当前位置:文档之家› 天然气藏形成机理

天然气藏形成机理

第四节天然气藏形成机理

一、天然气藏形成机理

?天然气成藏过程的特殊性?凝析气藏的形成与分布?深盆气藏形成机理

?天然气水合物

?煤层气

一、天然气成藏过程的特殊性

1、天然气在地层水中的溶解及水溶气析出成藏水溶气析出的地质条件

(1)地层抬升

(2)含气地层水上升

(3)地层水矿化度增高

一、天然气成藏过程的特殊性

2、天然气通过盖层扩散

扩散系数

3、天然气藏形成与保存的动态过程

较大规模的油气藏形成需要4个条件:(1)充沛的气源

(2)生气高峰出现的地质年代新

(3)良好的盖层条件

(4)生气高峰期比较稳定的大地构造环境

二、凝析气藏的形成与分布

1、凝析气藏的概念

液态的油在地下高温高压条件下反而蒸发为气体,而当压力降低以后又凝结为液态石油。气藏的形成与原油中气油比高,富含轻烃组分

2、凝析气藏的相态特征(1)临界温度与临界压力

烃类纯物质的相态:温度一定,随压力增加,体积缩小,达露点A后,压力不变而体积继续缩小,直到泡点B后,压力增大体积变化甚微,露点A为开始液化的点,泡点B为完全液化的点,A-B为气液两相共存区段,其对应的压力为饱和蒸汽压,大小取决与温度,温度升高,A-B线段逐渐缩小,直到临界点K。

临界点K所对应的温度和压力称为临界温度和临界压力。对于纯

物质,临界温度:高于该温度时,

无论压力多大,气体仍不可液化。

临界压力:高于此压力时,无论温

度多少,液体和气体不会共存。

丙烷两相系统等温的压力—体积关系

多组分烃类物系相态图多组分烃类相态:多组分烃

类物系相态图与烃类纯物质的相

态图不同,其露点线和泡点线交

绘于临界点K ,所围区域为气液

两相共存区,临界凝析压力点K 2

和临界凝析温度点K 1之间为逆凝

析区,在该区内,低压条件下

(B 3)为气态,压力增大到

(B 2)后,压力增大液相反而减

小,到B 1点则完全气化,这与正

常蒸发概念完全相反,称为逆蒸

发,相反的过程称为逆凝结,凝

析气(油)藏的形成正是逆蒸发

(逆凝结)相态转变的结果。临界凝析温度点K1:多组分相态中,不管压力多大,凡高于此温度便不能形成液体。临界凝析压力点K2:多组分相态中,不管温度高低,凡高于此压力便不能形成气体。

含溶解气油藏凝析气藏纯气藏油气藏(2)凝析气藏的PVT关系与相态特征

3、凝析气藏的形成条件与分布

(1)形成条件

1)在烃类物系中,气体的数量必须胜过液体的数量,才能为液相反溶提供条件。

2)油气藏埋藏深,地层温度介于烃类物系的临界温度和临界凝结温度之间,当地层压力超过该温度的露点压力。

(2)分布

主要分布在地层老,埋藏深的地区,如中西部

3、深盆气藏形成条件

1)气源条件

2)储层条件:分布广泛,连接气源;孔渗性差,毛管压力大;内部孔隙结构自成体系,与浅层高孔渗没有连通。

3)区域平缓的构造单斜

4)存在局部“甜点”

气水

合物

形成

温压

曲线

海水与甲烷形成气水合物的相图

气水合物(Gas hydrates or Clathrates)

虽然可燃冰分布广泛,资源潜力大,但其资源的富集程度、经济开发的实验研究还没有取得明显进展,目前还停留在理论研究阶

五、煤层气

1、煤层气的赋存状态

2、控制煤层气富集的地质因素

1)煤的组成

2)煤的变质程度

3)煤层厚度

4)煤层的埋藏深度

5)煤层围岩的封闭性

6)地质构造运动

3、煤层甲烷的开采

页岩气及其成藏条件概述

页岩气及其成藏条件概述 2010年7月,在四川川南地区中国石油集团公司第一口页岩气井(威201井)顺利完成加砂压裂施工任务,标志着中国石油集团公司进入了页岩气的实战阶段。页岩气是一种非常规天然气资源,其储量巨大,有关统计表明全球页岩气资源量约为456.24×1012m3。较早对页岩气进行研究的是美国和加拿大,这些国家在勘探和开发中都取得了丰富的成果,形成了较为完备的页岩气系统理论,进入了快速的发展阶段;而我国对页岩气的勘探开发还在初级阶段,研究相对程度相对落后,但我国页岩气资源量也十分丰富(预测为30-100×1012m3)。据有关专家介绍,随着我国经济发展对油气资源的需求,页岩气将是我国今后油气资源勘探和开发的重点。 1 页岩气及其特点 1.1 页岩气储量 从世界范围来看泥、页岩约占全部沉积岩的60%, 表1 世界较大页岩气储量地区表(×1012m3) 其资源量巨大。全球页岩气资源量为456.24×1012m3,主要分布在北美、中亚和中国、中东和北非、太平洋地区、拉美、前苏联等地区(表1) 在我国的松辽盆地白垩系、江汉盆地的第三系、渤海湾盆地、南华北、柴达木以及酒泉盆地均具有页岩气资源的分布。其中,四川盆地的古生代海相沉积环境形成的富有机碳页岩与美国东部的页岩气盆地发育相似。仅四川川南威远、泸州等地区的页岩气资源潜力(6.8-8.4×1012m3),相当于整个四川盆地的常规天然气资源的总量。 1.2 页岩气及特点 页岩是由固结的粘土级的颗粒物质组成,具有薄页状或薄片层状的一种广泛分布的沉积岩。页岩致密且含有大量的有机质故成暗色(如黑色、灰黑色等)。在大多数的含油气盆地中,页岩既是生成油气的烃原岩也是封存油气的盖层。在某些盆地中,如果在纵向上沉积较厚(几十米-几百米),横向上分布广泛(几百-几万平方公里)的页岩同时作为了烃原岩和储集岩,且在其内聚集了大量的天然气,那就是页岩气。 所谓页岩气是指富含有机质、成熟的暗色泥页岩,因热作用和生物作用而形成了大量储集在页岩裂缝、孔隙中的且以吸附和游离赋存形式为主的天然气。与常规储层天然气相比,页岩气具有独特的特点(表2)。表2 常规储层天然气与页岩气对比表 成因类型热成因、生物成因及石油裂解气热成因、生物成因

