当前位置:文档之家› 淀粉酶和蛋白酶产生菌产酶发酵条件的优化

淀粉酶和蛋白酶产生菌产酶发酵条件的优化

淀粉酶和蛋白酶产生菌产酶发酵条件的优化
淀粉酶和蛋白酶产生菌产酶发酵条件的优化

淀粉酶和蛋白酶产生菌产酶发酵条件的优化

1 材料与方法

1.1 材料

1.1.1菌种:枯草芽孢杆菌菌( Bacillus subtilis)

1.1.2 培养基

1.1.

2.1 淀粉酶种子培养基:蛋白胨1%(5g),牛肉膏0.3%-0.5%(1.5g),NaCl 0.5%(2.5g),可溶性淀粉0.2%(1g)(也有0.5%,1%,2%),琼脂2%(10g),加自来水约500mL,加热溶解,调pH 7.0,加自来水定容至500mL。分装于5个250mL三角瓶中,每瓶100mL(50mL移液管吸取或量筒精确量取),8层纱布封口后,0.1 M Pa灭菌20min。

1.1.

2.2 淀粉酶摇瓶发酵培养基:玉米粉2.0 %(40g),黄豆饼粉1.5 %(30g),CaCl2 0.02 %(0.4g),MgSO4 0.02 %(0.4g),NaCl 0.25 %(5g),K2HPO4 0.2 %(4g),柠檬酸钠0.2%(4g),硫酸铵0.075 %(1.5g),Na2HPO40.2 %(4g),加自来水约2000mL,煮30min后4层纱布过滤后,滤液加自来水定容至2000mL(略多几十毫升,怕装不了40瓶),调pH值7. 0。分装于40个150mL三角瓶中,每瓶50 mL(50mL移液管吸取或量筒精确量取),8层纱布封口后,0.1 M Pa灭菌20min。(注:40瓶够做时间和温度的,PH另配2000ml)

1.1.

2.3 蛋白酶种子培养基:葡萄糖0.05%,NaCl 0.5%,K2HPO40.05%,KH2PO4 0.05%,干酪素1%,加自来水约500mL,加热溶解,调pH 7.0,加自来水定容至500mL。分装于5个250三角瓶中,每瓶100mL(50mL移液管吸取或量筒精确量取),8层纱布封口后,0.1 M Pa灭菌20min。

具体配置:酪蛋白(即干酪素)先用0.2N NaOH溶解,倒入热水中加热搅拌至完全溶解;再加入其他药品,继续加热至完全融化;适量1N HCl调pH。

1.1.

2.4 蛋白酶摇瓶发酵培养基:黄豆饼粉3%,山芋粉4%,麸皮4%,Na2HPO4 0.4%,KH2PO4 0.03%,加自来水约2000mL,水煮30 min后4层纱布过滤后,滤液加自来水定容至2000mL(略多几十毫升,怕装不了40瓶),调pH 7.0。分装于40个150mL三角瓶中,每瓶50 mL(50mL移液管吸取或量筒精确量取),8层纱布封口后,0.1 M Pa灭菌20min。(注:40瓶够做时间和温度的,PH另配2000ml)1.1.3 主要试剂和溶液的配制

淀粉酶用试剂

1.1.3.1 碘原液(已配好):称取碘化钾

2.2g,加少量蒸馏水溶解,加入碘1.1 g,溶解后定容至50mL,贮于棕色瓶中。

1.1.3.2 比色用稀碘液:取碘原液8mL,加碘化钾80g,用蒸馏水定容至2000mL,贮于棕色瓶中。

1.1.3.3 2%可溶性淀粉(当天配制):称取可溶性淀粉(干燥至恒重)4g,用少量蒸馏水混合调匀,徐徐倾入煮沸的蒸馏水中,边加边搅拌,加热煮沸至透明(约2min)后,冷却,加水定容至200mL。(淀粉一定要用少量冷水调匀后,再倒入热水中溶解,若直接加到热水中,会溶解不均匀甚至结块。淀粉液应当天配制,配好的淀粉液应是透明澄清的,不能有颗粒状物质存在。)

1.1.3.4 0.2mol/L pH 6.0磷酸氢二钠-柠檬酸缓冲液:称取磷酸氢二钠(Na2HPO4·12H2O) 45.23g,柠檬酸(C6H8O7·H2O) 8.07g,用蒸馏水溶解并定容至1000mL,配好后应以酸度计或精密试纸校正并调pH 至6.0。(由于有杂质,影响比色,最好用不布式漏斗抽滤一下!)

1.1.3.5 0.5 mol/L乙酸溶液1000mL(只够用一次):1000 mL 容量瓶称取30g冰醋酸加蒸馏水定容至刻度。

蛋白酶用试剂

1.1.3.8 100mg/L标准酪氨酸溶液(当天配制或放入冰箱内保存,以免细菌繁殖而变质):精确称取在105℃烘箱中烘至恒重的酪氨酸0.1000 g,逐步加入6mL 1mol/L盐酸(9.85g约8.28mL定容至100mL)使其溶解,用0.2mol/L盐酸(19.71g约16.56mL定容至1000mL)溶解并定容至100 mL,其浓度为1000mg/L,吸取此液10mL,以0.2mo1/L盐酸定容至100mL。

1.1.3.9 Folin—酚试剂(已配好):在2000mL磨口圆底烧瓶内加入钨酸钠(Na2WO4·2H2O)100g,钼酸钠(Na2MoO4·2H2O)25g,蒸馏水700mL,85%磷酸50mL,浓盐酸100mL,充分混匀,使其溶解。接上回流装置,文火回流10h(烧瓶内可加入小玻璃珠数颗,以防溶液溢出),然后加入硫酸锂(Li2SO4·H2O)100g,蒸馏水50mL,摇匀,去除冷凝器,加入溴水数滴脱色,使呈黄色,而非绿色,在通风橱中开口继续煮沸15min,以除去多余的溴。冷却后溶液应呈金黄色,定容至1000mL,细菌漏斗(NO4-5)过滤,滤液即Folin—酚试剂,置于棕色瓶中,可在冰箱长期保存,若贮存液时间过长,颜色由黄变绿,可加几滴溴水,煮沸数min,恢复原色仍可使用。使用时用1 mol/L标准氢氧化钠标定,该试剂的酸度应为2mol/L左右,使用时将其稀释成1 mol/L;

1.1.3.10 0.4mol/L碳酸钠溶液:称取无水碳酸钠(Na2CO3)4

2.4g,定容至1000mL;(由于有杂质,影响比色,最好抽滤一下!)

1.1.3.11 0.4mol/L三氯乙酸(TCA)溶液:称取三氯乙酸(CCl3COOH)65.4g,定容至1000mL;(由于有杂质,影响比色,最好抽滤一下!)

1.1.3.12 0.2mo1/L pH7.2磷酸缓冲液:称取磷酸二氢钠(NaH2PO4·2H2O)15.6g和磷酸氢二钠(Na2HPO4·12H4O)35.82g,分别溶解后混合,定容至1000mL;(由于有杂质,影响比色,最好抽滤一下!)

