当前位置:文档之家› 三相电压型PWM整流器设计与仿真

三相电压型PWM整流器设计与仿真

三相电压型PWM整流器设计与仿真
三相电压型PWM整流器设计与仿真

1 绪论

随着功率半导体器件技术的进步,电力电子变流装置技术得到了快速发展,出现了以脉宽调制(PWM)控制为基础的各种变流装置,如变频器、逆变电源,高频开关电源以及各类特种变流器等,电力电子装置在国民经济各领域取得了广泛的应用,但是这些装置的使用会对电网造成严重的谐波污染问题。传统的整流方式会无论是二极管不控整流还是晶闸管相控整流电路能量均不能双向传递,不仅降低能源的利用率还会增加一定的污染,主要缺点是:

1)无功功率的增加造成了装置功率因素降低,会导致损耗增加,降低电力装置的利用率等;

2)谐波会引起系统内部相关器件的误动作,使得电能的计量出现误差,外部对信号产生严重干扰;

3)传统的结构,能量只能单向流动,使得控制系统的能量利用率不高,不能起到节能减排的作用。

电网污染的日益严重引起了各国的高度重视,许多国家都已经制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE),国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。国际电工学会于1988年对谐波标准IEC555-2进行了修正,欧洲制定IEC1000-3-2标准。我国国家技术监督局也于1994年颁布了《电能质量公用电网谐》标准(GB/T 14549-93),传统变流装置大多数已不符合这些新的标准,面临前所未有的挑战。

目前,抑制电力电子装置对电网污染的方法有两种:一是设置补偿装置。通过对已知频率谐波进行补偿,这种方式适用于所有谐波源,但其缺点是只能对规定频率的谐波进行补偿,应用范围受限。并且当受到电网阻抗特性或其他外界干扰,容易发生并联谐振,导致某些谐波被放大进而使滤波器过载或烧毁;而是对整流器装置本身性能进行改造,通过优化控制策略和参数设置,使网侧输入的电压和电流呈现接近于同相位的正弦波,实现单位功率因数运行即功率因数为1。

目前治理谐波和无功主要是采用功率因数校正技术(PFC技术),由于PWM 调制技术引入整流器中,使得整流器能够获得较好的直流电压并且实现网侧电流正弦化,PWM整流技术已经成为治理电网污染的主要技术手段。PFC技术虽然具有控制简单、功率因数高、总谐波失真小和易于电路设计等优点,但是其结构并没有发生根本变化只是在输出侧加了一个开关管,而重要的交流侧还是选取二极管做为开关器件,其整流方式只能是单一方向的不能实现能量的双向流动,它

在单相电路中有着广泛的用途,但是由于其自身性质决定其难以用于三相电电路中;PWM整流技术交流侧采用全控器件,与传统PFC相比,PWM整流技术可以在任意功率因数运行可以实现能量双向流动而且具有较好的电流品质和更快的动态响应速度,因而真正实现了“绿色电能变换”提高了系统电能的利用率减少了资源的浪费。由上述分析可知,对PWM整流器进行控制研究符合建设资源节约型和环境友好型社会发展的需要,具有重要经济和社会价值。

PWM整流器可实现能量双向流动并具有优良的输出特性,与二极管不控整流和晶闸管相控整流相比,具有以下特点:(1)可以实现能量的双向流动且功率因数任意可调;(2)网侧电流近似正弦化,谐波含量少;(3)具有较好的动态性能,适合动态性能要求高且开关频率变化快的场合;(4)直流输出电压稳定且电压波形品质高。

PWM整流器在功率因数校正、谐波抑制以及能量回馈等应用方面具有其突出的优势,故很早就已经成为电力电子技术研究的最具意义的内容之一。经过各国学者和专家多年的实验和研究,在数学模型、主电路拓扑结构和控制策略等各个方面,PWM整流器均取得了较为成功的研究成果。对于学生来说,设计高性能三相PWM整流器是很具有学习和研究价值的课题。

