当前位置:文档之家› 利用响应面法优化海洋细菌YDX 1产纤维素酶的发酵条件

利用响应面法优化海洋细菌YDX 1产纤维素酶的发酵条件

利用响应面法优化海洋细菌YDX 1产纤维素酶的发酵条件
利用响应面法优化海洋细菌YDX 1产纤维素酶的发酵条件

纤维素酶(CMC ase)是降解纤维素生成葡萄糖的一组酶的总称,他不是单种酶,而是起协同作用的多种酶系。近年来,纤维素酶已广泛应用于食品发酵、医药和饲料等多个领域,其应用前景十分广阔[1]。一直以来,研究者将分离纤维素降解菌的场所主要局限于陆地上,使得纤维素酶的来源受到很大的限制。海洋生态环境复杂,高盐度、低温及特殊的光照条件使海洋微生物极具多样性,目前海洋微生物成为开发新型酶制剂的重要来源。虽然目前仅有少数学者对产纤维素酶的海洋微生

利用响应面法优化海洋细菌

YDX-1产纤维素酶的发酵条件

唐志红,刘苹,吕家森,邱学武,蒋波,高丽,温少红

(烟台大学海洋学院,烟台264005)

摘要:采用响应面法对海洋细菌YDX-1产纤维素酶的发酵条件进行了优化。首先用Plackett-Burman法从8个因子中筛选出3个主要影响YDX-1产酶的因素,然后进行最陡爬坡实验逼近最佳响应面区域,最后通过Box-Behnken响应面设计实验得到最适条件为温度31℃、羧甲基纤维素钠(CMC-Na)41g/L、(NH4)2SO44.7g/L。在最适条件下测得的酶活为273.20U/mL,较优化前的150.13U/mL提高了81.97%。

关键词:海洋细菌YDX-1;纤维素酶;响应面分析;发酵条件

中图分类号:TQ920.1文献标志码:A文章编号:1005-9989(2011)03-0006-04

Optimization of cellulase production conditions by marine bacteria

YDX-1using response surface methodology

TANG Zhi-hong,LIU Ping,LV Jia-sen,QIU Xue-wu,JIANG Bo,Gao Li,WEN Shao-hong

(Marine College,Yantai University,Yantai264005)

Abstract:Response surface analysis was applied to optimize the fermentation conditions for cellulase production by marine bacteria YDX-1.Firstly,two-level factorial design of Plackett-Burman was used to evaluate the effect of eight related factors on produced cellulase activity,and three main factors were screened out.Then the path of steepest ascent was taken to approach the optimal region of fermentation conditions.

Finally,the optimal combined conditions for maximum enzyme activity were further optimized by Box-Behnken surface response design methodology and were determined as follows:temperature31℃,CMC-Na41g/L, (NH4)2SO44.7g/L.Under the optimization of culture conditions,the cellulase activity increased from150.13U/ mL to273.20U/mL,which was81.97%higher than preliminary culture.

Key words:marine bacteria YDX-1;cellulase;response surface methodology analysis;fermentation condition

收稿日期:2010-07-02*通讯作者

基金项目:山东省优秀中青年科学家科研奖励基金项目(2008BS02009)。

作者简介:唐志红(1974—),女,山东武城人,博士,讲师,研究方向为海洋生物活性物质。

·6·

表2

Plackett-Burman 实验因素水平代码因素

水平t 检验

Pr>|t|-11X 1时间/d 35-2.360.099X 2温度/℃2535-5.410.012X 3pH 7.58.5-1.410.254X 4酵母膏/(g/L) 3.0 6.0 2.280.107X 5KH 2PO 4/(g/L) 1.0 2.0-1.160.330X 6MgSO 4/(g/L)0.5 1.00.690.540X 7CMC-Na/(g/L)1530 6.020.009X 8

(NH 4)2SO 4/(g/L)

2.0

4.0

2.560.043

表1Plackett-Burman 实验设计及响应值表

实验号酶活/(U/mL)1-11-11-1-111208.421-11-1-1-111205.33-1-111111-1225.4411-11-11-1-191.65111-1-111-1128.56-111-11-1-1-171.47-1-1-1-1-1-1-1-1157.58-1111-11-11138.391-1-1-111-11171.210-1-1-1-11111225.11111111-1-1183.312