1.1.3.13 0.5%酪蛋白溶液(当天配制或放入冰箱内保存,以免细菌繁殖而变质):用分析天平准确称取干酪素1.000g,加入0.1-0.5mol/L氢氧化钠溶液5 mL(配100mL氢氧化钠,易吸水,称量要快,分析天平的最后一位不准没关系,试试0.5mol/L氢氧化钠能不能溶解),在沸水浴中加热溶解后,用

pH7.2磷酸盐缓冲液定容至200mL。

1.2 实验方法

1.2.1 菌株产酶发酵条件研究(培养条件的优化)

采取单因素实验,先确定最高产酶时间、初始pH值和培养温度,再进一步运用正交实验法研究最佳培养条件。

1.2.1.1 培养时间对菌株产酶的影响(菌株产酶曲线的确定):从试管斜面取4环菌体分别接入100mL 淀粉酶种子培养基、蛋白酶种子培养基中,37 ℃180 r /min振荡培养12h(10-14 h)获得种子液,以5%(2.5ml)的接种量分别接入淀粉酶摇瓶、蛋白酶摇瓶发酵培养基各24瓶中,37℃180r/min振荡培养,从36h-51h每隔3h拿出4瓶,测定发酵液酶活力(α-淀粉酶、蛋白酶)。设4个重复(在同样条件下同时培养4瓶)。

1.2.1.2 菌体生长量与菌株产酶关系:测定发酵液酶活力的同时,测定菌体在600 nm处吸光值(淀粉酶需要稀释20-30倍,蛋白酶需要稀释10-20倍)。(未接种的培养基做空白对照。)

1.2.1.3 培养温度对菌株产酶影响按1.2.1.1 方法制备种子液和发酵液,从30℃到45℃每隔5℃作为培养温度180 r /min培养至最佳产酶时间后分别测其酶活力(α- 淀粉酶、蛋白酶)。

1.2.1.4 初始pH对菌株产酶影响按1.2.1.1 方法制备种子液和发酵液,改变发酵培养液pH值(从pH值4到10,每隔1为一个梯度),180 r /min最佳产酶温度培养至最佳产酶时间后分别测其酶活力(α- 淀粉酶、蛋白酶)。

1.2.1.5 正交实验采用三因子三水平的正交试验设计方法研究温度(最佳产酶温度-5℃、最佳产酶温度、最佳产酶温度+5℃,35℃、40℃、45℃)、初始pH值(最佳产酶pH-1、最佳产酶pH、最佳产酶pH+1,5、6、7)、培养时间(最佳产酶时间-3h、最佳产酶时间、最佳产酶时间+3h,24h、36h、48h)三种因子对菌株发酵产酶的影响。

1.2.2 测定方法

淀粉酶活力测定

1.2.2.1 酶液稀释用0.2mol/LpH 6.0的磷酸氢二钠-柠檬酸缓冲液将粗酶液作适当稀释(2-5倍左右,应先进行预备试验,以确定最佳稀释倍数)。

1.2.2.2 淀粉酶活力测定(采用稍加改进的Yoo法:Yoo Y J, Hong J , Hatch R T . Comparison of alpha-amylase activities from different assay methods[J]. Bi otechnology and Bioengineering, 1987, 30: 147-151)

表1 淀粉酶活力测定

试剂管号1(参比) 2 3 4 5 6 7 8(样品,每个摇瓶平行测定3次)

2%淀粉溶液(mL) 0 0.2 0.4 0.6 0.8 1 1.2 2(1000ul移液器吸取入10ml具塞试管) 蒸馏水(mL) 2 1.8 1.6 1.4 1.2 1 0.8 0(1000ul移液器吸取)

缓冲液(mL) 1 1 1 1 1 1 1 1

蒸馏水(mL) 1 1 1 1 1 1 1 1(粗酶液代替蒸馏水)

混匀后40℃水浴保温30min后,立即加入0.5 mo1/L乙酸10mL终止反应,混匀后吸取反应液1mL 稀碘液(mL) 10 10 10 10 10 10 10 10(10ml具塞试管)

混匀,在660nm下测吸光度,以淀粉浓度为横坐标,吸光度为纵坐标,作标准曲线,从标准曲线中查出相应的淀粉浓度,求出被酶消耗的淀粉量。

1.2.2.3 酶活力计算:酶活力单位定义为:在40℃pH6.0 条件下,1h内水解1mg淀粉所需酶量为1个活力单位,以U 表示。即每毫升粗酶液在40℃,pH 6.0的条件下每小时所分解的淀粉毫克数。

蛋白酶活力测定

1.2.5.1 摇瓶培养:同前

1.2.5.2 酶液稀释:用0.2mol/L pH 7.2的磷酸氢二钠-柠檬酸缓冲液将粗酶液作适当稀释(3-4倍左右,应先进行预备试验,以确定最佳稀释倍数)。

1.2.5.3 酪氨酸标准曲线的制作和蛋白酶活力测定

表2 酪氨酸标准曲线的制作和蛋白水解酶活力的测定

试剂管号(参比)1 2 3 4 5 6 7 8(样参)9(样品,每个摇瓶平行测定3次) 酶稀释液(mL) 1 1

0.4mol/L三氯乙酸(mL) 2 0(40℃水浴锅中预热几分钟) 0.5%酪蛋白溶液(mL)(每根试管间隔10s)0 2(40℃水浴锅中预热几分钟)

混匀后,立即置40℃恒温水浴准确保温10min(样参保温30 min)

0.4mol/L三氯乙酸(mL) 0 2(立即加入,终止反应)

0.5%酪蛋白溶液(mL) 2 0

混匀后,置40℃恒温水浴保温10min,倒入5ml离心管中,离心(10000r/m,10min),1mL上清液转

入新的相应编号的试管中

100mg/L酪氨酸(mL) 0 0.1 0.2 0.3 0.4 0.5 0.6

蒸馏水(mL) 1 0.9 0.8 0.7 0.6 0.5 0.4

0.4mol/L碳酸钠(mL) 5 5 5 5 5 5 5 5 5

Folin—酚试剂(mL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

立刻混匀后,置40℃恒温水浴显色20min,在680nm下测吸光度

1.2.5.4 酶活力计算:40℃pH7.2下以酪蛋白为底物,每毫升酶液每分钟水解产生1ug酪氨酸为一个活力单位。U p = (A/10)×5×f 式中:U p表示蛋白酶活力;A表示由测得的吸光度值从酪氨酸标准曲线上查出的相当酪氨酸量(ug);f表示酶液的稀释倍数。由于测定时取酶解滤液1mL,仅为酶促反应总体积的1/5,故应乘以5;由于酶促反应时间为10min,而计算酶活力单位时,是以每分钟催化水解底物生成1ug酪氨酸的酶量定义为1个酶活力单位,故应除以10。酶活力单位ug/min·ml

