与实际气体 定义:气体分子是一些弹性的,忽略分子相互作用力,不占有体积的质点, 注意:当实际气体p→0 v→∞的极限状态时,气体为理想气体。 二、理想气体状态方程的导出 状态方程的几种形式 1.RT pv=适用于1千克理想气体。 式中:p—绝对压力Pa v—比容m3/kg,T—热力学温度K 2.mRT pV=适用于m千克理想气体。 式中V—质量为m kg气体所占的容积 3.T =适用于1千摩尔理想气体。 R pV M0 式中V M=M v—气体的摩尔容积,m3/kmol; R0=MR—通用气体常数,J/kmol·K 4.T =适用于n千摩尔理想气体。 nR pV

式中 V —nKmol 气体所占有的容积,m 3; n —气体的摩尔数,M m n =,kmol 5.2 22111T v P T v P = 6. 222111T V P T V P = 仅适用于闭口系统 状态方程的应用: 1.求平衡态下的参数 2.两平衡状态间参数的计算 3.标准状态与任意状态或密度间的换算 4.气体体积膨胀系数 例1:体积为V 的真空罐出现微小漏气。设漏气前罐内压力p 为零,而漏入空气的流率与(p 0-p )成正比,比例常数为α,p 0为大气压力。由于漏 气过程十分缓慢,可以认为罐内、外温度始终保持T 0不变,试推导罐内压 力p 的表达式。 解:本例与上例相反,对于罐子这个系统,是个缓慢的充气问题,周围空气漏入系统的微量空气d m '就等于系统内空气的微增量d m 。由题设条件已知,漏入空气的流率ατ ='d d m (p 0-p ),于是: )(p p m m -='=0d d d d ατ τ (1) 另一方面,罐内空气的压力变化(d p )与空气量的变化(d m )也有一定的关系。 由罐内的状态方程pV =m g R T 出发,经微分得 V d p +p d V =g R m d T +g R T d m 所以,pV =m g R T 后改写成 m m T T V V p p d d d d +=+

哈尔滨工业大学高等工程热力学复习总结

例1:有一容积为的气罐(内有空气,参数为lbar> 209)与表压力为17bar的209的压缩空气管逍 连接,缓慢充气达到平衡(定温人求:1?此时?中空气的质量2?充气过程中气罐散出的热量3?不可逆充气引起的埼产(大气压Ibar. 20-C) 解J 充气前 />| =lbar r =20*C 质量“,充气后= p?=17bar r,=r =20X?质量叭①眄= - - -RgT》RgT\ ②热力学第一泄律:Q=A£>L G〃牝 A£ = Aw二《2?"产加2"2?朋Ml:二心"如=-坳(加2_")? W洌=-叫“0% = 一卩視(?h 一W|): 得J Q= W02 ?"5_")_%九(加2 _")二“?"?加M 由缓慢充气知为;^^温过程.H|=H2 = Q,;r,:hQ 叫To: T -Y T Q= ("S - 加J 5 T, - ("b - "S) C耳几=(叫-加I)Cy(G 人人)=(小? Pl〉V ~~ (](齐》_ I) ③ A5 = $f +亠+((SM叫-$2%)= ? $2-"" S|;Sf=¥ ‘0 L(S|%-S2%)= ? (加2 一加小 Sg=(阴S?" S, )-? (叫一心)-¥=叫(SfSjn) +W| /o A5 = S”S严Cp ln2人ln4 " T\Pl ¥■:E L= T^Sg 5… = /?-> (C? \n — -R_ In )+/?. (C? In — - /? In )* - 几”%' P 7; E P\ 例2: Imol理想气体02,在(T, V)状态下,S|, 绝热自由膨胀后体积增加到2S此时S. G_ 求①(△s)6,誓②若a=i,试问全部。2分子都同时集中在原子体积V中的概率解:①山=亦1時=,加2 = 5.763〃K(n=i 创:AS=Kln^=nRln2=Kln2% 善=2叽⑹如 ② Q严—厂“O'血|戶可以看出逆过程是可能的,但是概率很小?在宏观上仍表现为方向性,故过 2 * A 程可逆(或炳增原理)完全是统il?的量与热力学观点不同。

相关主题
文本预览
相关文档 最新文档