1

-1-1

1

1

-1

1

-1

216.3

因素

X 1X 2X 3X 4X 5X 6X 7X 8物进行了研究,但已显示出海洋微生物在开发纤维素酶方面具有诱人的前景。T aylor 等人获得了1株产纤维素酶的海洋细菌Saccharopha g us de g rada n s 2-40,其独特之处在于其代谢作用的多样性,该酶能降解十几种来自藻类、陆地植物及无脊椎动物中的多糖类物质[2]。

本实验室从病烂的海洋植物中分离得到了产纤维素酶的菌株YD X -1,该菌所产的纤维素酶表现出了特殊的性质,对温度的适应性较宽[3],该酶既能水解羧甲基纤维素,且能降解淀粉。本文以菌株YD X -1为材料,采用响应面法对主要影响因子间的交互作用进行了研究,并对模型进行数学处理,以期快速有效地确定产纤维素酶的最优培养条件,提高菌株YD X -1的产酶能力。1材料与方法1.1实验材料

1.1.1

菌株海洋细菌YD X -1:本实验室自行分

离保存。

1.1.2培养基

斜面培养基:蛋白胨10.0g ,

K H 2P O 41.0g ,M g S O 4·7H 2O 0.5g ,CMC -N a 10.0g ,琼脂20.0g ,海水1000mL ,p H 7.5。

种子及发酵培养基:蛋白胨10.0g ,K H 2P O 41.0g ,M g S O 4·7H 2O 0.5g ,CMC -N a 10.0g ,海水1000mL ,p H 7.5。1.2实验方法

1.2.1发酵产酶实验

从菌株YD X -1斜面取1环

菌接种至50mL 种子培养基中,28℃、200r /mi n 培养18h ,制成种子液。按照2%的接种量转接至50mL 发酵培养基中,200r /mi n 培养制成发酵液。将发酵液离心4000r /mi n ,10mi n ),取上清液测定酶活。

1.2.2纤维素酶酶活力的测定[4]3,5-二硝基水杨酸(D N S)法,规定1mL 酶液每分钟产生1μg 葡萄糖为1个酶活单位(U )。

1.2.3Plac k ett -Burma n 实验选取对菌株YD X -1产酶有较大影响的8个因素进行考察,采用F ac -tors =8,R u n s =12的Plac k ett -Burma n 设计。根据单因素实验结果选择高低2个水平,然后按实验设计表进行实验,依次进行培养基的配制、接种、发酵实验(每组3个平行),测出响应值。

1.2.4最陡爬坡实验[5]根据Plac k ett -Burma n 实验找出主要因素之后,通过使主要因素同时朝响应值增大的方向变化,找出峰值,从而逼近最大响

应区间。

1.2.5响应面实验[6-7]

根据最陡爬坡实验结果,

以每毫升酶液的纤维素酶活力单位为响应值,以主要影响因子的水平为自变量,借助设计软件D e -si gn expert 7.0进行Box -Be n h n k e n 设计,通过将优化实验所得的实验数据与响应面模型进行拟合,以验证模型的可靠性。2

结果与分析

2.1Plackett-Burman 实验

根据单因素实验的结果,以每毫升酶液的纤维素酶活力单位为响应值,选择发酵条件中的8个因素作为考察对象,Plac k ett -Burma n 设计方案及结果见表1,各因素水平及效应分析见表2。从表2的概率值大小可以看出,CMC -N a(X 7)、(N H 4)2S O 4(X 8)和温度(X 2)是具有显著影响的因子,因此确定这3个因素作为下一步实验的关键因素。

2.2最陡爬坡实验

·7

·

图1温度、CMC-Na 对酶活的响应面图

290247.5205162.5120

41.0038.50

36.00

33.50

31.0021.00

23.5026.0028.5031.00

R 1a 针对Plac k ett -Burma n 实验筛选出的关键因素进行最陡爬坡实验。最陡爬坡实验设计及其结果见表3。温度、CMC -N a 和(N H 4)2S O 4这3个关键因素在实验4附近时菌株YD X -1产酶的活力较高,所以选择实验4中的条件值作为下一步响应面实验设计的中心值。