蛋白酶活力测定注意事项

1)温度与酶的反应速度密切相关,如果温度相差1℃,就可使结果产生明显的偏差,此外酶反应的10min时间也应严格控制。

2)酶的稀释倍数对酶活力也有一定的影响。一般将稀释度控制在酶反应后的A680为0.2-0.4,吸光度偏高或偏低都可能带来测定上的误差。

3)酪蛋白溶液用酸性缓冲液配制时,须先加数滴浓乳酸,使之湿润以加速溶解。

4)Folin—酚试剂只有在碱性条件下才能与酪氨酸发生呈色反应。因此,加入Folin—酚试剂前滤液应先与碳酸钠溶液充分混匀。如果先加Folin—酚试剂,再加碳酸钠溶液,则不显蓝色。

产淀粉酶枯草芽孢杆菌

“生物制药技术实训”课程研究报告 项目一:产淀粉酶枯草芽孢杆菌 一实验原理 枯草芽孢杆菌的多数中都能产生大量的淀粉酶,较易得到分离。由于芽孢具有较强的抗热能力,分离纯化时可采用热处理的方法,高温加热处理,杀死样品中所有不含芽孢的菌类,在培养过程中使芽孢杆菌得到很好的富集。利用该菌产淀粉酶的特性,选择以淀粉为碳源的分离培养基,菌体分泌的淀粉酶会使菌落周围的淀粉水解,滴加碘液即可在菌落周围出现清晰的透明圈。根据透明圈的直径(C)与菌落直径(H)之比(C/H)可初步鉴定酶活力的高低,即比值越大酶活力越高,进而筛选出优良的生产用菌。 二材料 灭过菌的种子培养基无菌生理盐水(杀了菌的生理盐水,盐浓度0.9%)培养基配方:蛋白胨10g,酵母浸膏5g,NaCl10g,水1L,淀粉,1. 8%的琼脂PH7.2-7.4,121℃灭菌20min(各量取其三分之一)。 三操作步骤 1.包平板 2.配生理盐水 3.根据培养基配方配置培养基,并取出45ml用于液体培养基,其余作为固体培养基 4.取1,2,3中配成的平板,生理盐水,大型三角瓶在121℃中灭菌20min

5.称取土壤10g与 90mL无菌水中,振荡20分,使土壤中菌体或孢子均匀分散,取其悬浮液于80℃下保持10min,以杀死非芽孢的菌体。取5ml悬浮液接入到装有45 ml种子培养基的三角瓶内,(于37℃、200 r/min摇床中)培养20 h 6.灭完菌后倒平板,自然冷却凝固后放入恒温培养箱中静致一夜,观察其是否染菌 7.将用于做梯度试验的试管8个,每个加9ml蒸馏水,移液管8个,塞棉花拿去灭菌121℃,20min 8. 取培养后的菌液,用无菌生理盐水适当稀释,取一定量涂布于平板,做梯度试验分别标记为100,10-1,10-2,10-3,10-4,10-5,10-6,10-7,10-8,10-9,10-10。 9.将标记的的试管,移取1ml与培养基中涂布并进行标记,于37℃,培养20h 10.将灭菌好的平板拿出,进行无菌划线,在培养基中观察到10-8,10-9,10-10,有单一菌落,而10-6,10-7并不明显,.对10-8,10-9,10-10的培养基中的菌落加碘液进行观察,发现有透明圈。

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选 实验项目性质:设计性 所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定 计划学时:8学时 一、实验目的 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.掌握产酶微生物筛选的方法。 二、实验原理 α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。 1、采样:即采集含菌的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。除土壤以外,其他各类物体上都有相应的占优势生长的微生物。例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。 2、增殖培养(又称丰富培养) 增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。因此,增殖培养事实上是选择性培养基的一种实际应用。 3、纯种分离 在生产实践中,一般都应用纯种微生物进行生产。通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 4、性能测定 分离得到纯种这只是选种工作的第一步。所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。性能测定的方法分初筛和复筛两种。 初筛一般在培养皿上根据选择性培养基的原理进行。例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。 复筛是在初筛的基础上做比较精细的测定。一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。 三、实验用品 1.器材 (1)小铁铲和无菌纸或袋。

枯草芽孢杆菌产淀粉酶试验要点

枯草芽孢杆菌产α-淀粉酶发酵试验 化学与生命科学学院 摘要:以枯草芽孢杆菌(BacilusSubtilisBF—7658)为实验菌株,通过种子扩大培养,选出生长力旺盛的菌株进行液体摇瓶发酵。通过测定不同发酵时间生产的酶活,来初步估计发酵最佳时期和终点。 关键词:枯草芽孢杆菌,α-淀粉酶,液体摇瓶发酵,酶活 淀粉酶是能够分解淀粉糖苷键的一类酶的总称,包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶。芽孢杆菌主要用来产生α-淀粉酶和异淀粉酶,其中α-淀粉酶又称淀粉1,4-糊精酶,能够切开淀粉链内部的α-1,4-糖苷键,将淀粉水解为麦芽糖、含有6 个葡萄糖单位的寡糖和带有支链的寡糖;而异淀粉酶又称淀粉α-1,6-葡萄糖苷酶、分枝酶,此酶作用于支链淀粉分子分枝点处的α-1,6-糖苷键,将支链淀粉的整个侧链切下变成直链淀粉。通过发酵实验,我们可以以酶活为依据,初步估计发酵的最佳时期和发酵终点。 实验材料和方法 一、实验材料: (一)实验菌株:以枯草芽孢杆菌(BacilusSubtilisBF—7658) (二)培养基: 1、种子培养液 葡萄糖 1% Tryptone(胰蛋白胨):1%, Yeast Extract(酵母提取物):0.5%, NaCl(氯化钠):1% 调pH7.2 若配置固体培养基,则再加入1.5% 琼脂。 2、产淀粉酶发酵培养液 玉米粉 2 .0 % 黄豆饼粉1 .5% CaCl 2 0 .02 % MgSO4 0 .02% NaCl 0 .25% K2HPO4 0 .2% 柠檬酸钠0 .2% 硫酸铵0 .075% Na2HPO4 0 .2 % 调节pH 值7 .0

