当前位置:文档之家› 解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章
解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论

§5.1二次曲线与直线的相关位置

1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .

(1)22221x y a b +=;(2)22

221x y a b

-=;(3)22y px =;(4)223520;x y x -++=

(5)2226740x xy y x y -+-+-=.

解:(1)221

0010

000

1a A b ?? ?

?

?= ? ?- ? ???;121(,)F x y x a =;221

(,)F x y y b =;3(,)1F x y =-; (2)2210010

000

1a A b ?? ?

?

?=-

? ?- ? ??

?

;121(,)F x y x a =221

(,)F x y y b =-;3(,)1F x y =-. (3)0001000p A p -?? ?

= ? ?-??

;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;

(4)51020

305022A ?? ?

?=- ? ?

?

??;15(,)2F x y x =+;2(,)3F x y y =-;35

(,)22F x y x =+;

(5)1232

1

71227342

A ??-- ? ? ?=-

? ? ?-- ???

;11(,)232F x y x y =--;217

(,)22F x y x y =-++;37

(,)342

F x y x y =-+

-.

2. 求二次曲线22234630x xy y x y ----+=与下列直线的交点. (1)550x y --=; (2)220x y ++=; (3)410x y +-=; (4)30x y -=; (5)2690x y --=.

解:提示:把直线方程代入曲线方程解即可,详解略 (1)15(,),(1,0)22

-;

(2)??,??

; (3)二重点(1,0);

(4)11,26??

???

; (5)无交点.

3. 求直线10x y --=与二次曲线2

2

2210x xy y x y -----=的交点. 解:由直线方程得1x y =+代入曲线方程并解方程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与二次曲线2

30x x y k -+-=交于两不同的实点;

(2)直线1,{

x kt y k t

=+=+与二次曲线22

430x xy y y -+-=交于一点;

(3)10x ky --=与二次曲线2

2(1)10xy y k y -+---=交于两个相互重合的点; (4)1,{

1x t y t

=+=+与二次曲线22

2420x xy ky x y ++--=交于两个共轭虚交点.

解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924

k >

.

§5.2二次曲线的渐进方向、中心、渐进线

1. 求下列二次曲线的渐进方向并指出曲线属于何种类型的.

(1)22230x xy y x y ++++=; (2)22342250x xy y x y ++--+=; (3)24230xy x y --+=.

解:(1)由22(,)20X Y X XY Y φ=++=得渐进方向为:1:1X Y =-或1:1-且属于抛物型的;

(2)由22(,)3420X Y X XY Y φ=++=得渐进方向为:(2:3X Y =-且属于椭圆型的;

(3)由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)22224630x xy y x y -+--+=; (2)22442210x xy y x y -++--=; (3)2281230y x y ++-=; (4)2296620x xy y x y -+-+=. 解:(1)因为211

1012

I -=

=≠-,所以它为中心曲线;

(2)因为212024

I -=

=-且

121

241-=≠--,所以它为无心曲线; (3)因为200002

I =

=且004

026=≠,所以它为无心曲线;

(4)因为293031

I -=

=-且

933

312--==-,所以它为线心曲线; 3. 求下列二次曲线的中心.

(1)2

2

5232360x xy y x y -+-+-=; (2)2

2

2526350x xy y x y ++--+=; (3)2

2

930258150x xy y x y -++-=.

解:(1)由510,

3

302

x y x y --=??

?-++=??得中心坐标为313(,)2828-; (2)由5230,2

532022

x y x y ?

+-=????+-=??得中心坐标为(1,2)-;

(3)由91540,15

152502

x y x y -+=??

?-+-=??知无解,所以曲线为无心曲线. 4. 当,a b 满足什么条件时,二次曲线226340x xy ay x by ++++-=(1)有唯一中心;(2)没有中心;(3)有一条中心直线.

解:(1)由330,2

30

2

x y b x ay ?++=????++=??知,当9a ≠时方程有唯一的解,此时曲线有唯一中心;

(2)当9,9a b =≠时方程无解,此时曲线没有中心;(3)当9a b ==时方程有无数个解,此时曲线是线心曲线.