2.3

Box-Behnken 实验分析

采用Box -Be n h n k e n 组合设计对影响菌株

YD X -1产酶的关键因素进行了15组实验,来寻找上述3因素的最佳条件。实验因素及水平见表4,实验设计及结果见表5。

根据表5的实验结果,通过desi gn expert 7.0软件处理确定回归方程。该实验的回归方程为:

Y =264.08667-0.88000X 2+13.13000X 7+4.04750X 8+57.09250X 2X 7+14.93250X 7X 8+5.20250X 7X 8-44.73708

X 22-23.86208X 27-59.69708X 2

8

对回归模型进行方差分析及模型可信度分析,该模型的Pr >F 值为0.006,说明模型回归高度显著。决定系数R 2=0.9573,表明方程拟合较好。C V =9.12%,较低,说明实验操作可信。综上可以确定上述回归方程为YD X -1产纤维素酶提供了一个合适的模型。

2.4响应面分析及最佳培养条件的确定

根据模型方程绘制响应曲面见图1、图2和图3。由图1~图3可知,回归方程存在稳定点,稳定点是极大值点,通过岭嵴分析得到发酵的最佳条件:温度31℃、CMC -N a 41g/L 和(N H 4)2S O 44.7g/L ,在此条件下发酵液的纤维素酶活力达273.20U /mL 。为了验证预测值,以确定的最优发酵条件分批次(3次)发酵进行实验验证,3次实验

实验次数温度/℃CMC-Na /(g/L)(NH 4)2SO 4/(g/L)酶活/(U/mL)

135304106.9723232 4.2116.7632934 4.4125.3342636 4.6247.7652330 4.8150.236

20

40

5.0

122.07

表4Box-Behnken 实验因素与水平

代号因素水平

-101X 2温度/℃212631X 7CMC-Na/(g/L)313641X 8

(NH 4)2SO 4/(g/L)

4.1

4.6

5.1

表5Box-Behnken test 实验设计及结果

实验次数

酶活/(U/L)1000256.742-110145.743-101160.844110282.4550-1-1173.086000261.237011198.38810-1128.60901-1177.9810101141.6611-10-1184.5112000274.29

131-10131.0514-1-10222.7115

-1

1

172.67因素

X 2X 7X 8方差来源总偏差平方和自由度平均偏差平方和F 值Pr >F 模型35703.7093967.0812.450.0063X 1 6.201 6.200.0190.8945X 21379.1811379.18 4.330.0920X 3131.061131.060.410.5495X 1X 213038.21113038.2140.920.0014X 1X 3891.921891.92 2.800.1552X 2X 3108.261108.260.340.5852X 127389.817389.8123.190.0048X 222102.4012102.40 6.600.0501X 32

13158.43113158.441.30

0.0014

误差项1593.015318.60失拟项1426.773475.59 5.72

0.1524

纯误差166.24283.12

所有项

37296.71

14

表6回归方程方差分析

注:显著:Prob>F 值小于0.05;高度显著:Prob>F 值小于0.01,R 2=

9.507%;Adi R 2=88.04%;C.V.=9.12%。

表3

最陡爬坡实验设计及其结果

·8

·

的平均酶活力为279.01U /mL ,与预测值非常接

近,说明数学响应面法优化得到的数学模型与实验数据拟合较好,该模型对于菌株YD X -1产酶发酵条件的研究具有指导意义。3

结论

本实验首先运用Plac k ett -Burma n 法确定了温度、CMC -N a 和(N H 4)2S O 4为影响YD X -1产酶的因素;然后通过最陡爬坡实验逐步改变3者的浓度,逼近最佳响应面区域;最后采用响应面中的Box -Be n h n k e n 设计法建立了关键因素影响芽YD X -1产酶的二次多项数学模型,并利用统计学

方法对该模型进行了显著性检验,优化了内在因素水平。据模型方程绘制响应曲面确定了各因素的最佳水平:温度31℃,CMC -N a 41g/L 和(N H 4)2S O 44.7g/L ,此发酵液的纤维素酶活力达273.20U /mL ,较原发酵培养条件提高了81.97%。同时,模型所得到的最大预测值与验证值非常接近,说明回归方程能较真实地反映各筛选因素的影响[8],因此用响应面法优化YD X -1产纤维素酶的发酵条件是有效可行的。