微生物综合试验——产淀粉酶细菌菌株的筛选和培育

产淀粉酶细菌菌株的筛选和选育 邢大鹏 (合肥工业大学生物与食品工程学院2008级食品科学与工程专业08-1班) 摘要:从合肥工业大学校园内的土壤中筛选到一株产淀粉酶的细菌菌株。形态及生理生化特征测定结果表明,菌株与芽孢杆菌属(Bacillaceae)中的枯草芽孢杆菌(BacillussubtilisCohn)种的特征基本一致。然后利用划线分离法和富集培养制备一定量的枯草芽孢杆菌,最后利用DNS法测定其产酶活力。 关键词:淀粉酶,产酶,细菌,枯草芽孢杆菌 Amylase production screening and selection of bacteria strains Xing Dapeng Abstract: From the Hefei University of Technology campus in the A strain of soil amylase producing bacteria strains. Morphological, physiological and biochemical characteristics of test showed that, strains and Bacillus (Bacillaceae) in Bacillus subtilis (BacillussubtilisCohn) basically the same kinds of characteristics. Then use the train crossed separation and enrichment of preparation of certain bacillus subtilis, finally, using the DNS method for determining the enzyme production vigor. Key words: amylase, enzyme production, bacteria,Bacillus,stubtilis. 芽孢杆菌是人类发现最早的细菌之一。早在1835年,Ehrenberg所描述的“Vibriosubtilis”即是现在大家熟悉的“枯草芽孢杆菌”,它是由Cohn于1872年正式命名的,现作为芽孢杆菌属(Bacillaceae)的模式菌株[1]。从生物学特性来讲,枯草芽孢杆菌具有典型的芽孢杆菌特征,其细胞呈直杆状,大小(0.8-1.2)μm×(1.5-4.0)μm,单个,革兰氏染色阳性,着色均匀,可产荚膜,运动(周生鞭毛);芽孢中生或近中生,小于或等于细胞宽,呈椭圆至圆柱状;菌落粗糙,不透明,扩张,污白色或微带黄色;能液化明胶,胨化牛奶,还原硝酸盐,水解淀粉,为典型好氧菌[2]。 1997年,Kunst F.等人首先完成了枯草芽孢杆菌的完整基因组序列测定,并将结果发表在《Nature》杂志上[3]。

蛋白酶产生菌的筛选复习课程

蛋白酶产生菌的筛选

蛋白酶产生菌的筛选 组别:第*组 班级:生工**班 组员:*** 指导老师:*** 一、实验目的 学习从自然界中分离蛋白酶产生菌

二、实验内容 蛋白酶产生菌的分离 三、实验原理 许多细菌和霉菌产生蛋白酶,细菌中的芽孢杆菌是最常见的蛋白酶产生菌。本实验将土壤样品悬液加热处理,杀死非芽孢细菌及其他微生物后进行划线分离得到芽孢杆菌,将其接种到奶粉培养平板并进行培养,根据奶粉平板的水解圈做初筛。将初筛的蛋白酶产生菌接入产酶培养基振荡培养,测定蛋白酶的活力,最终得到产蛋白酶的芽孢杆菌。也可直接将细菌接种到奶粉培养平板进行培养,分离筛选其他蛋白酶产生菌。 四、实验材料和用具 1.材料:土壤样品 2.试剂:牛肉膏蛋白胨培养及平板、奶粉培养基平板、 45mL无菌水(带玻璃珠)、芽孢染色液、 3.仪器及用具:紫外分光光度计、显微镜、恒温水浴锅、 摇床、酒精灯、接种针、游标卡尺、无菌 移液管、无菌试管、量筒、容量瓶、漏 斗、试剂瓶、漏斗、载玻片、滤纸、擦镜 纸。

五、操作步骤 (一)配制所需培养基 按照以下配方配制所需的培养基 牛肉膏蛋白胨培养基:牛肉膏 0.5g,蛋白胨 1g,NaCl 0.5g,琼脂 1.5~2.0g,水 100ml,pH 7.2 配制200mL 奶粉培养基:牛肉膏 0.5g,蛋白胨 1g,NaCl 0.5g, 琼脂 2.0g,水 100ml,pH 7.0~7.2 脱脂奶粉 3g,配制200mL (二)分离 1.采集土壤样品,用无菌水植被1:10土壤悬液。 2.取1:10土壤悬液5 mL,注入已灭过菌的试管中,将此试 管放入75~80℃水浴中热处理10min以杀死非芽孢细 菌。 3.取加热处理过的土壤悬液100~200μL,涂布接种到牛肉 膏蛋白胨培养平板,后将平板倒置,于30~32℃下培养 24~48h. 4.对长出的单菌落进行编号,选择表面干燥、粗糙、不透 明的菌落,挑取少许菌苔涂片,做芽孢染色,判断是否 为芽孢杆菌。 (三)筛选

实验一 淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 一、实验要求: 1、写出完整的分离纯化淀粉酶产生菌的实验步骤; 2、写出分离培养基及其相关试剂所需的量、仪器、器皿所需的量; 3、掌握从土壤分离酵母菌的方法和技术,从样品中分离出所需菌株; 4、学习并掌握平板倾注法和斜面接种技术,了解培养淀粉酶产生菌的培养 条件和培养时间。 二、实验原理:用梯度稀释法来分离淀粉酶产生菌 三、实验材料: 1.培养皿、移液管、刮铲、显微镜等, 2.可选取厨房土壤、面粉加工厂和菜园土壤 ; 3.培养基与试剂 :牛肉膏、蛋白胨、NaCl 、可溶性淀粉、蒸馏水、琼脂粉。 四、实验步骤: 1、选定采土点后,铲去表土层2-3cm,取3-10cm深层土壤5g,装入灭过 菌的牛皮纸袋内,封好袋口,并记录取样地点、环境及日期。土样采集后应及时分离,凡不能立即分离的样品,应保存在低温、干燥条件下,尽量减少其中菌相的变化。 2、培养基的配置,(1) 分离培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀 粉 即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中再加入15g琼脂粉 pH调至7.2 121℃灭菌15min 待冷却至50℃左右时 于超净工作台倒平板。注: 先将可溶性淀粉加少量蒸馏水调成糊状 再加到溶化好的培养基中 调匀; (2) 分离培养基液体培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀粉,即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中 pH调至7.2,121℃灭菌15min。 3、取所采的土样5g加入到三角瓶中,加入无菌水45mL,30℃摇床振荡30min制成土 壤悬液 ,此时的稀释度为10-1。另取7支试管 分别记作10-2、10-3、10-4、10-5、10-6、10-7、10-8共8个梯度 每支试管内加入9mL无菌水。用无菌移液管从三角瓶中吸取1mL土壤悬液加入到10-2试管中混匀, 再从此试管中吸取1mL加入到10-2试管中, 依此类推直至10-7试管。分别从10-6、10-7、10-8三个稀释度的试管中吸取100uL悬液, 均匀涂布于分离培养基平板上, 于27℃培养1-2天,等长出菌落后, 将检测试剂卢戈氏碘液加入到平板中, 菌落周围形成水解圈的菌株即是产淀粉酶的菌株, 因淀粉遇碘变蓝色 ,如菌落周围有无色圈说明该菌能分解淀粉。将水解圈直径与菌落直径之比较大菌株,即产酶能力较强的菌株的进行编号。 4、纯化; 将保存的菌株用接种环沾取少量培养物至平板上, 并进行2-3次划线分离, 挑取单菌落至平板上, 培养后观察菌苔生长情况并镜检验证为纯培养。将纯化后产酶能力较强菌株保存至斜面培养基中培养.