5. 试证如果二次曲线

22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=

有渐进线,那么它的两个渐进线方程是

Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=

式中00(,)x y 为二次曲线的中心.

证明:设(,)x y 为渐进线上任意一点,则曲线的的渐进方向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=. 6. 求下列二次曲线的渐进线.

(1)2

2

6310x xy y x y --++-=; (2)2

2

32340x xy y x y -++-+=; (3)2

2

22240x xy y x y ++++-=.

解:(1)由1360,22

110

22

x y x y ?-+=????--+=??得中心坐标13(,)55-.

而由22

60X XY Y --=得渐进方向为:1:2X Y =或:1:3X Y =-,所以渐进线方程分别

为210x y -+=与30x y +=

(2)由310,22

3320

22

x y x y ?-+=????-+-=??得中心坐标13(,)55-.

而由22

320X XY Y -+=得渐进方向为:1:1X Y =或:2:1X Y =,所以渐进线方程分别

为20x y -+=与210x y --=

(3)由10,

10x y x y ++=??++=?

知曲线为线心曲线,.

所以渐进线为线心线,其方程为10x y ++=.

7. 试证二次曲线是线心曲线的充要条件是230I I ==,成为无心曲线的充要条件是

230,0I I =≠.

证明:因为曲线是线心曲线的充要条件是

13

1112122223

a a a a a a ==

也即230I I ==; 为无心曲线的充要条件是

13

1112122223

a a a a a a =≠

也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的二次曲线方程总能写成

111()()0A x By C Ax By C D +++++=.

证明:设以1110A x By C ++=为渐进线的二次曲线为

22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,

则它的渐进线为Φ00(,)x x y y --=2

2

1101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中心,从而有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++=

而Φ00(,)x x y y --=22

11012002202

2

111222110120221202201101200220()2()()()22()2()2,

a x x a x x y y a y y a x a xy a y a x a y x

a x a y y a x a x y a y -+--+-=++-+-++++

因为00(,)x y 为曲线的中心,所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-,

令0033(,)x y a D φ-=-,代入上式得00(,)(,)F x y x x y y D φ=--+

即111(,)()()F x y A x By C Ax By C D =+++++,所以以1110A x By C ++=为渐进线的二次曲线可写为111()()0A x By C Ax By C D +++++=.

9.求下列二次曲线的方程.

(1)以点(0,1)为中心,且通过(2,3),(4,2)与(-1,-3); (2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利用习题8的结论即可得:

(1)40xy x --=;(2)2223570x xy y x ---+=.

§5.3二次曲线的切线

1. 求以下二次曲线在所给点或经过所给点的切线方程. (1)曲线2

2

3457830x xy y x y ++---=在点(2,1); (2)曲线曲线2

2

3457830x xy y x y ++---=在点在原点; (3)曲线2

2430x xy y x y +++++=经过点(-2,-1); (4)曲线225658x xy y ++=

经过点;

(5)曲线2

2

2210x xy y x y -----=经过点(0,2). 解:(1)910280x y +-=; (2)20x y -=;

(3)10,30y x y +=++=;

(4

)1150,0x y x y +-=-+=; (5)0x =.

2. 求下列二次曲线的切线方程并求出切点的坐标.

(1)曲线2243530x xy y x y ++--+=的切线平行于直线40x y +=; (2)曲线223x xy y ++=的切线平行于两坐标轴. 解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-; (2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列二次曲线的奇异点. (1)22326410x y x y -+++=; (2)22210xy y x +--=; (3)2222210x xy y x y -+-++=. 解:(1)解方程组330,

220

x y +=??

-+=?得奇异点为(1,1)-;

(2)解方程组10,

0y x y -=??+=?

得奇异点为(1,1)-.

4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的二次曲线方程.

解:利用(5.3-5)可得2

2

6320x xy y x y +-+-=.

5.设有共焦点的曲线族22

2

222

1x y a h b h

+=++,这里h 是一个变动的参数,作平行于已知直线y mx =的曲线的切线,求这些切线切点的轨迹方程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为

002222

1x x y y

a h

b h

+=++,因为它平行与y mx =,所以有22

2

0000

x b my a h x my +=-+,代入22002

2221x y a h b h +=++整理得 222

220000(1)()0mx m x y my m a b +----=,

所以切点的轨迹为

22222(1)()0mx m xy my m a b +----=.