致密砂岩油气成藏机理

致密砂岩油气成藏机理 摘要:致密砂岩油气储量丰富、可采资源量可信度高,已成为我国非常规油气勘探开发的首选领域。 关键字:致密砂岩油气成藏条件生储盖组合成藏过程 0 引言 随着常规油气勘探开发程度的不断提高,油气勘探开发领域从常规油气向非常规油气跨越,是石油工业发展的必然趋势(邹才能等,2012)。非常规油气资源量巨大,全球非常规石油资源规模达4495×108t,全球非常规天然气资源规模达3921×1012m3,是常规天然气资源的8倍(邹才能等,2012)。近年来,国内外非常规油气的勘探开发取得了重大突破。美国已发现的储量排名前100的气藏中有58个是致密砂岩气藏(Baihly,et al,2009);我国2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%(戴金星等,2012)。美国圣胡安盆地向斜轴部白垩系致密砂岩气田可采储量为7079×108m3(Bruce et al,2006);Bakken 致密油含油面积7×104km2,资源量达到566×108t,可采资源量68×108t(USGS,2008);Eagle Ford致密油含油面积约4×104km2、目前产油量为560t/d(Lucas et al,2010)。2011年苏里格致密砂岩大气区实现探明储量超3.0×1012m3,四川盆地须家河组致密砂岩大气区发现三级储量1.0×1012m3;鄂尔多斯盆地晚三叠世仅长6、长7段致密油资源量达20×108t以上,四川盆地侏罗系致密油探明地质储量8118×104t(邹才能等,2012)。 致密油气作为非常规油气的重要组成部分,以其储量丰富、分布范围广、可采资源量可信度高、相关技术理论研究早、发展迅速等诸多优点已成为中国近期非常规油气首选的重要勘探领域(戴金星等,2012;贾承造等,2012;邹才能等,2012)。截止目前统计数据表明,我国致密气地质资源量为(17.4-25.1)×1012m3,可采资源量为(8.8-12.1)×1012m3;已形成鄂尔多斯盆地与四川盆地致密气现实区,松辽盆地、渤海湾盆地、吐哈盆地、塔里木盆地、准噶尔盆地5个致密气潜力区(如图1)。截至2010年底,中国致密砂岩气的探明储量30109.2×108 m3,占全国天然气总探明储量的39.2%,致密砂岩气产量为232.96×108 m3,占全国天然气总产量的24.6%(戴金星,2012),预测2015年中国致密气产量将达到(300-400)×108m3,2020年产量将达到(500-600)×108m3。我国致密油地质资

页岩气特点及成藏机理

页岩气特点及成藏机理 ---陈栋、王杰页岩气作为一种重要的非常规油气资源,随着能源资源的日益匮乏,作为传统天然气的有益补充,其重要性已经日益突出。随着国家新一轮页岩气勘探开发部署的大规模展开,正确认识和掌握页岩气的成因、成藏条件等知识,对于今后从事页岩气现场录井的工作人员提高录井质量具有较好的指导意义。 1.概况 页岩气(shale gas)是赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气,成分以甲烷为主,与“煤层气”、“致密气”同属一类。其形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布较广的页岩烃源岩地层中。 2.特点 2.1 页岩气是主体上以吸附或游离状态存在于暗色泥页岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间;以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地

的有利目标。页岩气的资源量较大但单井产量较小,美国页岩气井的单井采气量为2800-28000m3/d。 2.5 在成藏机理上具有递变过渡的特点,盆地内构造较深部位是页岩气成藏的有利区,页岩气成藏和分布的最大范围与有效气源岩的面积相当。 2.6 原生页岩气藏以高异常压力为特征,当发生构造升降运动时,其异常压力相应升高或降低,因此页岩气藏的地层压力多变。 2.7 页岩气开发具有开采寿命长和生产周期长的优点—-大部分产气页岩分布范围广、厚度大,且普遍含气,使得页岩气井能够长期地稳定产气。但页岩气储集层渗透率低,开采难度较大。 3.成因 通过对页岩气组分特征、成熟度特征分析,页岩气是连续生成的生物化学成因气、热成因气或两者的混合。生物成因气是有机物在低温下经厌氧微生物分解作用形成的天然气;热成因气是有机质在较高温度及持续加热期间经热降解和裂解作用形成的天然气。相对于热成因气,生物成因的页岩气分布极限,主要分布盆地边缘的泥页岩中,在美国研究比较深入的五个盆地的五套页岩中,密执安盆地和伊利诺斯盆地发现了生物成因的页岩气藏,并且是勘探目标中的主要构成(Schoell,1980;Malter 等,2000)。 3.1 生物成因

第六章第二节 油气藏形成的条件

第二节油气藏形成的条件 油气藏必须具备的两个条件是油气和圈闭。而油气在由分散到集中形成油气藏的过程中,受到各种因素的作用,要形成储量丰富的油气藏,而且保存下来,主要取决于生油层、储集层、盖层、运移、圈闭和保存六个条件。归纳起来油气藏形成的基本条件有以下几个方面: 一、油气源条件 盆地中油气源是油气藏形成的首要条件,油气源的丰富程度从根本上控制着油气资源的规模,决定着油气藏的数量和大小;油气源的性质决定着烃类资源的种类、油藏与气藏的比例;油气源形成的中心区控制着油气藏的分布。因此,油气源条件是油气藏形成的前提。 1、烃源岩的数量 成烃坳陷:是指地质历史时期曾经是广阔的有利于有机质大量繁殖和保存的封闭或半封闭的沉积区;成熟烃源岩有机质丰度高,体积大,并能提供充足的油气源,形成具有工业价值的油气聚集。 成烃坳陷在不同类型的盆地中有不同的分布形式,这与盆地的演化模式有关。平面上,可以位于盆地中央地带(松辽盆地),也可以偏于盆地一侧(酒西盆地),或者有多个成烃坳陷(渤海湾盆地)。纵向上,由于盆地演化的不同,烃源岩的分布在单一旋回盆地中只能有一套,在多旋回盆地中常发育多套烃源岩,但主力烃源岩常常只有一个。成烃坳陷的位置也可以是继承性的,也可以是非继承性的,在不同的阶段位置产生迁移或完全改变。只有研究盆地的演化史,进行旋回分析和沉积相分析,才能把握成烃坳陷的发育和迁移规律,有效地指导油气勘探。 烃源岩的数量:取决于烃源岩的面积(分布范围)和厚度。

2、烃源岩的质量 并非所有的沉积盆地都有成烃拗陷,当盆地内拗陷区一直处于补偿或过补偿状态时,难以形成有利的成烃环境,或油气潜量极低,属于非成烃拗陷。因此,一个拗陷是否具备成烃条件,还要对烃源岩有机质丰度、类型、成熟度、排烃效率来进行评价。通过定量计算成烃潜量、产烃率来确定盆地的总资源量,从而评价油气源的充足程度。只有具丰富油气资源的盆地,才能形成大型油气藏。 二、生、储、盖组合和传输条件 油气生成后,只有及时的排出,聚集起来形成油气藏,才能成为可以利用的资源;否则,只能成为油浸泥岩。而储集层是容纳油气的介质,只有孔渗性良好,厚度较大的储集层,才能容纳大量的油气,形成巨大的油气藏,这是显然的。而有利的生、储、盖组合,也是形成大型油气藏不可缺少的基本条件。 生储盖组合:是指烃源层、储集层、盖层三者的组合型式。