PWM整流器的分类方法很多,最基本的分类方法是按照直流储能形式可分为电压型整流器(VSR)和电流型整流器(CSR)两种,前者直流侧采用电容为储能元件,提供一个平稳的电压输出,直流侧等效为一个低阻电压源;后者直流侧采用电感作为储能元件,提供一个平稳的电流输出,直流侧等效为一个高阻电流源。由于VSR的结构简单,储能效率高、损耗较低、动态响应快,控制方便,使得VSR一直是PWM整流器研究和应用的重点,本文主要讨论三相电压型PWM整流器的设计与仿真。

第一章绪论,说明了PWM整流器的研究和学习的价值,以及整个论文的结构;第二章介绍了PWM整流器在国内外的研究现状;第三章建立电压型PWM 整流器的数学模型;第四章介绍了很据PWM整流器的数学模型对有功电流和无功电流进行解耦控制,设计了电压、电流双闭环调节器,对空间矢量脉宽调制(space vector pulse width modulation)技术进行详细分析;第五章对设计的整个PWM整流系统进行仿真,分析设计的控制器对扰动的抑制作用以及输入输出电压的动静态性能。

2 研究现状

自20 世纪90 年代以来,PWM整流技术一直是学术界关注和研究的热点。随着研究的深入,PWM整流技术的相关应用研究也得到发展,如有源电力滤波(APF)、超导储能(SMES)、电气传动(ED)、高压直流输电(HVDC)、统一潮流控制器(UPFC)、新型UPS 以及太阳能、风能等再生能源的并网发电等,并随着现代控制理论、微处理器技术以及现代电子技术的推陈出新,这些应用技术的研究又促使PWM整流技术日趋成熟,其主电路已从早期的半控型器件桥路发展到如今的全控型桥路;拓扑结构已成从单相、三相电路发展到多相组合及多电平拓扑电路;PWM调制方式从由单纯的硬开关调制发展到软开关调制;功率等级从千瓦级发展到兆瓦级,而在主电路类型上既有电压源型整流器,又有电流源型整流器,两者在工业上已成功投入使用,但却多采用模拟芯片PWM波发生器,在闭环和智能调节比如在风力发电的并网等方面均存在较大问题,尤其是在国内,基于数字信号微处理器的PWM整流器的研究还只是处于初步发展阶段。

当前PWM整流器的研究主要体现在如下几个方面:

1. 关于PWM整流器数学模型的研究

PWM整流器数学模型的研究是PWM整流器及其控制技术的基础。A.

W.Green提出了基于坐标变换的PWM整流器连续、离散动态数学模型,R.Wu

和S.B.Dewan等较为系统地建立了PWM整流器的时域模型,并将时域模型分解成高频和低频模型,且给出了相应的时域解。而Chun T.Rim和DongY.Hu等则

利用局部电路的dq坐标变换建立了PWM整流器基于变压器的低频等效模型电路,并给出了稳态、动态特性分析。在此基础上,Hengchun Mao等人建立了一

种新颖的降阶小信号模型,从而简化了PWM整流器的数学模型及特性分析。

2. 关于PWM整流器拓扑结构的研究

PWM整流器的主电路拓扑结构近十几年来没有重大突破,主电路设计的基本原则是在保持系统的基础上,尽量简化电路拓扑结构,减少开关元件数,降低总成本,提高系统的可靠性。PWM整流器拓扑结构可分为电流型和电压型两大类。其中电压型PWM整流器最显著的拓扑特征是直流侧采用电容进行电流储能,从而使整流器直流侧呈低阻抗的电压源特性。电流型PWM整流器直流侧则是采用大电感进行电流储能,使得整流器直流侧呈高阻抗的电流源。根据装置功率的不同,研究的侧重点不同。在中小功率场合,研究集中在减少功率开关和改进直流输出性能上;对于大功率场合,研究主要集中在多电平拓扑结构、变流器组合以及软开关技术上。多电平拓扑结构的PWM整流器主要应用于高压大容量场合。而对大电流应用场合,常采用变流器组合拓扑结构,即将独立的电流型PWM整