§5.4二次曲线的直径

1. 已知二次曲线2

2

3754510x xy y x y +++++=.求它的

(1)与x 轴平行的弦的中点轨迹; (2)与y 轴平行的弦的中点轨迹;

(3)与直线10x y ++=平行的弦的中点轨迹.

解:(1)因为x 轴的方向为:1:0X Y =代入(5.4-3)得中点轨迹方程6740x y ++=; (2)因为y 轴的方向为:0:1X Y =代入(5.4-3)得中点轨迹方程71050x y ++=; (3)因为直线10x y ++=的方向为:1:1X Y =-代入(5.4-3)得中点轨迹方程

310x y ++=.

2.求曲线224260x xy x y +---=通过点(8,0)的直径方程,并求其共轭直径. 解:(1)把点(8,0)代入(2)(21)0X x Y y -+-=

得:1:6X Y =,再代入上式整理得直径方程为1280x y +-=,其共轭直径为

122230x y --=.

3.已知曲线22310xy y x y --+-=的直径与y 轴平行,求它的方程,并求出这直径的共轭直径.

解:直径方程为10x -=,其共轭直径方程为230x y -+=. 4.已知抛物线2

8y x =-,通过点(-1,1)引一弦使它在这点被平分. 解:430x y ++=.

5. 求双曲线

22

164

x y -=一对共轭直径的方程,已知两共轭直径间的角是45度. 解:设直径和共轭直径的斜率分别为'

,k k ,则'

2

3

kk =

.又因为它们交角45度,所以''

11k k kk -=+,从而13k =-或2,'

2k =-或13,故直径和共轭直径的方程为30x y +=和

20x y -=或20x y +=和30x y -=.

6.求证:通过中心曲线的直线一定为曲线的直径;平行于无心曲线渐进方向的直线一定为其

直径. 证明:因为中心曲线直径为中心线束,因此过中心的直线一定为直径;当曲线为无心曲线时,它们的直径属于平行直线束,其方向为渐进方向,所以平行于无心曲线渐进方向的直线一定为其直径.

7.求下列两条曲线的公共直径.

(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=; (2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=. 8.已知二次曲线通过原点并且以下列两对直线

320,5540x y x y --=??

--=?与530,

210

y x y +=??--=? 为它的两对共轭直径,求该二次曲线的方程.

解:设曲线的方程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则由(5.4-3)和(5.4-5)可得111222132333111

1,,1,,,0222

a a a a a a ==-=-=-=-=,所以曲线的方程为220x xy y x y ----=.

§5.5二次曲线的主直径与主方向

1.分别求椭圆22221x y a b +=,双曲线22

221x y a b

-=,抛物线22y px =的主方向与主直径.

解:椭圆的主方向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主方向分别为1:0和0:1,主直径分别为0,0x y ==;抛物线的主方向分别为0:1和1:0,主直径分别为0y =.

2. 求下列二次曲线的主方向与主直径. (1)2

2

585181890x xy y x y ++--+=; (2)22210xy x y -+-=;

(3)2

2

9241618101190x xy y x y -+--+=.

解:(1)曲线的主方向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=; (2)其主方向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=; (3)其主方向分别为3:(-4)和4:3,主直径分别为3470x y -+=; (4)任何方向都是其主方向,过中心的任何直线都是其主直径.

3.直线10x y ++=是二次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲

线的方程.

解:设二次曲线方程为

22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,把点坐标(0,0),(1,-1),(2,1)分别代入上面方程同时利用直线10x y ++=为其主直径可得

11122213233377

4,,4,,4,022

a a a a a a ==-==-==,

所以所求曲线方程为22474780x xy y x y -+-+=. 4.试证二次曲线两不同特征根确定的主方向相互垂直.

证明:设12,λλ分别曲线的两不同特征根,由它们确定的主方向分别为11:X Y 与22:X Y 则

1111211112122111,,a X a Y X a X a Y Y λλ+=??