参考文献:

[1]Lynd LR,Paul JW,Vanzyl WH,et al.Micribial cellu -lose utilization:Fundamentals and biotechnology[J].Mi -crobiology and molecular biology reviews,2002,66(3):506-577

[2]

Taylor II B,Henrissat P M,Coutinho N A,et https://www.doczj.com/doc/219715665.html,plete cellulase system in the marine bacterium sac-charophagus degradans strain 2-40[J].The Journal of Bac-teriology,2006,188(11):3849-3861

[3]夏雯,唐志红,等.海洋细菌YDX-1产纤维素酶的研究[J].海洋科学进展,2009,27:14-19

[4]王炜,付建红,崔卫东,等.一株产纤维素酶细菌液体发酵条件的初步研究[J].新疆农业科学,2000,18(4):20-22[5]张大皓,谭天伟,王炳武.响应面实验设计优化脂肪酶发酵培养基[J].北京化工大学学报,2006,33(2):41-44[6]胡娜,许杨.Box-Behnken 法模拟黄曲霉AS3.4408最适产毒条件的研究[J].食品科技,2006,(7):43-47

[7]

Sen R,Swaminathan T.Response surface modeling and optimization to elucidate and analyze the effects ofino-culums age and size on surfactin production[J].Bioche-mical Engineering Journal,2004,21(2):141-148

[8]冯培勇,钟旭生,杨立红,等.利用响应面法优化茶薪菇产纤维素酶的发酵条件[J].食品科学,2009,30(7):162-165

280240

2001601205.104.85

4.60

4.35

4.1021.00

23.50

26.00

28.5031.00R 1

b

280250220190160

5.104.85

4.604.354.1031.00

33.50

36.00

38.50

41.00R 1

c 食品科技网站(https://www.doczj.com/doc/219715665.html,/)投稿功能已经开通,2010年10月1日起邮箱不再执行收稿工作,邮箱自动回复将提示您登录投稿平台,请各位作者注意邮箱的自动回复。投稿流程可以登录食品科技博客(https://www.doczj.com/doc/219715665.html,/shipinkj)参考。审稿期仍为两个月,您可以通过您的稿件编号等信息在平台进行稿件进度及结果的查阅。

如果您的稿件录用后(一定是确定已录用的稿件,如果您的稿件在录用之前需要修改,请您用您的稿件编号登录,在平台上投送修改稿)编辑需要您修改或补充资料,请您将补充的资料或是修改稿件发送至原收稿邮箱。另外我刊没有启用中国知网的采编平台,请您不要到知网投稿,以免耽误您稿件的审阅。某些代发论文网站与我社均毫无联系,请您注意以免上当受骗。