枯草杆菌生产_淀粉酶的研究

10 科技创新导报 Science and Technology Innovation Herald 2010 NO.29 Science and Technology Innovation Herald 研 究 报 告 科技创新导报α-淀粉酶是在淀粉加工、食品工业、医药工业、发酵工业及酿造、制糖和纺织工业上应用广泛的酶种,也是目前国内外应用最广、产量最大的酶种之一。α-淀粉酶一般可由微生物发酵产生,也可由植物和动物提取。 目前,工业生产上都以微生物发酵法为主进行大规模生产α-淀粉酶。我国从1965年开始应用枯草芽孢杆菌(Bcaillussubtilis)BF-7658生产α-淀粉酶,当时仅无锡酶制厂独家生产,年产量为10.22吨。现在国内生产酶制剂的厂家己发展到上千个,其中约有40%~50%的工厂生产α-淀粉酶。总产量上万吨。 近年来,国外生产耐热α-淀粉酶发展较快,己从嗜热真菌、高温放线菌、特别是从嗜热细菌(嗜热脂肪芽孢杆菌B.stearothermophilust和地衣芽孢杆菌B.licheniformus等)中分离得到了耐高温的α-淀粉酶菌种。但就国内而言,虽己开展了耐高温α-淀粉酶的研究工作,目前仍以枯草杆菌菌株生产α-淀粉酶为主。 本文就枯草杆菌在淀粉培养基上产 α-淀粉酶做一下研究,其对在以玉米(淀粉含量为70%~75%)或大米(淀粉含量为80%~85%)主要原料的发酵酿酒过程,具有实际的指导意义。 1 材料和方法 1.1实验材料 1.1.1菌种 枯草芽孢杆菌(Bacillussubtilis)为实验室保藏菌种。 1.1.2种子培养基 马铃薯固体(及液体)培养基(简称PDA,马铃薯200g、蔗糖20g、琼脂15g、水1000ml、PH自然,马铃薯去皮,切成块煮沸30min,然后用纱布过滤,再加糖及琼脂,溶化后补足水至1000ml。121℃灭菌30min) 1.1.3发酵培养基 淀粉液体培养基(可溶性淀粉、蒸馏水、pH自然。121℃灭菌30min) 1.2实验方法 1.2.1菌种激活 枯草芽孢杆菌在马铃薯固体培养基(简称PDA)上37℃培养12h后使用 1.2.2液体种子的制备 100mL三角瓶装50mL马铃薯液体培养基(起始PH为自然PH),灭菌后接激活菌种悬液1.5mL,培养36h。 1.2.3发酵培养 在各淀粉液态培养基中加1.5mL液体种子,用电热恒温振荡培养箱培养枯草芽孢杆菌(Bacillus subtilis)。 1.2.4分析方法 酶活力测定,根据国家标准局发布的方法进行①。即1mL酶液于60℃,PH4.8条件下,1小时液化1g可溶性淀粉为1个活力单位。[①国家标准局颁布,GB8275-87,1988-02-01实施] 2 实验结果与讨论 (1)培养温度对菌体生长和产酶的影响在不同温度下用电热恒温振荡培养箱(天津产SH6000A型)在23℃至44℃范围内培养枯草芽孢杆菌(Bacillus subtilis),36h后测定α-淀粉酶活力。结果示于表1。菌体生长和产酶的最适温度均在37℃。温度高于44℃菌体生长和酶活力迅速下降。 (2)培养基对菌体生长和产酶的影响,同在最适温度37℃下,相同的接种量、相同的种龄的枯草杆菌,比较不同比例的淀粉液体培养基产α-淀粉酶,结果见表2测定产α-淀粉酶的最适培养基为:淀粉∶水=75∶100。 (3)培养时间对产酶的影响,在最适温度37℃下,相同的接种量,淀粉与水的比例为:75∶100时1(最适产α-淀粉酶的淀粉液体培养基),测定枯草杆菌产α-淀粉酶最适培养时间为36h。 3 结论 α-淀粉酶是产量在,用途广的酶制剂 品种之一,我国目前枯草杆菌α-淀粉酶是主要品种之一,在行业应用具有重要价值。本实验采用枯草杆菌在淀粉液态培养基上产α-淀粉酶,其研究结果对以玉米或大米为主要原料的发酵造酒具有指导意义。1)在23℃至44℃范围内,振荡培养,起始PH为自然PH,产α-淀粉酶最适培养条件:培养温度37℃。2)在温度37℃下,用淀粉液体培养基发酵,当淀粉与水的比例为75∶100时,产α-淀粉酶酶活力最高。3)在最适温度37℃,淀粉与水的比例为75∶100(即产酶最高的淀粉液体培养基)时,最佳培养时间为12h,此时α-淀粉酶活力最高。 参考文献 [1]沈萍,范秀容,李广武.微生物学实验. 北京:高等教育出版社,2000.[2]臧明玺,姜延程,李廷生.发酵助剂提高 枯草杆菌α-淀粉酶的活性研究.郑州粮食学院学报,1997. [3]钟穗生等.枯草杆菌α-淀粉酶的活性 研究.太原工业大学学报,1997. 枯草杆菌生产α-淀粉酶的研究 哈申吐力古尔 (内蒙古通辽职业学院 通辽 028045) 摘 要:以枯草杆菌(Bacillus subtilis BF7658)为实验菌株,以淀粉为主要原料,采用液态培养基摇瓶发酵,生产α-淀粉酶。结果表明:①在23℃至44℃内,培养基起始PH为自然PH,产酶最适培养温度为:37℃②枯草杆菌在淀粉液态培养基中37℃,振荡培养,其产酶最适淀粉水组成为:淀粉∶水=75∶100;③在最适温度37℃下,淀粉∶水=75∶100时,最适培养时间为36h。关键词:α-淀粉酶 枯草杆菌 淀粉液体培养基中图分类号:R313文献标识 码:A 文章编号:1674-098X(2010)10(b)-0010-01 表1 不同温度下所测糖度值 表2 不同培养基对枯草杆菌产α-淀粉酶的影响

蛋白酶产生菌的筛选

蛋白酶产生菌的筛选 组别:第*组 班级:生工**班 组员:*** 指导老师:*** 一、实验目的 学习从自然界中分离蛋白酶产生菌

二、实验内容 蛋白酶产生菌的分离 三、实验原理 许多细菌和霉菌产生蛋白酶,细菌中的芽孢杆菌是最常见的蛋白酶产生菌。本实验将土壤样品悬液加热处理,杀死非芽孢细菌及其他微生物后进行划线分离得到芽孢杆菌,将其接种到奶粉培养平板并进行培养,根据奶粉平板的水解圈做初筛。将初筛的蛋白酶产生菌接入产酶培养基振荡培养,测定蛋白酶的活力,最终得到产蛋白酶的芽孢杆菌。也可直接将细菌接种到奶粉培养平板进行培养,分离筛选其他蛋白酶产生菌。 四、实验材料和用具 1.材料:土壤样品 2.试剂:牛肉膏蛋白胨培养及平板、奶粉培养基平板、45mL 无菌水(带玻璃珠)、芽孢染色液、 3.仪器及用具:紫外分光光度计、显微镜、恒温水浴锅、摇 床、酒精灯、接种针、游标卡尺、无菌移液 管、无菌试管、量筒、容量瓶、漏斗、试剂 瓶、漏斗、载玻片、滤纸、擦镜纸。 五、操作步骤