+=?与1121222212222222

,

a X a Y X a X a Y Y λλ+=??+=?, 所以 11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++

11212211222221221221()(),

a X a Y X a X a Y X X X Y Y λλ=+++=+

从而有121212()()0X X YY λλ-+=,

因为12λλ≠,所以12120X X YY +=,由此两主方向11:X Y 与22:X Y 相互垂直.

§5.6二次曲线方程的化简与分类

1. 利用移轴与转轴,化简下列二次曲线的方程并写出它们的图形. (1)2

2

5422412180x xy y x y ++--+=; (2)2

2

2410x xy y x y ++-+-=; (3)25122212190x xy x y +---=; (4)2

2

2220x xy y x y ++++=.

解(1)因为二次曲线含xy 项,我们先通过转轴消去xy ,设旋转角为α,则3

24

ctg α=

,即213

24tg tg αα-=,所以12tg α=或-2.取2tg α=-

,那么sin α=

,cos α=,所

以转轴公式为'

'''2),2).x x y y x y ?=+??

?

?=-+??

代入原方程化简再配方整理得新方程为

''2''26120x y +-=;

类似的化简可得

(2

)''2''250y +=;(3)''2''294360x y --=;(4)''2

210x -=.

2.以二次曲线的主直径为新坐标轴,化简下列方程,并写出的坐标变换公式与作出它们的图形.

(1)22845816160x xy y x y +++--=; (2)22421040x xy y x y --++=; (3)22446830x xy y x y -++-+=; (4)2244420x xy y x y -++-=. 解:(1)已知二次曲线的距阵是

82

42584816?? ?- ? ?--??

, 18513I =+=,282

3625

I ==,

所以曲线的特征方程为2

13360λλ-+=,其特征根为14λ=,29λ=,两个主方向为

11:1:2X Y =-,22:2:1X Y =;

其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式

'''

')1,2) 2.x x y y x y ?=--????=++??

代入已知曲线方程并整理得曲线在新坐标系下的方程为

'2'294360x y +-=.

(2)已知二次曲线的距阵是

225222520-?? ?- ? ???

坐标变换公式

'

'''2)1,) 2.x x y y x y ?=--????=++??

代入已知曲线方程并整理得曲线在新坐标系下的方程为

'2'23210x y -+-=.

(3)已知二次曲线的距阵是

423214343-?? ?-- ? ?-??

, 坐标变换公式

''''9

2),

101).

5x x y y x y ?=--????=++??

代入已知曲线方程并整理得曲线在新坐标系下的方程为

'2'

50y x =. (4)坐标变换公式

''''2

2),

51).

5x x y y x y ?=--????=++??

代入已知曲线方程并整理得曲线在新坐标系下的方程为

'2510y -=.

3.试证在任意转轴下,二次曲线的新旧方程的一次项系数满足关系式

'2'222

13231313

a a a a +=+. 证明:设旋转角为α,则''131323cos sin a a a αα=-,''

231323sin cos a a a αα=+,两式平方相加得

'2'222

13231313

a a a a +=+. 3. 试证二次曲线

222ax hxy ay d ++=

的两条主直径为220x y -=,曲线的两半轴的长分别为

证明:求出曲线的两主直径并化简即可得.

§5.7应用不变量化简二次曲线的方程

1. 利用不变量与半不变量,判断下列二次曲线为何种曲线,并求出它的化简方程与标准方

程.

(1)2266210x xy y x y ++++-=; (2)223234440x xy y x y -+++-=; (3)2243220x xy y x y -++-=; (4)22442210x xy y x y -++--=; (5)2

2

2246290x xy y x y -+--+=; (6

(7)22

22240x xy y x y ++++-=; (8)2

2

4412690x xy y x y -++-+=.