流器进行并联组合。

3. 关于电压型PWM整流器电流控制技术的研究

电压型PWM整流器有两个控制目标,一是得到稳定的直流电压,另一个是使网侧电流正弦化并跟踪电网电压变化。为了使电压型PWM整流器网侧呈现受控电流源特性,其网侧电流的控制至关重要,决定了PWM整流器的动静态性能。电压型PWM整流器网侧电流控制策略主要分成两类:间接电流控制策略和直接电流控制策略。间接电流控制其网侧电流的动态响应慢,且对系统的参数比较敏感,适用性不高,因此逐步被直接电流控制所取代。与间接电流控制相比,直接电流控制电流响应速度快,系统鲁棒性强,且容易实现过流保护,是当今PWM 整流器电流控制方案的主流。

4. PWM整流器系统控制策略的研究

控制策略是PWM整流器控制系统的核心,其优劣决定着PWM整流器的动静态性能以及鲁棒性。PWM整流器常用的控制方法有滞环电流控制、固定开关频率电流控制、预测电流控制、直接功率控制、无电网电动势传感器及无网侧电流传感器控制、电网不平衡条件下的PWM整流器控制、滑模变结构控制、反馈精确线性化控制、基于Lyapunov稳定性理论的控制、模糊控制等,具体如下:

1) 滞环电流控制

滞环电流控制是一种瞬时值反馈控制模式,其基本思想是将检测到的实际电流信号与电流给定信号值相比较,若实际电流大于指令值,则通过改变变流器的开关状态使之减小,反之增大,使得实际电流围绕指令电流做锯齿状变化,并将偏差控制一定范围内,形成滞环。该控制方法结构简单,电流响应速度快,易于实现电流限制,且控制与系统参数无关,系统鲁棒性好,但是开关频率在一个工频周期内不固定,谐波电流频谱随机分布,网侧滤波器设计较为困难。

2)固定开关频率PWM电流控制

固定开关频率PWM电流控制,一般是指PWM载波(如三角波)频率固定不变,而以电流偏差调节信号为调制波的PWM控制方法。该控制方法克服了滞环电流控制开关频率不固定的缺点,电流响应速度快,系统鲁棒性高,但当电流内环均采用PI调节时,三相静止坐标系中的PI电流调节器无法实现电流的无静差控制。

3)预测电流控制

预测电流控制的思想是从开关的在线优化出发,根据负载大小及给定电流矢量的变化率,推算出使得下一周期电流满足期望值的电压矢量来控制PWM整流器的开关。预测电流控制具有快速的电流响应速度,但其控制效果依赖于系统参数,鲁棒性不高,且受处理器采样和控制延时影响较大。

4)直接功率控制

直接功率控制通过对PWM整流器瞬时有功和无功进行直接控制,达到控制瞬时输入电流的目的。该方法具有结构、算法简单,系统动态性能好,鲁棒性强,容易数字化实现,对交流侧电压不平衡和谐波失真也具有一定补偿作用。

5) 无电网电动势传感器及无网侧电流传感器控制

无电网电动势传感器及无网侧电流传感器控制是为进一步简化电压型PWM 整流器的信号检测而提出的控制方法。无电网电动势传感器控制主要包括两类电网电动势的重构方案:其一是通过复功率的估计来重构电网电动势,是一种开环估计算法,因而精度不高,并且在复功率估计算法中由于含有微分项,容易引入干扰;其二是基于网侧电流偏差调节的电网电动势重构,是一种闭环估计算法,它采用网侧电流偏差的PI调节来控制电网电动势误差,因而精度较高。无网侧电流传感器控制是通过直流侧电流的检测来重构交流侧电流。