本刊启事

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

图2

温度和(NH 4)2SO 4对酶活的响应面图

图3CMC-Na 和(NH 4)2SO 4对酶活的响应面图

·9

·

Design-Expert软件在响应面优化法中的应用详解

Design-Expert 软件在响应面优化法中的应用 (王世磊郑州大学450001) 摘要:本文简要介绍了响应面优化法,以及数据处理软件Design-ExpertDesign-Expert的相关知识,最后结合实例,介绍该软件在响应面优化法上的应用实例。 关键词:数据处理,响应面优化法,Design-Expert软件 1.响应面优化法简介 响应面优化法,即响应曲面法( Response Surface Methodology ,RSM),这是一种实验条件寻优的方法,适宜于解决非线性数据处理的相关问题。它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和统计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值[1]。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。 响应面优化法,考虑了试验随机误差;同时,响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量、解决生产过程中的实际问题的一种有效方法[2]。 响应面优化法,将实验得出的数据结果,进行响应面分析,得到的预测模型,一般是个曲面,即所获得的预测模型是连续的。与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的实验点进行分析。 当然,响应面优化法自然有其局限性。响应面优化的前提是:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法师不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。 结合文献报道,一般实验因素与水平的选取,可以采用多种实验设计的方法,常采用的是下面几个: 1.使用已有文献报道的结果,确定响应面优化法实验的各因素与水平。 2.使用单因素实验[3],确定合理的响应面优化法实验的各因素与水平。 3.使用爬坡实验[4],确定合理的响应面优化法实验的各因素与水平。 4.使用两水平因子设计实验[5],确定合理的响应面优化法实验的各因素与水平。 在确立了实验的因素与水平之后,下一步即是实验设计。可以进行响应面分析的实验设计有多种,但最常用的是下面两种:Central Composite Design-响应面优化分析、Box-Behnken Design-响应面优化分析。 Central Composite Design,简称CCD,即中心组合设计,有时也成为星点设计。其设计表是在两水平析因设计的基础上加上极值点和中心点构成的,通常实验表是以代码的形式编排的,实验时再转化为实际操作值(,一般水平取值为0,±1,±α,其中0为中值,α为极值, α=F*(1/ 4); F 为析因设计部分实验次数, F = 2k或F = 2 k×(1/ 2 ),其中 k为因素数,F = 2 k×(1/ 2 一般 5 因素以上采用,设计表有下面三个部分组成[6]:(1) 2k或 2 k×(1/ 2 )析因设计。(2)极值点。由于两水平析因设计只能用作线性考察,需再加上第二部分极值点,才适合于非线性拟合。如果以坐标表示,极值点在相应坐标轴上的位置称为轴点(axial point) 或星点( star point) ,表示为(±α,0,…, 0) , (0,±α,…, 0) ,…, (0, 0,…,±α)星点的组数与因素数相同。(3)一定数量的中心点重复试验。中心点的个数与CCD设计的特殊性质如正交

土壤纤维素酶测定方法

纤维素酶 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。 四、结果计算 土壤纤维素酶活性(μg·g-1·(24 h)-1)=(C*V*f)/ dwt 式中C为样品的葡萄糖含量(μg·ml-1);V为土壤溶液体积(30 ml);f为稀释倍数(25);

响应面优化实验(优选借鉴)

实验报告课程名称:发酵工艺及其优化实验名称:响应面优化实验专业:生物工程 学号: 060512212 姓名:韦达理 实验地点:笃行楼303 实验日期:2015年5月16日常熟理工学院

[实验目的和要求] 1. 了解响应面优化实验的原理。 2. 熟悉design expert软件的基本操作。 3. 熟悉响应面优化实验的具体流程。 4. 优化香菇多糖发酵培养基 [实验器材] Design expert软件 [实验原理和方法] 香菇多糖:是一种生理活性物质。它具有抗病毒、抗肿瘤、调节免疫功能和刺激干扰素形成等功能。 提取方法:从香菇子实体或经深层发酵后的发酵液中提取。香菇子实体生长周期长,产量和多糖得率均较低。而深层发酵培养香菇菌丝体不仅发酵液中含有与子实体相当或更高的营养物质,同时还可利用农副产品作原料,成本低,周期短,易于大规模生产,因此已得到广泛应用于重视。 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程

食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。 2.1 数据的输入

2.2 Box-Behnken响应面试验设计与结果 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 图 5 由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。

响应面优化实验方案设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域; ④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

响应面法实验

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.等等………… 2注意事项 对于构造高阶响应面,主要有以下两个问题: 1,抽样数量将显著增加,此外,普通的实验设计也将更糟。 2,高阶响应面容易产生振动。 响应面法(response surface methodology,记为RSM)最早是由数学家Box和Wilson于1951年提出来的。就是通过一系列确定性的“试验”拟合一个响应面来模拟真实极限状态曲面。其基本思想是假设一个包括一些未知参量的极限状态函数与基本变量之间的解析表达式代替实际的不能明确表达的结构极限状态函数。响应面方法是一项统计学的综合试验技术,用于处理几个变量对一个体系或结构的作用问题,也就是体系或结构的输入(变量值)与输出(响应)的转换关系问题。现用两个变量来说明:结构响应Z与变量x1,x2具有未知的、不能明确表达的函数关系Z=g(x1,x2)。要得到“真实”的函数通常需要大量的模拟,而响应面法则是用有限的试验来回归拟合一个关系Z= g’(x1,x2),并以此来代替真实曲面Z=g(x1,x2),将功能函数表示成基本随机变量的显示函数,应用于可靠度分析中。响应面方法实际上源于一种试验设计方法,试验设计方法是用来研究设计参数对模型设计状况影响的一种取样策略,决定了构造近似模型所需样本点的个数和这些点的空间分布情况。目前广泛应用于计算机仿真试验设计的主要方法是拉丁超立方体抽样和均匀设计,这两种试验设计能应用于多种多样的模型,且对模型的变化具有稳健性。 3响应面分析