解:(1)因为12I =,213831

I ==-,133

31116311

=-,322I

I =-,而特征方程

2280λλ--=的两根为124,2λλ==-,所以曲线的简化方程(略去撇号)为

224220x y --=,

曲线的标准方程为

2

221012

x y --=,

曲线为双曲线; 类似地得下面:

(2)曲线的简化方程(略去撇号)为

222480x y +-=,

曲线的标准方程为

22

142

x y +=, 曲线为椭圆;

(3)曲线的简化方程(略去撇号)为

22(2(20x y +=,

曲线的标准方程为

22

0x y -=, 曲线为两相交直线;

(4)曲线的简化方程(略去撇号)为

250y =, 曲线的标准方程为

2y =

, 曲线为抛物线;

(5)曲线的简化方程(略去撇号)为

22

0x y +=, 曲线的标准方程为

22

0x y +=, 曲线为一实点或相交与一实点的两虚直线; (6)曲线的简化方程(略去撇号)为

220,0,0)y x a y a -=≤≤≤≤(,

曲线的标准方程为

2y =,

0,0)x a y a ≤≤≤≤( 曲线为抛物线的一部分;

(7)曲线的简化方程(略去撇号)为

2250y -=,

曲线的标准方程为

252

y =

, 曲线为两平行直线;

(8)曲线的简化方程(略去撇号)为

250y =,

曲线的标准方程为

20y =,

曲线为两重合直线.

2. 当λ取何值时,方程

2244230x xy y x y λ++---=

表示两条直线. 解:方程

2244230x xy y x y λ++---=

表示两条直线当且仅当

322

2110213

I λ-=-=---,

即4λ=.

3. 按实数λ的值讨论方程

2222250x xy y x y λλ-+-++=

表示什么曲线.

解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-, 所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:

所以有对应于下面的结果:

4. 设

221112221323332220a x a xy a y a x a y a +++++=

表示两条平行直线,证明这两条直线之间的距离是

d =证明:曲线的方程可简化为

y = 这里当曲线表示两条平行的实直线时,10K <. 所以这两条直线之间的距离是

d =5. 试证方程

221112221323332220a x a xy a y a x a y a +++++=

确定一个实圆必须且只须212124,0I I I I =<. 证明:当曲线

221112221323332220a x a xy a y a x a y a +++++=

表示一个实圆的充要条件是其特征方程

2120I I λλ-+=

有相等实根且120I I <,即21240I I ?=-=且120I I <,从而方程确定一个实圆必须且只须

212124,0I I I I =<.

6. 试证如果二次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222

2112212111212

22

()a a I a a a a a a a ==-=-+,

而111222,,a a a 不全0,所以有20I <.

7. 试证如果二次曲线的230,0I I =≠,那么10I ≠,而且120I I <.

证明:当230,0I I =≠时,由5.2节习题7知,曲线为无心曲线,从而有10I ≠,而且120I I <.

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

解析几何练习题及答案

解析几何 一、选择题 1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A.3 B .-3 C.33 D .-33 解析:斜率k =-1-33- -3 =-33 ,故选D. 答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 解析:①当a =0时,y =2不合题意. ②a ≠0, x =0时,y =2+a . y =0时,x =a +2 a , 则a +2a =a +2,得a =1或a =-2.故选D. 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313 C. 51326 D .71020 解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1--6|62+22=71020. 故选D. 答案:D 4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0 D .x +2y -5=0 解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所

以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C. 答案:C 5.若直线l :y =kx - 3 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A.??????π6,π3 B .? ????π6,π2 C.? ?? ??π3,π2 D .???? ??π3,π2 解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角 的取值范围为? ?? ?? π6,π2.故选B. 答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0 解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=1 2 , ∴方程为y -3=1 2(x -2),即x -2y +4=0. 答案:A 二、填空题 7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________. 解析:由题意知截距均不为零. 设直线方程为x a +y b =1,

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

高等代数与解析几何第七章习题7答案

习题 习题设A 是一个n 阶下三角矩阵。证明: (1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则 A 不可对角化。 证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有 n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无 关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。 (2)假设A 可对角化,即存在对角阵???? ?? ? ? ?=n B λλλO 2 1 ,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而 E a a a a B nn 112211 =???? ?? ? ? ?=O ,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与 假设矛盾,所以A 不可对角化。 习题设n 维线性空间V 的线性变换σ有s 个不同的特征值 s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。证明: (1)s V V V +++Λ21是直和;