6) 电网不平衡条件下的PWM整流器控制

为了使PWM整流器在电网不平衡条件下仍能正常运行,学术界提出了不平衡条件下,网侧电流和直流电压的时域表达式,电网负序分量被认为是导致网侧电流畸变的原因,同时指出,在电网不平衡条件下,常规的控制方法会使直流电压产生偶次谐波分量,交流侧会有奇次谐波电流。为此,D.Vincenti等人较为系统地提出了正序dq坐标系中的前馈控制策略,即通过负序分量的前馈控制来抑制电网负序分量的影响。但是由于该方法的负序分量在dq坐标下不是直流量,导致PI 调节不能实现无静差控制。因此,又有人提出了正、负序双旋转坐标系控制,该方法实现了无静差控制,是较完善的理论,但是其控制的结构比较复杂,运算量大。

7) 滑模变结构控制

滑模变结构控制本质上是一种非线性控制,其非线性特性表现为控制的不连续性,特点是系统结构并不固定,而是可以在动态过程中,根据系统当前的状态不断变化,迫使系统按照指定的滑动模态运动。采用滑模变结构控制,可以使PWM整流器不依赖于电网电压、开关器件以及负载参数,对参数变化及干扰具有不变性,即强鲁棒性,但控制器设计中滑模系数的选取比较困难,选取不当容易给系统带来不利抖动,造成系统不稳。

8) 反馈精确线性化控制

反馈精确线性化控制利用微分几何理论对非线性系统进行结构分解、分析及控制设计,通过采用适当的非线性坐标变换和非线性状态反馈量,从而使非线性系统得以在大范围甚至在全局范围内线性化,这样就可以方便地使用线性控制理论对非线性系统进行控制器的设计。将反馈精确线性化用于PWM整流器的控制,

可以使输入电流快速跟踪网压且畸变较小,具有良好的鲁棒性。该方法非线性控制器设计比较复杂,涉及多次坐标变换,运算量较大。

9) 基于Lyapunov稳定性理论的控制

现有大多数PWM整流器控制策略是基于小信号模型,应用线性控制理论进行设计。因此,只有在系统的状态和输入在小干扰的情况下能保证系统的稳定,在大范围干扰的情况下,难以使系统稳定,为了保证PWM整流器在大范围干扰的情况下能稳定运行并具有良好的动静态性能,国内外学者已将Lyapunov稳定理论应用到系统控制设计中。对于非线性系统,只要找到合适的Lyapunov函数,就可以利用该函数对系统控制器进行设计,采用Lyapunov稳定理论设计的PWM 整流器,电流跟踪给定值效果明显变好,同时克服了系统参数变化对电流跟踪的影响,在大范围干扰的情况下系统稳定,并具有良好的动态性能,但构造Lyapunov函数比较困难,难以确定最佳能量函数。

10)模糊控制

模糊控制是将系统的动态映射关系通过隶属度函数和模糊规则体现出来,首先将确定性输入量模糊化,利用模糊推理得到模糊输出,再用清晰化的方法得到输出的确定量,这样输入输出是一组规则。采用模糊控制可以使PWM整流器具有如下特点:控制频率不受输入电源频率的限制,只与程序执行周期有关;输入电流快速跟踪电网电压,谐波低,功率因数高;对系统参数不敏感,且能适用负载的非线性变化;模型完全离散化,易于数字实现。

国内目前的研究主要集中于控制方法的实验研究,分析各参数与系统性能之间的关系,并找出改善电流跟踪性能、提高输入功率因数的方法,其中仿真和实验是主要手段,对于系统建模研究较少。

3 三相电压型PWM 整流器系统建模

建立数学模型是深入分析和研究PWM 整流器的工作机理以及动态和静态特性的重要前提。本章的主要内容是建立PWM 整流器在三相静止坐标系和两相同步旋转坐标系下的数学模型,方便进一步为三相电压型PWM 整流器设计合理的控制器,以到达抑制扰动、提高输入输出电压电流的动静态性能的目的。