第五章油气聚集及油气藏的形成

第五章油气聚集及油气藏的形成 第一节圈闭和油气藏概述 圈闭与油气藏概述》 一、圈闭的基本概念 1.圈闭的概念 适合于油气聚集、形成油气藏的场所,称为圈闭。圈闭是由三部分组成:(1) 储集层; (2) 盖层;(3) 阻止油气继续运移,造成油气聚集的遮挡物,它可以是盖层本身的弯曲变形,如背斜;也可以是另外的遮挡物,如断层、岩性变化等。 2.圈闭的度量 圈闭的大小和规模往往决定着油气藏的储量大小,其大小是由圈闭的最大有效容积来度量。圈闭的最大有效容积表示该圈闭能容纳油气的最大体积。因此,它是评价圈闭的重要参数之一。 (1) 溢出点 流体充满圈闭后,开始溢出的点,称圈闭的溢出点(图5-1)。 (2) 闭合面积 通过溢出点的构造等高线所圈出的面积,称该圈闭的闭合面积。闭合面积愈大,圈闭的有效容积也愈大。圈闭面积一般由目的层顶面构造图量取。 (3) 闭合高度 从圈闭的最高点到溢出点之间的海拔高差,称该圈闭的闭合高度。闭合高度愈大,圈闭的最大有效容积也愈大。 必须注意,构造闭合高度与构造起伏幅度是两个完全不同的概念。闭合高度的测量,是以溢出点的海拔平面为基准。而构造幅度的测量,则是以区域倾斜面为基准。同样大小构造起伏幅度的背斜,当区域倾斜不同时,可以具有完全不同的闭合高度。 (4) 有效孔隙度和储集层有效厚度的确定 有效孔隙度值主要根据实验室岩心测定、测井解释资料统计分析求得,做出圈闭范围内的等值线图。储集层有效厚度则是根据有效储集层的岩电、物性标准,扣除其中的非渗透性夹层而剩余的厚度。 (5) 圈闭最大有效容积的确定 圈闭的最大有效容积,决定于圈闭的闭合面积、储集层的有效厚度及有效孔隙度等有关参数。其具体确定方法,可用下列公式表示: V=F·H·P 式中V--圈闭最大有效容积,m3; F--圈闭的闭合面积,m2; H--储集层的有效厚度,m; P--储集层的有效孔隙度,%。

北美地区典型页岩气盆地成藏条件解剖要点

北美地区典型页岩气盆地成藏条件解剖 1、阿巴拉契亚盆地俄亥俄页岩系统 (1)概况 阿巴拉契亚盆地(Appalachian)位于美国的东部,面积280000平方公里,包括New York西部、Pennsylvania、West Virginia、Ohio、Kentucky和Tennessee 州等,是美国发现页岩气最早的地方。俄亥俄(Ohio)页岩发育在阿巴拉契压盆地西部,分布在肯塔州东北部和俄亥俄州,是该盆地的主要页岩区(图2)。该区古生代沉积岩是个巨大的楔形体,总体上是富含有机质页岩、碎屑岩和碳酸盐岩构成的旋回沉积体。 图1 美国含页岩气盆地分布图 1953年,Hunter和Young对Ohio页岩气3400口井统计,只有6%的井具有较高自然产能(平均无阻流量为2.98万m2/d),主要原因是这些井的页岩中天然裂缝网络比较。其余94%的井平均产量为1726m3/d,经爆破或压裂改造后产量达8063m3/d,提高产量4倍多。1988年前,美国页岩气主要来自Ohio页岩气系统。截止1999年末,该盆地钻了多达21000口页岩井。年产量将近34亿m3。天然气资源量58332—566337亿m3,技术性可采收资源量4106~7787亿m3。每口井的成本$200000-$300000,完井成本$25~$50。 (2)构造及沉积特征 阿巴拉契亚盆地东临Appalachian山脉,西濒中部平原,构造上属于北美地台和阿巴拉契亚褶皱带间的山前坳陷。伴随Laurentian古陆经历了由被动边缘型

向前陆盆地的演化过程。盆地以前寒武纪结晶岩为基底,古生代沉积岩呈巨大的楔形体(最大厚度12 000 m)埋藏于不对称的、向东变深的前陆盆地中。寒武系和志留一密西西比系为碎屑岩夹碳酸盐岩,奥陶系为碳酸盐岩夹页岩,宾夕法尼亚系为碎屑岩夹石灰岩及煤层。总体上由富有机质泥页岩(主要为碳质页岩)、粉砂质页岩、粉砂岩、砂岩和碳酸盐岩等形成3~4个沉积旋回构成,每个旋回底部通常为富有机质页岩,上部为碳酸盐岩。泥盆系黑色页岩处于第3个旋回之中,分布于泥盆纪Acadian 造山运动下形成的碎屑岩楔形体内(James,2000)。该页岩层可再分成由碳质页岩和较粗粒碎屑岩互层组成的五个次级旋迥(Ettensohn ,1985)。它们是在阿卡德造山运动的动力作用下和Catskill 三角洲的向西进积中沉积下来的。 (3)页岩气成烃条件分析 ①页岩分布特征 阿巴拉契亚盆地中南部最老的泥盆纪 页岩层系属于晚泥盆世。Antrim 页岩和New Albany 大致为Chattanooga 页岩和Ohio 页 岩的横向同位层系(Matthews,1993)。在俄 亥俄东边和南边,Huron 段分岔。有的地区已 经被插入的灰色页岩和粉砂岩分成两个层。 俄亥俄页岩系统,覆盖于Java 组之上 (图3)。由三个岩性段组成:下部 Huron 段 为放射性黑色页岩,中部Three Lick 层为 灰色与黑色互层的薄单元,上部Cleveland 段为放射性黑色页岩。俄亥俄页岩矿物组成 包括:石英、粘土、白云岩、重金属矿(黄 铁矿)、有机物。 图2是西弗吉尼亚中部和西部产气区泥 盆纪页岩层的地层剖面。中上泥盆统的分布 面积约128,000mi 2(331,520km 2),它们沿 盆地边缘出露地表。页岩埋藏深度为610~ 1520m ,页岩厚度一般在100-400ft(30— 120m),泥盆系黑色页岩最大厚度在宾夕尼亚州的中北部(图3)(deWitt 等,1993)。 ②页岩地球化学特征 图4表示Ohio 页岩下Huron 段烃源岩有机碳等值线图。从镜质体反射率特征来图2 阿巴拉契亚盆地西部中泥盆统-下密西西比系剖面 (据Moody 等,1987)