(一)配制所需培养基 按照以下配方配制所需的培养基 牛肉膏蛋白胨培养基:牛肉膏 0.5g,蛋白胨 1g,NaCl 0.5g, 琼脂 1.5~2.0g,水 100ml,pH 7.2 配制200mL 奶粉培养基:牛肉膏 0.5g,蛋白胨 1g,NaCl 0.5g, 琼脂 2.0g,水 100ml,pH 7.0~7.2 脱脂奶粉 3g,配制200mL (二)分离 1.采集土壤样品,用无菌水植被1:10土壤悬液。 2.取1:10土壤悬液5 mL,注入已灭过菌的试管中,将此试 管放入75~80℃水浴中热处理10min以杀死非芽孢细菌。 3.取加热处理过的土壤悬液100~200μL,涂布接种到牛肉 膏蛋白胨培养平板,后将平板倒置,于30~32℃下培养24~48h. 4.对长出的单菌落进行编号,选择表面干燥、粗糙、不透明 的菌落,挑取少许菌苔涂片,做芽孢染色,判断是否为芽孢杆菌。 (三)筛选 1、从判定为芽孢杆菌的菌落处,分别挑取少许菌苔,先接种奶粉斜面培养基,再转接奶粉培养基平板上,30~32℃下培养24~48h。

淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 及酶活力测定 指导老师:辛树权 生命科学学院08级生物技术(三)班豆豆 同组人:xx xxx 摘要:自然界是微生物的大本营,实验室微生物几乎都是从自然界中选育出来的。我们从学校的花坛中采集一些土壤样本,拿到实验室中,进行淀粉产生菌的筛选。利用土壤制成菌液,将其涂抹在牛肉膏蛋白胨培养基上进行纯化,再用淀粉培养基培养,最后通过淀粉透明圈的大小来判断淀粉产生菌产淀粉的能力。再使用分光光度计精确测量淀粉酶的酶活力。关键词:淀粉酶;分离;纯化;透明圈;酶活力;摇瓶;分光光度计 一、实验目的: 1、学习从土壤中分离微生物的方法; 2、学习淀粉酶产生菌的筛选方法 3、了解分光光度计法测定酶活力的原理及方法。 二、实验原理: 土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。故在淀粉培养基上长出的菌便是淀粉产生菌。在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。

淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下降,因此又称为液化型淀粉酶。淀粉遇碘呈蓝色。这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。 三、实验器材及试剂: 1.、材料:长春师范学院家属楼前小菜园 2培养基: (1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板) (2)筛选培养基:淀粉培养基(可溶性淀粉 20g, 硝酸钾 1g, 磷酸氢二钾 0.5g, 氯化钠 0.5g, 硫酸镁 0.5g, 硫酸亚铁 0.01g, 琼脂 20g, 水 1000毫升,调整pH值到7.2~7.4。) (3)摇瓶培养:淀粉培养液。 3、试剂: 碘液、2%可溶性淀粉、pH6.0磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液、 0.5mol/L乙酸、0.85%生理盐水。 4、器材: 培养皿、锥形瓶、高压灭菌锅、超净工作台、恒温水浴锅、分光光度计。

产淀粉酶芽孢杆菌分离与酶活力测定

产淀粉酶芽孢杆菌的分离、纯化并发酵测定淀粉酶活力杨敏仪,罗桂莲,关婷婷,黄真梅,肖维兴,梁妃法 注明:蓝色字体是已修改的 一、实验目的 1、掌握分离鉴定产淀粉酶微生物的方法; 2、掌握测定酶活力的方法; 3、培养自行设计、实施实验的能力。 二、实验原理 1、土壤中含有各种微生物,其中产淀粉酶的枯草芽孢杆菌含量在不同土壤中含量也不同,因此实验前进行预埋工作,能使土壤中产淀粉酶的细菌含量增加。待实验前取样即可。 2、在只用淀粉充当碳源的选择培养基中,只有能产生淀粉酶利用淀粉的菌体能成为优势菌种。在淀粉选择培养基中,产淀粉酶的菌种可以得到富集及分离。 3、菌体可经革兰氏染色后在显微镜下被判断出是否为枯草芽孢杆菌。 4、在含有淀粉的鉴别培养基上的平板上,具有产淀粉酶能力的枯草芽孢杆菌,水解淀粉生成小分子糊精和葡萄糖,在淀粉平板上菌落周围出现水解圈,但肉眼不易分辨,滴加碘液,未水解的淀粉呈蓝色,水解圈无色。 三、实验材料 1、土壤样品 湛师弘志苑后面的花圃,实验前一周在距土壤表层5—8厘米左右处填埋馒头,实验前一天用塑料袋在预埋处取样。 2、培养基 淀粉培养基:可溶性淀粉1%,蛋白胨1%,葡萄糖0.5%,氯化钠0.5%,牛肉膏0.5%,琼脂粉2.0%,pH7,配制300ml 种子培养基:牛肉膏0.5%,蛋白胨1%,氯化钠0.5%,可溶性淀粉0.5%,琼脂粉2.0%,pH7,配制300ml

发酵培养基:玉米粉 2% ,黄豆饼粉1.5 %, CaCl20.02% , MgSO40.02 %, NaCl 0.25 %, K2HPO4 0.2 %,柠檬酸钠0.5 % ,硫酸 氨0.075(溶解后),Na2HPO4 0.2% ,校正pH7.0,发酵培养 条件为:温度37℃,装液100ml/250ml,配制200 ml 3、试剂 草酸铵结晶紫染液,95%乙醇,番红水溶液、卢戈氏碘液 4、玻璃器皿 锥形瓶(250mL)3个,培养皿40个,涂布棒1根,移液管(1mL) 10根,试管15根,烧杯(250mL)5个,盖玻片、载玻片若干,5、其他仪器及设备: 天平,pH试纸,棉花,牛皮纸,玻璃珠,超净工作台,生化培 养箱,电热干燥箱,高压蒸汽灭菌锅,水浴锅,显微镜,接种 环等 四、实验步骤 1、样本采集 ①在预埋处采取土样用塑料袋装好,不要损坏土壤的内部结构。 ②取12.5g土壤加入250ml烧杯中,再加入112ml去离子水制成土壤混悬液,加入一小层玻璃珠。在锥形瓶中加入2g的可溶性淀粉,蛋白胨0.625g,NaCL0.625g,调节PH值为7.0—7.2。在37℃摇床培养箱中培养两天,使菌体富集且产生大量芽孢。 在85℃-90℃水浴锅中加热10分钟,杀灭菌体,使芽孢得到富集。 3、初筛 将富集得到的菌体液静置5分钟,然后进行浓度梯度稀释到10-6,分别在10-1 、10-2、10-3、10-4、10-5、10-6浓度下各取1mL均匀涂布在淀粉培养基上,培养皿放入37℃培养箱中培养24小时。取出培养好的平皿在长出的菌落上滴加碘液,菌落周围如有无色透明圈出现,说明淀粉被水解,即该菌株能产生淀粉酶。 4、划线分离 从初筛所得的菌落中选择菌落周围透明圈和菌落直径之比值较大的菌落,进行划线分离。将于种子培养基上划线后,再将培养皿放入37℃培养箱中培养24小时。 5、镜检 挑取一个较好的单个菌落,通过革兰氏染色制片观察,判别所选菌