本文设计的PWM 整流器主电路采用三相电压型拓扑结构,其主电路原理结构如图3-1所示:

L

R

图3-1 三相电压型PWM 整流器主电路

在上图中,2a U 、2b U 、2c U 分别表示三相电网相电压,1a U 、1b U 、1c U 分别为变换器侧相电压,2a i 、2b i 、2c i 分别为网侧相电流,1a i 、1b i 、1c i 分别为变换器

侧相电流,2L 为网侧电感,2R 为网侧电感寄生电阻,1L 为变换器侧电感,1R 为变换器侧电感寄生电阻,f C 为滤波电容,d R 为避免LCL 型滤波器出现零阻抗谐振点而设置的阻尼电阻,1S 、2S 、3S 、4S 、5S 、6S 分别表示6个功率开关,L R 为直流侧负载。

3.1三相静止坐标系下的数学模型

由于三相电压型PWM 整流器的控制器带宽主要位于低频段,因此,需建立在低频段时的数学模型。并且LCL 滤波器在高频段的滤波特性比L 滤波器要好,而在低频段的频率特性与L 滤波器几乎一样。因此在设计三相电压型PWM 整流器位于低频段的数学模型时,可忽略阻尼电阻和滤波电容的影响,将LCL 滤波器等效成L 滤波器进行建模。对于开关管的不同开关状态,建立如下方程:

(,,)1 开关管上桥臂导通 0 开关管下桥臂导通

k S k a b c ?==?? (3-1)

由图3-1所示的主电路拓扑结构,根据基尔霍夫电压、电流定律可得三相电压型PWM 整流器在三相静止坐标系下的数学模型为:

112111*********a T T a a a

b T T b b b

c T T c c c dc a a b b c c L di L R i U U dt di L R i U U dt di L R i U U dt dU C S i S i S i i dt

?+=-???+=-???+=-???=++-? (3-2) 上式中:LCL 滤波器总电感12T L L L =+;总的电感寄生电阻12T R R R =+;1k kN NO U U U =+;kN k dc U S U =,,,k a b c =。对于三相对称系统有:

2221110+0a b c a b c

U U U i i i ++=??+=? (3-3) 联立式(3-2)和(3-3)可得:

,.3dc

NO k k a b c U U S ==-∑ (3-4)

由式(3-4)可得整流器侧相电压为:

,,113k k k dc k a b c U S S U =??=- ??

?∑ (3-5) 3.2 两相静止αβ坐标系下的数学模型

由式(3-3)可知,对于三相对称系统,三相变量中只有两相是独立的,即任意一相变量可由另外两相变量进行表示。因此,三相原始数学模型并不是对该实际对象的最简洁描述,完全可以而且也有必要用两相模型替代。

由三相静止坐标系到两相静止αβ坐标系的变换称为clarke 变换,也叫3s/2s 变换。采用幅值守恒原则(即经clarke 变换前后,通用矢量在各自坐标系中的幅值大小不变)的clarke 变换矩阵为:

/321112223022s s C ??-- ? = - ??

(3-6) 利用式(3-3)的约束条件可将式(3-6)扩展成为:

'/321112220322111222s s C ??-- ? =- ? ? ???

(3-7) 由式(3-7)求反变换可得clarke 逆变换矩阵:

'/231011121122s s C ?? ? ? ?=- ? ? ?-- ???

(3-8) 对式(3-8)所示矩阵,去掉其第三列,可得两相静止αβ坐标系列到三相静止坐标系的变换矩阵为:

'/23101212s s C ?? ? ? ?=- ? - ? (3-9)

根据式(3-6)所示的变换关系,对式(3-2)进行坐标变换可得三相电压型PWM 整流器在两相静止αβ坐标系下的数学模型为:

()112111211132T T T T dc L di L R i U U dt di L R i U U dt dU C S i S i i dt αααα

ββββααββ?+=-???+=-???=+-??