第六章 油气藏的形成

第六章油气藏的形成 油气藏的形成和分布是地质历史长期发展的综合结果,是盆地演化的产物。油气在由分散到集中形成油气藏的过程中,受到各种因素的作用,要形成储量丰富的油气藏,而且保存下来,是生、储、盖层和生、运、聚等静动态多种因素共同作用有机配合形成的。 第一节油气的聚集 第二节油气藏形成的条件 第三节油气藏的破坏与再分布 第四节含油气系统概述

第一节油气的聚集 油气二次运移的结果有两种情况,一种是如果运移过程中无盖层阻挡,油气将一直向上倾方向运移,直至散失到地表;另一种是运移过程中遇到合适的圈闭,油气将停止运移,在圈闭中聚集起来。 油气聚集:就是指油气在储层中由高势区向低势区运移的过程中遇到圈闭时,进入其中的油气就不能继续运移,而聚集起来形成油气藏的过程。 一、单一圈闭油气聚集的原理 1、渗滤作用:Cordell(1977)、 Roberts(1980)等人认为含烃的水或随水运移的油气进入圈闭以后,因为一般亲水的、毛细管封闭的盖层对水不起封闭作用,水可以通过盖层而继续运移;而对烃类则产生毛细管封闭,结果把油气过滤下来在圈闭中聚集。在水动力和浮力的作用下,水和烃可以源源不断地补充并最终导致在圈闭中形成油气藏。 2、排替作用:Chapman(1982)认为泥质盖层中的流体压力一般比相邻砂岩层中的大,因此圈闭中的水是难以通过盖层的。另外油气进入圈闭后首先在底部聚集,随着烃类的增多逐渐形成具有一定高度的连续烃相,在油水界面上油水的压力相等,而在油水界面以上任一高度上,由于密度差油的压力都比水的压力高,因此产生了一个向下的流体势梯度,致使油在圈闭中向上运移同时把水向下排替直到束缚水饱和度为止。

(完整版)油气成藏地质学作业

第一章研究内容 1、油气成藏地质学的内涵及其在石油地质学中的位置 答:成藏研究涵盖的内容很多,包括基本的成藏条件或要素、成藏年代、成藏动力(运聚动力)、油气藏分布规律或富集规律等。 赵靖舟将从事油气藏形成与分布方面的研究称为“油气成藏地质学”(简称成藏地质学),认为它应是石油地质学中与石油构造地质学、有机地球化学、储层地质学、开发地质学等相并列的一门独立的分支学科。 2、成藏地质学的研究内容 答:成藏地质学的研究内容包括静态的成藏要素、动态的成藏作用和最终的成藏结果,涉及生、运、聚、保等影响油气藏形成和分布的各个方面,但重点是运、聚、保。其主要研究内容有以下5个方面: 1)成藏要素或成藏条件的研究。包括生、储、盖、圈等基本成藏要素的研究和评价,重点是诸成藏要素耦合关系或配置关系的研究,目的为区域评价提供依据。 2)成藏年代学研究。主要是采用定性与定量研究相结合的现代成藏年代学实验分析技术与地质综合分析方法,尽可能精确地确定油气藏形成的地质时间,恢复油气藏的形成演化历史。3)成藏地球化学研究。采用地球化学分析方法,利用各种油气地球化学信息,研究油气运移的时间(成藏年代学)和方向(运移地球化学),分析油气藏的非均质性及其成因。 4)成藏动力学研究。重点研究油气运移聚集的动力学特点,划分成藏动力学系统,恢复成藏过程,重建成藏历史,搞清成藏机理,建立成藏模式。 5)油气藏分布规律及评价预测。这是成藏地质学研究的最终目的,它是在前述几方面研究的基础上,分析油气藏的形成和分布规律,进行资源评价和油气田分布预测,从而为勘探部署提供依据。 在盆地早期评价和勘探阶段:成藏地质学研究的重点是基本成藏条件的评价研究与含油气系统划分。 在含油气系统评价和勘探阶段:成藏研究的重点是运聚动力学、输导体系的研究、成藏动力系统划分、已发现油气藏成藏机理和成藏模式研究,以及油气富集规律的研究。 在成藏动力系统的评价和勘探阶段:成藏地质学的研究重点油气藏成藏机理和成藏模式研究以及油气富集规律的研究等。 3、成藏地质学的研究方法 1)最大限度地获去资料,以得到尽可能丰富的地质信息。 2)信息分类与分析——变杂乱为有序,去伪存真,突出主要矛盾。 3)确定成藏时间,分析成藏机理,建立成藏模式,总结分布规律。 4)评价勘探潜力,进行区带评价,预测有利目标。 高素质的石油地质科学地质工作者须备的基本素质: ①1知识+4种能力+2种意识②扎实的背景知识 ③细致的观察能力④全面准确的信息识别能力丰富的想象力⑤周密的综合分析和判断能力⑥强烈的创造意识 ⑦强烈的找油意识 第二章油气成藏地球化学 成藏地球化学研究内容 1)油藏中流体和矿物的相互作用 2)油藏流体的非均质性及其形成机理 3)探索油气运移、充注、聚集历史与成藏机制

页岩气及其成藏机理

页岩气及其成藏机理 页岩气及其成藏机理 摘要:本文介绍了页岩气的特征、形成条件和富集机理等,认为不同阶段、不同成因类型的天然气都可能会在泥页岩中滞留形成页岩气;页岩气生气量的主要因素是有机质的成熟度、干酪根的类型和有机碳含量;吸附态的赋存状态是页岩气聚集的重要特征。我国页岩地质结构特殊复杂,需要根据我国具体的地质环境进行分析以便更加合理的进行开采。 关键词:页岩气富集资源 天然气作为一种高效、优质的清洁能源和化工原料,已成为实现低碳消费的最佳选择。全球非常规天然气资源量非常巨大,是常规油气资源的1.65倍。其中页岩气占非常规天然气量的49%约456 1012m3,巨大的储量和其优质、高效、清洁的特点,使得页岩气这一非常规油气资源成为世界能源研究的热点之一。我国页岩气可采储量丰富,约31 1012m3,与美国页岩气技术可采储量相当。通过对页岩气资源的勘探和试采开发,发现其储集机理、生产机制与常规气藏有较大的差别。 一、页岩气及其特征 页岩是一种具有纹层与页理构造由粒径小于0.004mm的细粒碎屑、黏土矿物、有机质等组成。黑色页岩及含有机质高的碳质页岩是形成页岩气的主要岩石类型。页岩气是从黑色页岩或者碳质泥岩地层中开采出来的天然气。页岩气藏的形成是天然气在烃原岩中大规模滞留的结果,由于特殊的储集条件,天然气以多种相态存在,除了少数溶解状态的天然气以外,大部分在有机质和黏土颗粒表面上吸附存在和在天然裂缝和孔隙中以游离方式存在。吸附状态的天然气的赋存与有机质含量有关,从美国的开发情况来看,吸附气在85~20%之间,范围很宽,对应的游离气在15~80%,其中部分页岩气含少量溶解气。 页岩气主体上是以吸附态和游离态同时赋存与泥页岩地层且以 自生自储为成藏特征的天然气聚集。复杂的生成机理、聚集机理、赋