产纤维素酶菌株的筛选及其酶活的测定模板

本科开放项目 题目:产纤维素酶菌株的筛选及其酶活的测定 学生姓名: 指导教师: 学院: 专业班级: 2016年3月

产纤维素酶菌株的筛选及其酶活的测定 摘要 纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。据估计,纤维素生成量每年高达1000亿吨。我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。纤维素的降解是自然界碳素循环的中心环节。但由于纤维素的结构特点,对纤维素的利用仍然非常有限。目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。 关键词:纤维素降解高活性纤维素酶微生物菌株

目录 第1章绪论 (1) 1.1 实验原理 (1) 1.2 实验仪器及试剂 (1) 1.2.1 实验材料 (1) 1.2.2 实验仪器 (1) 1.2.3 培养基 (2) 第2章实验步骤 (3) 2.1 采样培养 (3) 2.2 初筛 (3) 2.3 复筛 (3) 2.4 酶活的测定 (3) 2.4.1原理 (3) 2.4.2溶液配制 (3) 2.4.3实验步骤 (4) 第3章实验结果 (6) 3.1 标准曲线的绘制 (6) 3.2 菌株复筛结果 (6) 3.3 测定纤维素酶活力结果 (7) 结束语 (8) 参考文献 (9)

纤维素酶的检测方法

纤维素CMC酶、FPA酶和半纤维素酶测定 1.纤维素CMC酶 1.0标题 用3.5一二硝基水杨酸法测定纤维素CMC酶活性单位。 2.0范围 生产分析和质量控制部门适用。 3.0原理 纤维素CMC酶(EC3.2.1.4)水解羧基纤维素分子中β-1.4葡萄糖苷键,释放出的还原糖(以葡萄糖计)与3.5二硝基水杨酸(DNS)反应,产生颜色变化,这种颜色变化与释放还原糖(以葡萄糖计)的量成正比关系,即与酶样品中的酶活性成正比。通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。 4.0试剂 4.1无水醋酸钠(分析纯) 4.2冰醋酸(分析纯) 4.3 3.5-二硝基水杨酸 4.4无水葡萄糖 4.5四水酒石酸钾钠(分析纯) 4.6氢氧化钠(分析纯) 4.7重蒸苯酚(分析纯) 4.8无水亚硫酸钠(分析纯) 4.9叠氮化钠(分析纯) 4.10羧甲基纤维素钠 5.0仪器 5.1水浴锅(恒温)50±1℃ 5.2电热干燥箱80±1℃ 5.3 722型分光光度机计 5.4分析天平感量0.1㎎ 5.5一级玻璃制品 5.6电冰箱 6.0试剂的准备 6.1乙酸-乙酸钠缓冲溶液(PH=4.8) 溶液A:量取冰醋酸6ml,定容至1000ml,制成0.1M醋酸钠溶液。 溶液B:称取8.2g醋酸钠,溶解后容至1000ml,制成0.1M醋酸钠溶液。 以A:B=4:6的比例混合,低温冷藏备用。 6.2 DNS试剂: 溶液A:称分析纯NaOH 104g溶于1300ml水中,加入30g分析纯3.5一二硝基水杨酸。 溶液B:称分析纯酒石酸钾钠910g,溶于2500ml热水中,再称取25g重蒸苯酚和25g无水亚硫酸钠加入酒石酸钾钠溶液。 将A、B溶液混合,定容至5000ml,贮存于棕色瓶中,暗处放置一星期后可使用。 6.3 CMC溶液:用羧甲基纤维素钠(CMC)以PH4.8醋酸缓冲液配成1%的溶液。 7.0标准曲线制作: 7.1无水葡萄糖80℃烘干至恒重。 7.2准确称取1.000g溶于1000ml水中,加10mg叠氮化钠防腐,4℃冷藏备用。 7.3标准葡萄糖曲线制作