(3-10) 上式中:2U α、2U β分别是三相电网电压在αβ轴的分量;1U α、1U β分别是三相整流器侧电压在αβ轴上的分量;1i α、1i β分别是整流器侧电流在αβ轴的分量;S α、S β分别是开关函数在αβ轴的分量。

3.3两相同步旋转dq 坐标系下的数学模型

由于三相电网电压、电流等是对称的三相正弦变量,对其进行clarke 变换后,其在两相静止αβ坐标系下的α、β轴上的分量仍为正弦变量,而正弦变量不利

于数字化实现,造成了对控制系统设计困难,也对系统的稳态和动态性能造成一定的影响。因此,人们提出了park 变换,也可记为 2s/2r 变换。该变换能够将在两相静止αβ坐标系下的基波正弦变量变换到两相同步旋转dq 坐标系下的直流变量。根据此直流变量可使控制器的设计变得简单。

假定三相电网电压矢量以恒定的角速度ω进行旋转,则可得三相电网电压的表达式为:

()cos cos cos 2020202323a

m b m c m U U t U U t U U t ωθωπθωπθ??=+????=-+? ???????=++? ????

(3-11) 上式中:m U 为三相电网相电压峰值,0θ为初始相位角。

从两相静止αβ坐标系列到两相旋转dq 坐标系的坐标变换矩阵为:

()/cos()sin()sin cos()002200s r t t C t t ωθωθωθωθ++??= ?-++??

(3-12) 由式(3-12)可得两相旋转dq 坐标系到两相静止αβ坐标系的变换矩阵为:

()/cos()sin()sin cos()002200r s t t C t t ωθωθωθωθ+-+??= ?++??

(3-13)

利用式(3-12)和对式(3-10)进行坐标变换,可得到三相VSR 在两相同步旋转dq 坐标系下的数学模型:

()112111211132d T T d d d

q T T q q q dc d d q q L di L R i U U dt di L R i U U dt dU C S i S i i dt ?+=-???+=-???=+-??

(3-14) 上式中:2d U 、2q U 分别为网侧电压在两相同步旋转坐标系下d 轴和q 轴分

量;

1d U 、1q U 分别我整流器侧电压在两相同步旋转坐标系下d 轴和q 轴分量;1d i 、1q i 分别为整流器侧电流在两相同步旋转坐标系下d 轴和q 轴分量;d S 、q S 分别为开关函数在两相同步旋转坐标系下下d 轴和q 轴分量。

4 三相电压型PWM 整流器控制器设计

直接电流控制对整流器输入电流进行闭环控制,可以补偿系统参数变化带来的误差以及管压降和死区的影响,具有良好的动静态性能。而且通过对电流指令

进行限幅就可以很容易的实现过流保护。因此本设计中采用直接电流控制方法。

直接电流控制的PWM 整流器的控制器均采用双闭环结构。电压外环通过对直流母线电压的调节得到交流电流指令瞬时值。电流内环的作用是按电压外环输出的电流指令进行电流控制,使整流器的实际输入电流能够跟踪电流给定,从而实现单位功率因数正弦波电流控制。

4.1 电流内环控制器设计

整流器输入电流的控制性能是整流器控制效果好坏的关键。从本质上讲,整流器是一种将交流侧电能通过整流桥转换到直流侧电能的一种能量变换装置。由于电网电压可认为是不变的,所以对整流器输入电流快速有效的控制也就有效地控制了电能从交流侧到直流侧传递的速度和大小。

由式(3-14)可得,整流器侧输入电流满足下式:

1121111211d T T d d d T q q T T q q q T d di L R i U U L i dt di L R i U U L i dt

ωω?+=-+????+=-+?? (4-1) 由上式可知,d 、q 轴电流除了受到控制变量1d U 、1q U 的影响外,还受到网侧电压2d U 、2q U 的扰动影响。另外从上式还可以看出d 、q 轴电流相互耦合,给控制器的设计造成了一定的困难,将式(4-1)进行拉氏变换,并整理得:

()()1211121111d d d T q T T q q q T d T T i U U L i L s R i U U L i L s R ωω?=-+?+???=-+?+?