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

“产淀粉酶菌株的筛选”优秀设计

产淀粉酶(α-淀粉酶)细菌菌株筛选 一、实验目的: 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.学习淀粉酶活性的测定方法。 二、实验原理: 1.α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其 是在含有淀粉类物质的土壤等样品中。 2.从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、富集培养、初 步筛选、分离纯化和性能测定。 a)采样:即采集含菌种的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多, 然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土 壤可说是微生物的大本营。例如厨房土壤、面粉加工厂和菜园土壤中淀粉的分 解菌较多。 b)富集培养: 富集培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于 待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从 而便于我们从其中分离到这类微生物。 c)初步筛选: i.(选择培养基)初筛使用选择培养基对菌种进行培养,通过培养基的特殊 成分,来筛选出目的菌种,从而进行培养。 ii.(鉴别培养基)初筛利用鉴别培养基,通过添加一些特殊的试剂或成分来鉴别出目的菌种,从而筛选出来并对其进行培养。 d)分离纯化: 通过上述的筛选只能说我们要分离的目的菌种已经存在,但还要把夹杂在其中 的杂菌除去,从而得到纯种的菌落。纯种分离的方法很多,主要有:平板划线 分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 e)性能测定: 分离纯化得到的菌种之后,所分得的菌种是否具有实验所要求的性能,还必须 要进行性能测定后才能决定取舍。 三、实验材料: 1.培养基配制: a)培养基按以下比例配制后,加蒸馏水调至100%; b)富集培养基:可溶性淀粉1%、蛋白胨1%、葡萄糖0.5%、NaCl 0.5%、牛肉膏 0.5%、pH7.0; c)分离培养基:玉米粉2%、黄豆饼粉1.5%、琼脂粉0.8%、CaCl 0.02%、MgSO4 0.02%、 NaCl 0.25%、K2HPO40.2%、柠檬酸钠0.2%、硫酸铵0.075%(溶解后加入)、 Na2HPO40.2%、pH7.0。 2.主要试剂和溶液的配制: a)2%淀粉溶液:准确称取淀粉2g溶于100ml 0.1mol/L pH5.6的柠檬酸缓冲液中。 b)0.1mol/L的柠檬酸缓冲液、pH=1.0的盐酸

产淀粉酶菌株筛选综述

微生物与转基因技术 摘要微生物目前已是生物技术领域主要的模式生物之一,微生物可以为转基因技术提供工具酶、基因载体;微生物本身也常作为目的基因的受体细胞。通过转基因的方式,可以将人类所需要的基因转移到特定物种上,从而表达出人类想要的性状。本文综述了转基因微生物在食品、农业、医药以及环境保护、传统工业改造等领域研究与应用的国内外现状。在食品生产领域,转基目微生物主要用于食品用群制剂的生产,如凝乳酶.淀粉酶,蛋白酶等,转基因酵母也应用于啤酒的生产.在农业生产领域,转基因微生物主要用于微生物农药、微生物肥料和饲料酶制剂的生产.在医药生产领域,转基因微生物主要用于兽用和人用疫苗的生产,以及利用转基因镟生物生产某些药物。此外,转基因微生物在环境保护,传统工业的改造、印染业,以及新能薄开发等方面也有应用,本文也同样大致介绍了一些目前国内外关于微生物转基因方面的前沿研究。 关键词微生物转基因,DNA重组技术,目的基因,基因载体 1引言 转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段[1]的来源可以是提取 特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的基因片段。基因片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。1980年代以来,现代生物技术迅速发展,在医药、农业、食品、化工、环境和能源等领域发挥了巨大的经济效益和社会效益。自1982年美国FDA批准了世界上第一例基因工程药物重组人胰岛素的正式生产以来,以基因工程药物为主的各种基因工程产品陆续实现商品化生产。其中,转基因微生物是基因工程产品的重要组成部分,在农业生产、食品加工、医药生产以及环境保护等领域得到了广泛的应用。 2微生物与转基因技术 1.微生物与转基因工具酶 转基因技术中,需要一些基本的工具酶,如对供体生物的DNA进行切割以获得目的基因的限制性核酸内切酶、DNA聚合酶类、DNA连接酶、核酸外切酶、反转录酶等。 DNA聚合酶类包括DNA聚合酶Ⅰ、KlenowDNA聚合酶、T4DNA聚合酶、T7DNA聚合酶、耐热DNA聚合酶等。耐热DNA聚合酶是一类在高温下具有聚合活性的DNA聚合的,来自于嗜高温的细菌,方要应用于PCR反应中,具体种类有产自嗜热水生菌的TaqDNA聚合酶、VentDNA聚合酶、PwoDNA聚合酶、TthDNA聚合酶和PfuDNA聚合酶,其中Taq DNA聚合酶,使DNA的体外复制变得异常简便和常规化,大大加快了生物工程、基因组等分子生物学研究的进程,年销售利润达到上亿美元。 依赖于DNA的RNA聚合酶包括SP6噬菌体RNA聚合酶、T4噬菌体RNA聚合酶或T7噬菌体RNA聚合酶,这类酶无需引物,但识别DNA上特异性位点(启动列),合成RNA。 核酸酶S1,来源于米曲霉,具有3’->5’外切核酸酶活性,能特异性降解单链DNA或RNA 的核酸酶,基因工程中用于黏性末端的平切。 核酸酶BAL31,来源于交替单胞菌BAL31,对单链DNA和RNA具有类似核酸酶S1的催化活性,能同时从3’-端和5’-端降解双链DNA并使其缩短大约25%长度,催化反应需要Ca2+。基因工程中用于缩短DNA和构建嵌套缺失体也应用于限制酶图谱制作等。 2.微生物与转基因载体