(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。 证明:(1)取s V V V +++Λ21的零向量0,写成分解式有 021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。现用1 2,,,-s σσσΛ分别作用分解式两边,可得 ??? ??? ?=+++=+++=+++---000 1212111221121s s s s s s s s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。 写成矩阵形式为 )0,,0,0(11 1 ),,,(11221 1 121ΛΛ M M M Λ ΛΛ=???? ?? ? ? ?---s s s s s s λλλλλλααα。 由于s λλλ,,,21Λ是互不相同的,所以矩阵???? ?? ? ? ?=---11221 1111 1 s s s s s B λλλλλλΛ M M M Λ Λ的行列式不为零,即矩阵B 是可逆的,进而有 )0,,0,0()0,,0,0(),,,(1121ΛΛΛ==--B BB s ααα,)0,,0,0(),,,(21ΛΛ=s ααα。 这说明s V V V +++Λ21的零向量0的分解式是唯一的,故由定义可得 s V V V +++Λ21是直和。 (2))(?因i V ,s i ,,2,1Λ=都是V 的子空间,所以有s V V V V ⊕⊕⊕?Λ21。 又因σ可对角化,所以σ有n 个线性无关的特征向量,它们定属于某一特征值,即它们都属于s V V V ⊕⊕⊕Λ21。对任意的V ∈α,一定可由n 个线性无关的特征向量线性表示,所以s V V V ⊕⊕⊕∈Λ21α,即得 s V V V V ⊕⊕⊕?Λ21成立,故有s V V V V ⊕⊕⊕=Λ21。 )(?因s V V V V ⊕⊕⊕=Λ21, 所以分别取i V ),,2,1(s i Λ=的基:i id i i ααα,,,21Λ,

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

解析几何吕林根课后习题解答一到五.docx

第一章矢量与坐标 § 1.1矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. 解: 2.设点 O 是正六边形 ABCDEF的中心, 在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD、DE 、 EF O 和 FA 中,哪些矢量是相等的? [解 ]: 图 1-1 3.设在平面上给了一个四边形ABCD,点 K、L、 M、N 分别是边AB、BC、CD、 DA的中点,求证:KL = NM .当ABCD是空间四边形时,这等式是否也成立? [证明 ]: . 4.如图1-3,设ABCD-EFGH是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相反 矢量的矢量: (1) AB、; (2) AE、; (3) AC 、 CD CG EG ; (4)AD 、 GF ;(5)BE 、 CH . 解: 图1—3

§ 1.2矢量的加法 1.要使下列各式成立,矢量a,b 应满足什么条件? (1)a b a b;(2)a b a b ; (3)a b a b ;(4)a b a b ; (5)a b a b . 解: § 1.3数量乘矢量 1试解下列各题. ⑴化简 (x y) (a b) (x y) (a b) . ⑵已知 a e1 2 e2e3, b 3e12e2 2 e3,求a b , a b 和 3 a 2 b . ⑶ 从矢量方程组解:3 x 4 y a ,解出矢量 x ,y.2 x 3 y b 2 已知四边形ABCD 中, AB a 2 c ,CD 5 a 6 b 8 c ,对角线AC 、 BD 的中 点分别为 E 、 F ,求EF. 解: 3 设AB a 5 b , BC 2 a 8 b ,CD3( a b) ,证明: A 、 B 、 D 三点共线.解:

空间解析几何(练习题(答案))

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.33 2212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴

解析几何第四版吕林根课后习题答案

第三章 平 面 与 空 间 直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M CD 的(3)(ⅰ)设平面通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=? 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 0=. 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: }5,2,3{z AB +-= ⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面. 解:平行于x 轴的平面方程为 00 1 011112 =--+-z y x .即01=-z . 同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z .

⑵设该平面的截距式方程为 132=+-+-c z y x ,把点()4,2,3-M 代入得19 24-=c 故一般方程为02419812=+++z y x . ⑶若所求平面经过x 轴,则()0,0,0为平面内一个点, {}2,1,5-和{}0,0,1为所求平面的方位矢量, ∴ .11 6 cos ,119cos ,112cos -=== ?γβ 则该平面的法式方程为: .01111 6 119112=--+z y x 既 .0121692=--+z y x

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

相关主题
文本预览
相关文档 最新文档