(4-2) 由于d 轴电流和q 轴电流之间具有对称性,所以此处仅讨论d 轴电流1d i 的控制器的设计,q 轴电流的控制器可用类似的方法求出。以1d i 为被控对象,1d U 作为控制器的输出,由式(4-2)可得d 轴电流闭环反馈控制框图如下:

图4-1 d 轴电流内环闭环控制框图

由图4-1知,电流闭环控制器输出1d U 为:

()()111d d d U C s i i *=- (4-3)

由图4-1可知,d 轴电流不仅与电流给定有关,而且还受到q 轴电流和电网电压d 轴分量的干扰。于是可用前馈解耦算法消除耦合的q 轴电流和电网电压d 轴分量干扰的影响。采用前馈解耦算法的d 轴电流内环闭环控制框图如下:

图4-2 采用前馈解耦算法的d 轴电流内环闭环控制框图

由图4-2可得,采用前馈解耦后的闭环控制器输出为:

()()11121d d d d T q U C s i i U L i ω*=-++ (4-4)

简化图4-2可得:

图4-3 前馈解耦后的d 轴电流内环闭环控制框图

从图4-3中,可以看到采用前馈解耦方法消除q 轴耦合电流和电网电压的扰动后,电流内环被控对象可以简化成一个简单的一阶惯性环节。同时,由于引入

电网扰动电压作为前馈补偿,大大提高了系统的抗干扰能力。

通常情况下,选择电流控制器()C s 为PI 控制器,其传递函数为:

()(),1iP i iI iP iP iI i i

K s K K C s K K s s τττ+=+== (4-5) 考虑电流内环信号采样的延时和PWM 控制的小惯性特性,已解耦的d 轴电流内环结构如图4-4所示:

图4-4 d 轴电流内环控制框图 上图中,s T 为电流内环电流采样周期(也为PWM 开关周期),PWM K 为桥路

PWM 等效增益。将小时间常数

2

s T 、s T 合并,可得简化的电流内环结构,如下图所示:

图4-5 化简后的d 轴电流内环控制框图 当考虑电流内环需要获得较快的电流跟随性能时,可按典型Ⅰ型系统设计电流调节器。从图4-5中可以看出,只需将PI 调节器的零点抵消电流控制对象传递函数的极点即可。即T i T

L R τ=,经校正后的电流内环开环传递函数为: ()()

1.51iP PWM oi T i s K K W s R s T τ=+ (4-6) 由典型 I 型系统最优参数整定关系,当取系统阻尼比0.707ξ=时,有:

1.512

s iP PWM T i T K K R τ= (4-7) 求解可得:

233T i T iP s PWM s PWM iP T iI i s PWM R L K T K T K K R K T K ττ?==????==??

(4-8) 式(4-8)位电流内环PI 调节控制参数的计算公式。

由图4-5还可求得解耦后的电流内环闭环传递函数为:

()21

1.51ci T i s T i iP PWM iP PWM W s R T R s s K K K K ττ=++ (4-9)

当开关频率足够高,即s T 足够小时,由于2s 项系数远小于s 项系数,因此可忽略2s 项,则式(4-9)可化简为:

()11ci T i iP PWM

W s R s K K τ=+ (4-10) 将式(4-8)代入(4-10)可得电流内环简化都的等效传递函数为:

()113ci s W s T s

=+ (4-11) 式(4-11)表明:当电流内环按典型Ⅰ型系统设计时,电流内环可近似等效为一个惯性环节,其惯性时间常数为3s T 。显然,当开关频率足够高时,电流内环具有较快的动态响应。