油气成藏名词解释

地研12-4 王景平 S1******* 名词解释: 1、油气成藏条件:油气能否成藏,取决于是否具备有效的烃源岩层、储集层、盖层、运移通道、圈闭和保存条件等成藏要素及其时空配置关系。任何油气藏的形成和产出都是这些要素的有机配合,而且缺一不可,归结为4个基本条件,即充足的油气来源,有利的生储盖组合,有效的圈闭和良好的保存。就油气藏来说,充足的油气来源、良好的生储盖组合和有效的圈闭是基本的成藏地质条件。 2、油气成藏机理:油气成藏机理是对尤其在生成、运移、聚集以及保存和破坏各个方面的综合性研究;对于特定的沉积盆地, 成藏流体的来源、运移路径、充注过程和充注时间是油气成藏机理研究的主要内容。 3、油气成藏模式:油气成藏模式是对油气藏中的油气注入方向、运移通道、运移过程、运移时期、聚集机理及赋存地质特征的高度概括,同时也研究油气藏形成后的保存与破坏过程,是各种成藏控制因素综合作用的结果。是一组类似的控制油气藏形成的基础条件、动力介质、形成机制、演化历程等要素单一模型或者多要素复合模型的概括。一个地区的油气成藏模式是建立在典型油气藏解剖的基础上的,需要研究各油气藏的地质特征、流体特征、温度压力特征、储集层特征等因素;明确烃源岩与油气藏的相对位置关系、油气运移的方式与通道、油气的注入期次、保存条件等。之后才能准确建立起油气成藏模式。 4、油气成藏规律:油气成藏的规律,一般通过对油气藏成藏条件的分析和成藏模式的建立后得到成藏规律,具体表现为油气藏的发育和分布特征,形成这种特征的主控因素,以及成藏时期和演化等方面。从研究区域内沉积相带的展布分析油气储集空间;研究区域构造带内断裂发育,结合构造应力场分析反演盆地演化形成;对区域输导体系研究找出油气聚集带;综合分析构造背景、输导体系、储层岩性、物性与含油性关系得出控藏的认识,对成藏体系分析,建立输导成藏模式,确定油气藏类型。油气运移既有缓慢的以富力为主的渐进式,也有以高压为主的运移式,圈闭中储层的低势区是油气聚集的有利场所。 5、油气成藏特征:“求同存异”,把某一个或某一类油气藏中最与众不同的特点突出来,可以是油源,可以是储层,可以是圈闭,可以是成藏条件过程中的任何一点值得突出的特征。