响应面优化实验

响应面优化实验 实验报告 课程名称,发酵工艺及其优化 实验名称, 响应面优化实验 专业, 生物工程 学号, 060512212 姓名, 韦达理 实验地点, 笃行楼303 实验日期,2015年5月16日 常熟理工学院 [实验目的和要求] 1. 了解响应面优化实验的原理。 2. 熟悉design expert软件的基本操作。 3. 熟悉响应面优化实验的具体流程。 4. 优化香菇多糖发酵培养基 [实验器材] Design expert软件 [实验原理和方法] 香菇多糖:是一种生理活性物质。它具有抗病毒、抗肿瘤、调节免疫功能和刺激干扰素形成等功能。 提取方法:从香菇子实体或经深层发酵后的发酵液中提取。香菇子实体生长周期长,产量和多糖得率均较低。而深层发酵培养香菇菌丝体不仅发酵液中含有与子

实体相当或更高的营养物质,同时还可利用农副产品作原料,成本低,周期短,易于大规模生产,因此已得到广泛应用于重视。 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。响应面曲线法的使用条件有:?确信或怀疑因素对指标存在非线性影响;?因素个数2-7个,一般不超过4个;?所有因素均为计量值数据;试验区域已接近最优区域;?基于2水平的全因子正交试验。 进行响应面分析的步骤为:?确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;?创建“中心复合”或“Box-Behnken”设计;?确定试验运行顺序(Display Design);?进行试验并收集数据;?分析试验数据;?优化因素的设置水平。响应面优化法的优点:?考虑了试验随机误差?响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法?与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 [实验数据和结果] 实验步骤 1. 输入三因素及其水平,设计响应面实验。

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

响应面法 试验设计与优化方法

响应面法试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型 作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验 数据().假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建 立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方 程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的 大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验 (试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应 的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进 行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试 验值,为计算值,则两者的相关系数R定义为其中 对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.

DesignExpert响应面分析实验设计案例分析

学校 食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 1 2 3 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

2.1 数据的输入 图 1 2.2 Box-Behnken响应面试验设计与结果 图 2 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

纤维素酶活力的测定

β-糖苷酶活力的测定(CMC) 一目的: 掌握CMC酶活力测定纤维素酶的原理及测定方法。 原理: 纤维素酶能从底物羧甲基纤维素钠(CMC-Na)中分解出还原糖,还原糖又同3,5-而硝基水杨酸发生反应,产生一种黄橙混合色,用分光光度计可测定其色度,计算酶活力。 二试剂: 1.3,5-而硝基水杨酸显色剂(又称DNS试剂): 称取10g3,5-而硝基水杨酸,溶于蒸馏水中,加入20g分析纯NaOH,200g酒石酸钾钠,加税500ml,升温溶解后,加入重蒸酚2g,无水亚硫酸钠0、5g,加热搅拌,待全部溶解后,定容至1000ml。贮存于棕色瓶中,室温保存,放置一周后使用。 2.0、1mol/LpH4、5醋酸-醋酸钠缓冲液:称取结晶醋酸钠(CH3COONa、3 H2O)13.61g,醋酸(CH3COOH)6、00g,用蒸馏水溶解,并定容至1000 ml,配好后用pH计矫正。 3、1mg/ml葡萄糖标准溶液:准确称取100mg分析纯葡萄糖(预先在70℃、600nm汞柱下干燥5h至恒重),用少量蒸馏水溶解并定容至100ml,冰箱中保存备用。 4.代测酶液:称取酶粉1、0g(或吸取酶液1、00ml),先用少量的0、05mol/L pH4、5醋酸-醋酸钠缓冲液溶解,并用玻璃棒捣研,然后将上清液小心倾入适当的容量瓶中,沉渣部分再加上述缓冲液溶解,如此反复捣研3-4次,最后全部移入容量瓶中,用缓冲液定容至刻度,40℃水浴锅中浸提1h,用四层纱布或脱