土壤淀粉酶产生菌的分离纯化及相关性质测定

土壤淀粉酶产生菌的分离纯化及相关性质测定 摘要:为了了解土壤中微生物的种类和特征并从中分离出淀粉酶产生菌,对其进行纯化和培养,并测定其产生的淀粉酶的活性以及对其进行生理生化试验,了解其代谢特征,需要进行一系列的实验,并在此过程中掌握分离纯化微生物、微生物液体培养法、透明圈法测定淀粉酶活力以及生理生化试验的操作方法和原理。主要实验过程如下:从土壤中筛选淀粉酶产生菌后进行复筛,接着进行种子培养,所得发酵液用于淀粉酶活力的测定以及生理生化反应。 关键词:土壤淀粉酶产生菌分离纯化发酵培养透明圈法生理生化试验 正文: 1、土壤淀粉酶产生菌的分离与纯化 1.1 实验原理 在自然条件下,微生物常常在各种生态系统中群居杂聚。为了研究某种微生物的特性,或者大量培养和利用某一种微生物,必须事先从有关的生态环境中分离出所需的菌株,获得纯培养。获得纯培养的方法称为微生物的纯种分离法,也即是从含有多种杂居在一起的微生物材料中,通过稀释分离、划线分离、单孢子分离等方法,使它们分离成为单个个体并在固定培养基的固定地方繁殖成为单个菌落,从单个菌落中挑选所需纯种。不同微生物可用不同培养基和不同培养条件进行单菌分离获得纯种,纯种再经繁殖培养后,可用于进一步研究形态、生理等欲从含有多种微生物的样品中直接辨认出,并且取得某种所需微生物的个体进行纯培养,那是困难的。由于微生物可以形成菌落,而每个单一菌落常常是由一种个体繁殖而成。不同微生物的菌落是可以识别和加以鉴定的。因此将样品中不同微生物个体在特定的培养基上培养出不同的单一菌落,再从选定的某一所需菌落中取样,移植到新的培养基中去,就可以达到分离纯种的目的。这就是纯种分离法的原理。 在微生物的分离和纯种培养过程中,必须使用无菌操作技术。所谓无菌操作,就是在分离、接种、移植等各个操作环节中,必须保证在操作过程中杜绝外界环境中的杂菌进入培养的容器。 淀粉是有葡萄糖通过α-1,4糖苷键构成的直链淀粉和α-1,6位有分支的直链淀粉组成的。按照水解方式的不同,主要的淀粉酶可以分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶4大类。产淀粉酶的微生物有细菌、霉菌和酵母等。利用淀粉遇碘变为蓝色的特性,将分离的微生物接种在含有淀粉的固体培养基表面进行培养,利用滴加碘液后菌落周围出现透明圈,未水解的淀粉呈蓝色,

蛋白酶产生菌的分离汇总讲解

蛋白酶产生菌的分离、活化选育、发酵及酶活力的测定 许多细菌和霉菌产生蛋白酶,细菌中的芽孢杆菌是常见的蛋白酶产生菌。本实验将土壤样品悬液加热处理,杀死非芽孢细菌及其它微生物后进行划线分离得到芽孢杆菌,将其接种到酪蛋白平板进行培养,根据酪蛋白平板的水解圈做初筛。也可直接将细菌或霉菌接种到酪蛋白平板进行培养,分离筛选其它蛋白酶产生菌。本实验主要包括:蛋白酶产生菌的分离纯化、产酶微生物菌种的选育、产酶微生物的发酵与酶活力的测定、蛋白酶产生菌的生长及生长曲线、培养基优化。 通过本实验项目,使学生学会从自然界中分离蛋白酶产生菌的方法,菌种的纯化技术、高产菌的选育技术;了解蛋白酶产生菌的生长情况,学会绘制其生长曲线;学会培养基优化的方法;了解蛋白酶的性质及蛋白酶的测定原理;掌握蛋白酶的发酵及酶活力测定方法。 1 实验材料 1.1 实验样品 校园内土壤样品 1.2实验仪器与材料 牛肉膏蛋白胨培养基平板、酪蛋白平板、无菌水(带玻璃珠)、芽孢染色液番红;显微镜、恒温水浴锅、酒精灯、接种针、游标卡尺、无菌移液管、无菌试管、血球计数板、试管、三角烧瓶、烧杯、量筒、,玻棒、电子天平、牛角匙、高压蒸汽灭菌锅、pH试纸( pH 5.5—9.0)、棉花、牛皮纸、记号笔、麻绳、纱布、培养皿、胶头滴管、分光光度计(应符合GB9721的规定)等。 2实验方法与步骤 2.1 培养基的配制方法 1.称量 按培养基配方比例依次准确地称药品放入烧杯中。 2.溶化 在上述烧杯中可先加入少于所需要的水量,用玻棒搅匀,然后,在石棉网上加热使其溶解。待药品完全溶解后,补充水分到所需的总体积。 3.调pH 4.分装 按实验要求,可将配制的培养基分装入试管内或三角烧瓶内。 5.包扎 塞好棉花的试管和锥形瓶应盖上厚纸用绳捆扎,用记号笔注明培养基名称、组别、日期。

α淀粉酶产生菌的研究进展综述

α-淀粉酶产生菌的研究进展综述 1309030202 刘铭迪 【摘要】:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本文对α-淀粉酶产生菌的研究进展进行了相关综述。 【关键词】:α淀粉酶产生菌;耐受;性质;应用 【正文】:α一淀粉酶(α一1,4一D一葡萄糖一葡萄糖苷水解酶)普遍分布在动物、植物和微生物中,是一种重要的淀粉水解酶。它以随机作用方式切断淀粉、糖原、寡聚或多聚糖分子内的α一1,4葡萄糖苷键,产生麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α一淀粉酶。目前,α一淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α一淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。 1、α一淀粉酶的性质 不同来源的α一淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重要。目前关于不同来源仅一淀粉酶性质的研究已经很多,但将它们进行完整归纳的比较少,本文将其性质进行总结,为以后α一淀粉酶的应用提高相关依据。 1.1 底物特异性 α一淀粉酶和其它酶类一样,具有反应底物特异性,不同来源的淀粉酶反应底物也各不相同,通常α一淀粉酶显示出对淀粉及其衍生物有最高的特异性,这些淀粉及衍生物包括支链淀粉、直链淀粉、环糊精、糖原质和麦芽三糖等。 1.2 最适pH和最适温度 反应温度和pH对酶活力影响较大,不同来源的α一淀粉酶有各自的最适作用pH和最适作用温度,通常在最适作用pH和最适作用温度条件下酶相对比较稳定,在此条件下进行反应能最大程度地发挥酶活力,提高酶反应效率。因此,在工业应用中应了解不同的酶最适pH和最适温度,确定反应的最佳条件,最大限度地提高酶的使用效率是很重要的。 通常情况下α一淀粉酶的最适作用pH一般在2到12之间变化。真菌和细菌类α一淀粉酶的最适pH在酸性和中性范围内,如芽孢杆菌仅一淀粉酶的最适pH为3,碱性α一淀粉酶的最适pH在9~12。另外,温度和钙离子对一些α一淀粉酶的最适pH有一定的影响,会改变其最适作用范围。不同微生物来源的α一淀粉酶的最适作用温度存在着较大差异,其中最适作用温度最低的只有25c~30℃,而最高的能达到100c~130c。另外,钙离子和钠离子对一些酶的最适作用温度也有一定的影响。 1. 3 金属离子对酶稳定性的影响 α一淀粉酶是金属酶,很多金属离子,特别是重金属离子对其有抑制作用;另外,巯基,N一溴琥珀酸亚胺,p一羟基汞苯甲酸,碘乙酸,BSA,EDTA和EGTA等对α一淀粉酶也有抑制作用。 2、α-淀粉酶的生产

相关主题
文本预览
相关文档 最新文档