页岩气成藏地质条件分析

页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气聚集为典型的“原地”成藏模式,页岩气大部分吸附在有机质和粘土矿物表面,与煤层气相似,另一部分以游离状态储集在基质孔隙和裂缝孔隙中,与常规储层相似。页岩气藏按其天然气成因可分为两种主要类型:热成因型和生物成因型,此外还有上述两种类型的混合成因型。北美地区是全球唯一实现页岩气商业开发的地区。目前北美地区已发现页岩气盆地近30个,发现Barnett等6套高产页岩。2008年,北美地区的页岩气产量约占北美地区天然气总产量的13%。至2008年底,美国页岩气井超过4.2万口;页岩气年产量600亿方以上,约占美国当年天然气总产量的10%。目前,美国已发现页岩气可采储量约7.47万亿方。FortWorth盆地密西西比系Barnett页岩气藏的成功开采掀起了全球开采页岩气的热潮。美国涉足页岩气的油气公司已从2005年23家增至2008年60多家;欧洲石油公司纷纷介入美国的页岩气勘探开发。页岩气作为一种非常规油气藏在国内也逐步受到关注。页岩气藏形成的主体是富有机质页岩,它主要形成于盆地相、大陆斜坡、台地凹陷等水体相对稳定的海洋环境和深湖相、较深湖相以及部分浅湖相带的陆相湖盆沉积体系,如FortWorth盆地Barnett组沉积于深水(120 ̄215m)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧厌氧特征,沉积营力基本上通过浊流、泥石流、密度流等悬浮机制完成,属于静水深斜坡盆地相。生物成因气的富集环境不同于热成因型页岩气。富含有机质的浅海地带,寒冷气候下盐度较低、水深较大的极地海域,以及大陆干旱-半干旱的咸水湖泊都是生物成因气形成的有利沉积环境;而缺氧和少硫酸盐是生物气大量生成的生化环境。在陆相环境中,由于淡水湖相盐度低,缺乏硫酸盐类矿物,甲烷在靠近地表不深的地带即可形成。但由于埋得太浅,大部分散失或被氧化,不易形成气藏。只有在半咸水湖和咸水湖,特别是碱性咸水湖中,可以抑制甲烷菌过早地大量繁殖,同时也有利于有机质的保存。埋藏到一定深度后,有机质分解,使PH值降低到6.5 ̄7.5范围时,产甲烷的细菌才能大量繁殖。这时形成的甲烷就比较容易保存,并能在一个条件下聚集成气藏。(1)热成熟度(Ro)。美国五大页岩气系统的页岩气的类型较多,既有生物气、未熟-低熟气、热解气,又有原油、沥青裂解气据(Curtis,2002),这些类型的天然气形成的成熟度范围较宽,可以从0.400%变化到2.0%,页岩气的生成贯穿于有机质生烃的整个过程。不同类型的有机质在不同演化阶段生气量不同,页岩中只要有烃类气体生成(R>0.4%),就有可能在页岩中聚集起来形成气藏。 生物成因气一般形成于成熟度较差的岩层中。密执安盆地Antrim生物成因型页岩的R仅为0.4% ̄0.6%,未进入生气窗,页岩Ro越高,TOC越低,越不利于生物气的形成。而福特沃斯盆地Barnett页岩热成因型气藏的页岩处于成熟度大于1.1%的气窗内,Ro值越高越有利于天然气的生成。所以热成熟度不是判断页岩生烃能力的唯一标准。 (2)有机碳含量(TOC)。有机碳含量是评价页岩气藏的一个重要指标,多数盆地研究发现页岩中有机碳的含量与页岩产气率之间有良好的线性关系,原因有两方面:①是因为有机碳是页岩生气的 物质基础,决定页岩的生烃能力,②是因为它决定了页岩的吸附气大小,并且是页岩孔隙空间增加的重要因素之一,决定页岩新增游离气的能力。如Antrim黑色页岩页岩气以吸附气为主(70%以上),含气量1.415 ̄2.83m/t,高低与有机碳含量呈现良好的正相关性。Ross等的实验结果表明,有机碳与甲烷吸附能力具有一定关系,但相关系数较低(R2=0.39)。他认为在这个地区有机碳与吸附气量关系还可能受其他多种因素的影响,如粘土成分及含量、有机质热成熟度等。(1)矿物成分。页岩中的矿物成分主要是粘土矿物、陆源碎屑(石英、长石等)以及其他矿物(碳酸盐岩、黄铁矿和硫酸盐等),由于矿物结构、力学性质的不同,所以矿物的相对含量会直接影响页岩的岩石力学性质、物性、对气体的吸附能力以及页岩气的产能。粘土矿物为层状硅酸盐,由于Si-O四面体排列方式,决定了它电荷丰富、表面积大,因此对天然气有较强的吸附能力,并且不同的粘土矿物对天然气的吸附能力也不同,蒙皂石吸附能力最强,高岭石、绿泥石次之,伊利石最弱。石英则增强了岩石的脆性,增强了岩石的造缝能力,也是水力压裂成功的保证。Nelson认为除石英之外,长石和白云石也是黑色页岩段中的易脆组分。但石英和碳酸盐矿物含量的增加,将降低页岩的孔隙,使游离气的储集空间减少,特别是方解石的胶结作用,将进一步减少孔隙,因此在判断矿物成分对页岩气藏的影响时,应综合考虑各种成分对储层的影响。 (2)储集空间。页岩气除吸附气吸附在有机质和粘土矿物表面外,游离气则主要储集在页岩基质孔隙和裂缝等空间中。虽然页岩为超致密储层,孔隙度和渗透率极低,但是在孔隙度相对较高的区带,页岩气资源潜力仍然很大,经济可采性高,特别是吸附气含量非常低的情况下。页岩中孔隙包括原生孔隙和次生孔隙。原生孔隙系统由微孔隙组成,内表面积较大。在微孔隙中拥有许多潜在的吸附地方,可储存大量气体。裂缝则沟通页岩中的孔隙,页岩层中游离态天然气体积的增加和吸附态天然气的解析,增强岩层渗透能力,扩大泄油面积,提高采收率。一般来说,裂缝较发育的气藏,其品质也较好。美国东部地区产气量高的井,都处在裂缝发育带内,而裂缝不发育地区的井,则产量低或不产气,说明天然气生产与裂缝密切相关。实际上,裂缝一方面可以为页岩中天然气的运移提供通道和储集空间,增加储层的渗透性;另一方面裂缝也可以导致天然气的散失和水窜。 (3)储集物性。页岩的物性对产量有重要影响。在常规储层研究中,孔隙度和渗透率是储层特征研究中最重要的两个参数,这对于页岩气藏同样适用。据美国含气页岩统计,页岩岩心孔隙度小于4% ̄6.5%(测井孔隙度4% ̄12%),平均5.2%;渗透率一般为 (0.001 ̄2)×10μm,平均40.9×10μm。页岩中也可以有很大的孔隙度,并且有大量的油气储存在这些孔隙中,如阿巴拉契亚盆地的Ohio页岩和密歇根盆地的Antrim页岩,孔隙度平均为5% ̄6%,局部可高达15%,游离气可以充满孔隙中的50%。页岩的基质渗透率很低,但在裂缝发育带,渗透率大幅度增加,如在断裂带或裂缝发育带,页岩储层的孔隙度可达11%,渗透率达2×10μm。页岩气藏是自生自储型气藏,从某种意义来说,页气藏的形成是天然气在源岩中大规模滞留的结果,烃源岩中天然气向常规储层初次运移的通道为裂缝、断层等,所以连通烃源岩和常规[1][2][3] [4][5] [6][7]3-32 -62-321 沉积环境 2 生烃条件 3 储集条件 4 保存条件 oo岩(转129页) 页岩气成藏地质条件分析 黄菲 王保全 ① ② (中法渤海地质服务有限公司 ②中海石油<中国>有限公司天津分公司渤海油田勘探开发研究院) ①摘要关键词页岩气藏为自生自储型气藏,它的生烃条件、储集条件、保存条件相互影响,息息相关,热成熟度和有机碳含量控制页岩的生气能力,而有机碳含量还影响页岩的储集性,是增加页岩孔隙空间的重要因素;页岩气藏储层致密,孔隙度和渗透率极低,裂缝的存在会提高储层的渗透率,矿物成分影响其储集性能,其中粘土矿物有利于增加微孔隙,并且增加岩石对天然气的吸附能力,而石英和白云石脆性较大,则有利于增加储层中的裂缝,并且对水力压裂造缝有利;页岩气藏对保存条件的要求较低。 页岩气有机碳含量热成熟度储集条件保存条件

页岩气成藏机理及气藏特征

页岩气成藏机理及气藏特征 页岩气是泛指赋存于富含有机质的暗色页岩或高碳泥页岩中,主要以吸附或游离状态存在的非常规天然气资源。在埋藏温度升高或有细菌侵入时,暗色泥页岩中的有机质,甚至包括已生成的液态烃,裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和矿物表面,在一定地质条件下就近聚集,形成页岩气藏。 从全球范围来看,页岩气拥有巨大的资源量。据统计,全世界的页岩气资源量约为456.24×1012m3,相当于致密砂岩气和煤层气资源量的总和,具有很大的开发潜力,是一种非常重要的非常规资源[1-6]。页岩气资源量占3种非常规天然气(煤层气、致密砂岩气、页岩气)总资源量的50%左右,主要分布在北美、中亚和中国、中东和北非、拉丁美洲、前苏联等地区,与常规天然气相当。页岩气的资源潜力甚至还可能明显大于常规天然气。 1.1 页岩气成藏机理 1.1.1 成藏气源 页岩气藏的生烃、排烃、运移、聚集和保存全部在烃源岩内部完成,页岩既是烃源岩、储层,也是盖层。研究表明,烃源岩中生成的烃类能否排出,关键在于生烃量必须大于岩石和有机体对烃类的吸附量,同时必须克服页岩微孔隙强大的毛细管吸附等因素。因此,烃源岩所生成的烃类只有部分被排出,仍有大量烃类滞留于烃源岩中。 北美地区目前发现的页岩气藏存在3种气源,即生物成因、热成因以及两者的混合成因。其中以热成因为主,生物成因及混合成因仅存在于美国东部的个别盆地中,如Michigan盆地Antrim生物成因页岩气藏及Illinois盆地New Albany混合成因页岩气藏[21]。 1.1.2 成藏特点 页岩气藏中气体的赋存形式多种多样,其中绝大部分是以吸附气的形式赋存于页岩内有机质和黏土颗粒的表面,这与煤层气相似。游离气则聚集在页岩基质孔隙或裂缝中,这与常规气藏中的天然气相似。因此,页岩气的形成机理兼具煤层吸附气和常规天然气两者特征,为不间断充注、连续聚集成藏(图1-1)。