脂棉过滤,滤液供测定用。 5、底物:0.5%羧甲基纤维素钠(CMC-Na)溶液,配制方法为城区0、5000g 羧甲基纤维素钠(Sigma公司生产),准确至0、001g,用上述缓冲液溶解定容至100ml,冰箱中保存,有效期3d。 三仪器: 分析天平、变温电炉、恒温水浴锅、分光光度计、秒表等。 四方法步骤: 1.标准曲线的绘制 分别吸取0.2, 0.4, 0、6, 0、8, 1.0, 1.2, 1.4ml的1mg/ml葡萄糖液于7支20ml的比色管中,分别用蒸馏水补充体积至2、oml,各加3,5-而硝基水杨酸1、5ml,在沸水浴中煮沸5min,冷却后分别用蒸馏水定容至20ml,摇匀。以2ml蒸馏水加DNS溶液1、5ml,按上述同样操作为空白调零,在540nm处比色。标准曲线绘制个试管所含物质的体积见下表。以吸光度A值为纵坐标,葡萄糖毫克数W(mg)为横坐标绘制出标准曲线(理论上此线应过原点)。 标准曲线绘制各试管所含物质的体积

纤维素酶活力的测定

β-糖苷酶活力的测定(CMC) 一目的: 掌握CMC酶活力测定纤维素酶的原理及测定方法。 原理: 纤维素酶能从底物羧甲基纤维素钠(CMC-Na)中分解出还原糖,还原糖又同3,5-而硝基水杨酸发生反应,产生一种黄橙混合色,用分光光度计可测定其色度,计算酶活力。 二试剂: 1.3,5-而硝基水杨酸显色剂(又称DNS试剂):称取10g3,5-而硝基水杨酸,溶于蒸馏水中,加入20g分析纯NaOH,200g酒石酸钾钠,加税500ml,升温溶解后,加入重蒸酚2g,无水亚硫酸钠0.5g,加热搅拌,待全部溶解后,定容至1000ml。贮存于棕色瓶中,室温保存,放置一周后使用。 2.0.1mol/L pH4.5醋酸-醋酸钠缓冲液:称取结晶醋酸钠(CH3COONa.3 H2O)13.61g,醋酸(CH3COOH)6.00g,用蒸馏水溶解,并定容至1000 ml,配好后用pH计矫正。 3.1mg/ml葡萄糖标准溶液:准确称取100mg分析纯葡萄糖(预先在70℃、600nm汞柱下干燥5h至恒重),用少量蒸馏水溶解并定容至100ml,冰箱中保存备用。 4.代测酶液:称取酶粉1.0g(或吸取酶液1.00ml),先用少量的0.05mol/L pH4.5醋酸-醋酸钠缓冲液溶解,并用玻璃棒捣研,然后将上清液小心倾入适当的容量瓶中,沉渣部分再加上述缓冲液溶解,如此反复捣研3-4次,最后全部移入容量瓶中,用缓冲液定容至刻度,40℃水浴锅中浸提1h,用四层纱布或脱脂

棉过滤,滤液供测定用。 5.底物:0.5%羧甲基纤维素钠(CMC-Na)溶液,配制方法为城区0.5000g 羧甲基纤维素钠(Sigma公司生产),准确至0.001g,用上述缓冲液溶解定容至100ml,冰箱中保存,有效期3d。 三仪器: 分析天平、变温电炉、恒温水浴锅、分光光度计、秒表等。 四方法步骤: 1.标准曲线的绘制 分别吸取0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4ml的1mg/ml葡萄糖液于7支20ml的比色管中,分别用蒸馏水补充体积至2.oml,各加3,5-而硝基水杨酸1.5ml,在沸水浴中煮沸5min,冷却后分别用蒸馏水定容至20ml,摇匀。 以2ml蒸馏水加DNS溶液1.5ml,按上述同样操作为空白调零,在540nm 处比色。标准曲线绘制个试管所含物质的体积见下表。以吸光度A值为纵坐标,葡萄糖毫克数W(mg)为横坐标绘制出标准曲线(理论上此线应过原点)。 标准曲线绘制各试管所含物质的体积 2.酶样测定

响应面法

响应面 所谓的响应面是指响应变量η与一组输入变量(ζ1,ζ2,ζ3...ζk)之间的函数关系式:η=f(ζ1,ζ2,ζ3...ζk)。依据响应面法建立的双螺杆挤压机的统计模型可用于挤压过程的控制和挤压结果的预测。 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图.建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程.在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述. 什么叫响应面法? 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.

土壤纤维素酶测定方法

纤维素酶活性测定 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。

相关主题
相关文档 最新文档