凝析气藏采气工程特点及技术

凝析气藏开发的特点及技术 摘要:反常凝析现象决定了凝析气藏的开发方式和开发技术不同于一般气藏,除了要保证天然气的采收率外,还需要考虑提高凝析油采收率的问题。基于凝析气藏的基本特征,综述了衰竭式开发和保持压力开发的特点,介绍了常用的保持压力开发方式,并总结了我国凝析气藏开发的成熟技术及今后的主要研究方向。 关键词:凝析气藏;采气工程;开发方式;开发技术 凝析气田在世界气田开发中占有特殊重要的地位,据不完全统计,地质储量超过1012m3的巨型气田中凝析气田占68%,储量超过1000×108m3的大型气田则占56%。世界上富含凝析气田的地区有俄罗斯、美国和加拿大,在我国凝析气田也分布很广。根据第二次全国油气资源评价结果,我国气层气主要分布在陆上中西部地区及近海海域的南海和东海,资源总量为38×1012m3,探明储量为 2.06×1012m3,可采储量为 1.3×1012m3,其中凝析油地质储量为11226.3×104t,采收率若按照36%计算,则凝析油可采储量为4082×104t。 1凝析气藏的基本特征 根据我国石油天然气行业气藏分类标准(SY/T6168-2009),产出气相中凝析油的含量大于50g/m3的气藏为凝析气藏。按照凝析油含量可进一步划分为特高、高、中、低含凝析油凝析气藏,如下表1所示。 1.1 反常凝析现象 凝析气藏是介于油藏和气藏之间的一种特殊烃类矿藏,具有反凝析的显著特点。凝析气藏中流体在原始地层状态下(绝大部分)呈单一气相存在,当地层压力降至上露点压力(又称第二露点压力)以下时,开始有凝析油析出,且凝析油的析出量随着压力的继续下降而先增加至最大值,然后又减小,直至压力降至下露点压力(又称第一露点压力)时,凝析油被全部蒸发,此即为反常凝析现象。特别是对凝析油含量高的凝析气藏采用衰竭式开采,反常凝析现象比较严重。 1.2 埋藏深、温度高、压力高 我国凝析气藏埋深一般在2000~5000m,凝析气藏的原始地层压力高于临界压力,原始地层温度介于临界温度和临界凝析温度之间,储层的温度和压力较高。凝析气藏的地层压力一般为25~56MPa,压力系数一般为1.0~1.2左右。塔里木盆地的凝析气藏埋深在4000~5000m 以上,埋藏最深的塔西南深层凝析气藏达6500m。新疆柯克亚深层凝析气藏压力高达123MPa,在世界上也是屈指可数的超高压气藏。气藏温度一般在70~100℃之间,少数凝析气藏温度高达100~145℃。因此,埋藏深、高温、高压是凝析气藏又一重要特点。 1.3 产出“四低一高”的凝析油 凝析气藏产出的凝析油具有低密度、低粘度、低初馏点、低含蜡量和高馏分的特点。

油气藏开发地质

油气藏开发地质 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

1.石油、天然气的概念 石油:地下天然产出的气态(天然气)、液态(石油)、固态(沥青)的烃类混合物。 原油:以液态形式存在于地下岩石孔隙中的可燃有机矿产。 2.石油的元素组成与化合物组成 组成石油的化学元素依次为:碳、氢、硫、氮、氧、微量元素。 微量元素:(构成石油的灰分),含量极微(万分之几),但可多至30余种,如:Fe、Ca、Mg、Si、Al、V、Ni……其中钒、镍含量及比值(V/ Ni)已用于石油成因及运移研究。 石油的化学组成按其化学结构可分为烃类和非烃两大类,其中烃类包括烷烃、环烷烃和芳烃,石油非烃组成—S、N、 O化合物。 异戊间二烯型烷烃是由叶绿素的侧链-植醇演化而成,因此作为石油有机成因的标志化合物—“指纹”化合物。 3.石油的主要馏分和组分 馏分:根据沸点范围的不同切割而成的不同部分。 轻馏分:碳数低,分子量小的烷烃、环烷烃组成。 中馏分:中分子量和较高碳数的烷烃、环烷烃,含有一定数量的芳烃及少量含N、S、O化合物。 重馏分:大分子量和高碳数环烷烃、芳烃、环烷芳烃和含N、S、O化合物。 组分:对不同有机溶剂的溶解、吸附性质不同而分离出来的产物。 油质:饱和烃+芳香烃,溶于有机溶剂,硅胶不吸附,荧光天蓝色。

胶质:芳香烃+非烃化合物,部分有机溶剂溶解,硅胶吸附,含量与石油密度有关,荧光黄色、棕黄色、浅褐色。 沥青质:脆性固体物质,稠环芳烃+烷基侧链的高分子,少数有机溶剂溶解,硅胶吸附,荧光呈褐色。 荧光性:石油在紫外光照射下产生荧光的特性。 4.天然气的主要赋存形态 气藏气(干气,贫气):烃类气体单独聚集成藏,不与石油伴生。 气顶气(湿气,富气):与油共存于油气藏中呈游离态气顶产出的天然气。 溶解气(dissolved gas):地层条件下溶解在石油和水中的天然气。 凝析气(condensate gas):当地下温度压力超过临界条件后,液态烃逆蒸发形成凝析气。----湿气,采出过程中反凝析出凝析油。 天然气水合物:甲烷水合物,高压、一定温度下:甲烷分子封闭在水分子所形成的固体晶格中----冰冻甲烷。 水溶气:天然气在水中溶解度很小;但地层水大量存在,水溶气资源不可忽视。 5.干酪根的概念和化学分类 干酪根:沉积物或沉积岩中不溶于碱、非氧化型酸和非极性有机溶剂的分散有机质。 Ⅰ型干酪根:单细胞藻类(海藻)残体组成,富含脂类化合物,H/C高,O/C 低,含大量脂肪族烃结构(链式结构为主),少环芳烃和含氧官能团,生成液态石油潜力大,油页岩属此类。典型腐泥质类型(sapropelic)。最大转化率 80%。

油气藏形成机理名词解释

1、泥岩涂抹:断裂的形成过程中,由于构造应力和重力作用,在两盘削截砂岩层上形成薄的泥岩层,这个层叫泥岩涂抹层,作用就称泥岩涂抹。 2、油气保存条件:油气藏破坏,散失,殆尽,油气藏变成稠油(水洗或者氧化)。 水力溶失:水将油藏中的氢带走,形成稠油。 3、包裹体:矿物晶体在生长过程中,被包裹在矿物晶体缺陷中的那部分成矿流体叫包裹体。 4、均一温度:在冷液后,将盐水包裹体加热到由两相变为一相时的温度,这一温度为油气成藏均一温度。 5、油气成藏模式:以圈闭划分为依据,综合油气藏形成的生、储、盖、运、圈众因素的时空匹配关系,以及油气运移、聚集动态过程中而得到的油气藏形成的地质模型。 6、含油气系统:一个自然系统,包括了活跃的烃源岩和所有已经形成的油气藏并包含油气藏形成时所需要的必不可少的一切地质要素的作用 7、封存箱:将沉积盆地内用封闭层分隔的异常压力系统。 8、流体势:相对于基准面,单位质量流体具有的机械能的总和。 9、重力能:单位质量的流体从基准面搬到研究点所克服重力所做的功。 10、弹性能:单位质量流体从基准面搬到研究点克服压力多做的功。 11、动能:单位质量的流体在流速为q时所具有的能。 12、郝石生教授的流体势概念:相对于基准面单位体积流体所具有的总势能。 13、供油气单元:烃源岩产出的油气呈同一种运移形式的那一部分生油岩体叫做该圈闭的供油气单元。 14、聚敛型供油气单元:油气呈汇聚流运移形式的范围在生油凹陷中垂直投影切割出来的那部分生油岩体称为~。 15、发散型供油气单元:油气呈发散流移形式的范围在生油凹陷中垂直投影切割出来的那部分生油岩体称为~。 16、平行型供油气单元:油气呈平行流形式的范围在生油凹陷中垂直投影切割出来的那部分生油岩体称为~。 17、油气成藏动力学系统:以地球动力学为基础,以油气生成运移、聚集的动力层系统和过程为核心,把油气的生、储、运、聚、散连接成为一个统一的整体,探讨盆地油气生成运移聚集和分布规律的一门科学。 18、相势控藏理论:油气藏形成与分布受到相和流体势的共同控制,简称相势控藏理论。 19、深盆气:在特定地质条件下形成的具有特殊封闭机理和分布规律,由于分布在深部叫深盆气。 20、可燃冰:是一种由水分子和碳氢气体分子水合组成的一种简单固体化合物。 21、凝析气:地下深处,高压高温条件下的气体经开采到地面后,温度、压力降低后而形成液态,这种气体叫~。 22、无机气:只不涉及到有机物质反应的一切过程作用产生的气。 23、生物气:在低温还原环境下,厌氧细菌对沉积有机质进行生物化学降解形成的富含生物甲烷的气体。

页岩气成藏特点及勘探选区条件

页岩气成藏特点及勘探选区条件 范柏江1,2,师良3,庞雄奇 1,2(1.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;2.中国石油大学(北京)盆地与油藏研究中心, 北京102249;3.中国石油大学(北京)机械与储运工程学院,北京102249) 摘要:中国页岩气勘探尚属于早期阶段,对页岩气成藏的认识还不够深入,页岩气的资源评价亦处于薄弱环节。通过北美与四川盆地页岩气的对比可知,与常规天然气相比,页岩气的成藏条件只需要物源条件、储集条件、初次运移条件及保存条件,没有二次运移和圈闭条件的要求。页岩气具有3个典型的成藏特征,即独特的成因特征、气源生产力特征和赋存特征。基于页岩气成藏条件和成藏特征的分析,综合考虑地质状况、经济效益和环境影响等多方面的因素,建立了页岩气勘探开发的选区指标,以此为页岩气资源评价服务。 关键词:页岩气成藏条件成藏特征选区条件资源评价 中图分类号:TE112.1文献标识码:A 文章编号:1009-9603(2011)06-0009-05随着常规油气勘探难度的增大,非常规油气勘 探逐渐被重视,2000年以来,页岩气的勘探更是开 始引起广泛关注。中国页岩气资源丰富,以四川盆 地为例,威远和泸州地区的页岩气资源达6.8? 1012 8.4?1012m 3,相当于四川盆地常规天然气资 源的总量[1], 2009年成功开钻中国第1口页岩气井— ——威201井。前人对页岩气成藏的地质条件、页岩气的成藏机理进行了诸多探索,但对页岩气成藏条件和成藏特征尚未进行分类总结。由于对页岩气成藏机理认识不足,导致对页岩气资源评价存在困难[2-3]。就页岩气资源评价而言,成因法计算过于粗略,统计法要求勘探程度高,因而均不适用,而类比法由于尚未建立评价参数标准,其应用受到了限制。笔者基于北美5大页岩气盆地和中国四川盆地的实例研究,进行页岩气成藏条件及成藏特征的剖析,最终建立页岩气选区的评价标准,以期为页岩气的资源评价服务。1页岩气成藏条件与常规天然气相比较而言,页岩气的成藏条件有其自身特点,页岩气成藏需要充足的气源、裂缝适度发育的规模页岩等,但却不需要特定的圈闭条件。1.1物质来源页岩气的物源主要是富沥青质或富有机质的暗 色泥页岩,亦即高炭泥页岩。高炭泥页岩为页岩气的工业聚集提供了充足的气源物质基础。从北美阿巴拉契亚、密执安、伊利诺斯、福特沃斯、圣胡安盆地和中国四川盆地页岩气气源的统计情况来看,能提供页岩气的高炭泥页岩的粘土矿物含量为30% 55%,有机质含量为2% 35%,有机碳含量(TOC )为0.4% 25%,粉砂质含量一般小于25%,母质类型包括Ⅰ型、Ⅱ型和Ⅲ型,但以Ⅰ型和Ⅱ型为主(表 1)。高炭泥页岩生成的所有气体如生物气、低熟— 未熟气、热解气、裂解气、沥青气等都可以成为页岩 气的气源。 1.2储集条件 页岩气的储层即页岩本身。地质条件下,绝大 部分页岩的孔隙度小于15%,含气的有效孔隙度一 般仅为1% 5%,单一的页岩孔隙不足以为商业聚 集的页岩气提供足够的储集空间,但通过页岩发育 规模和页岩裂缝的弥补作用,页岩能为页岩气提供 充足的储集空间。北美产气页岩的厚度规模一般在 30m 以上,而四川盆地威远地区下寒武统产气页岩 厚度最小规模大约只有20m (表1)。目前已发现 的具有工业价值的页岩气藏均发育裂缝,而构造转 换带、地应力集中带及褶皱—断裂带往往都是裂缝 发育的地区,这些地区的页岩一般都发育裂缝,因 此,盆地边缘斜坡、构造背斜缓翼的轴部、盆地中心 (受上覆载荷力诱导)等区域的页岩均是页岩气藏收稿日期:2011-09-19。 作者简介:范柏江,男,在读博士研究生,从事含油气盆地分析工作。联系电话:(010)58910086, E-mail :632258611@qq.com 。基金项目:国土资源公益性行业科研专项 “东北地区油页岩科学研究基地研究”(201111012)。第18卷第6期 油气地质与采收率Vol.18,No.62011年11月Petroleum Geology and Recovery Efficiency Nov.2011

相关主题
文本预览
相关文档 最新文档