当闭环控制系统的闭环增益减少至-3dB 或其相移为45-时,该点可定义为闭环系统频带宽度b f 。对于按典型Ⅰ型系统设计的三相电压型PWM 整流器电流

内环系统,由于该电流内环可等效成一阶惯性环节,因此电流内环频带宽度bi f 为:

()111232020

bi s s s f f T T π=≈= (4-12) 上式中,s f 为电流内环PWM 开关调制频率。由式(4-12)可知,按上面讨论的方法设计的电流内环控制器不仅满足快速性要求,同时对高频干扰,如开关频率噪声也有较强的抑制能力。

4.2 电压外环控制器设计

电压外环控制的目的是为了稳定整流器直流侧电压dc U 。令三相电网基波电动势为:

()222cos 2cos 32cos 3a

m b m c m U U t U U t U U t ωωπωπ??=????=-? ???????=+? ????

(4-13) 为简化控制系统设计,当开关频率远高于电网电压基波频率时,可忽略PWM 分量,即只考虑开关函数(),,k S k a b c =的低频分量,则:

()0000.5cos 0.520.5cos 0.5320.5cos 0.53a

b b S m t S m t S m t ωθωπθωπθ??=-+????=--+? ???????=+-+? ????

(4-14) 上式中0θ为开关函数基波初始相位角;m 为PWM 调制比()1m ≤。对于单位功率因数正弦波电流控制,三相电压型PWM 整流器网侧电流为:

()111cos 2cos 32cos 3a

m b m c m i I t i I t i I t ωωπωπ??=????=-? ???????=+? ????

(4-15) 直流侧电流dc i 可由开关函数描述如下:

111dc a a b b c c i S i S i S i =++ (4-16)

由式(4-14)、(4-15)、(4-16)可得:

()00.75cos dc m i mI θ≈ (4-17)

综合以上分析,可得三相 VSR 电压外环控制结构图如下所示:

图4-6 三相 VSR 电压外环控制结构图

上图中,v τ为电压外环采样小惯性时间常数;vP K 、v T 为PI 调节器参数;()ci W s 为电流内环闭环传递函数。

由前面的分析已知()113ci s W s T s

=+。由于()00.75cos m mI θ是一时变环节,这给电压环设计带来困难。为此可以考虑以该环的最大比例增益0.75代替。因为最大增益对整个电压环的稳定性影响最大,所以这种近似是合理的。将小时间常数v τ和电流内环等效时间常数3s T 合并得3ev v s T T τ=+。在不考虑负载电流L i 扰动的情况下,经简化的电压环控制结构图如下图所示:

图4-7 三相 VSR 电压外环控制简化结构图

由于电压外环的主要作用是稳定整流器直流侧电压,因此,对系统进行设计时,应着重考虑电压外环的抗干扰性能。此时,可按典型Ⅱ型系统设计电压调节器。由图4-7可得电压外环开环传递函数为:

()()()20.7511vP v ov dc v ev K T s W s C T s T +=

+ (4-18) 电压环中频宽v h 为:

v v ev

T h T = (4-19) 由典型Ⅱ型系统控制器参数整定关系得:

220.7512vP v

dc v v ev

K h C T h T += (4-20) 综合考虑电压外环控制系统的抗扰性和跟随性,工程上一般取中频宽5v v ev

T h T ==,将5v h =代入式(4-20),可得电压外环PI 调节参数为: 545v ev dc vP ev T T C K T =???=??

(4-21) 由上式得:

45425dc vP ev vP dc

vI v ev C K T K C K T T ?=????==??

(4-22) 另外,当采用典型Ⅱ型系统设计电压环时,电压环控制系统截止频率c ω为:

1112c S ev T T ω??=+ ???

(4-23) 当v s T τ=时,由式(4-19)可得:

()55320v ev v s s T hT T T τ==+=

(4-24) 由式(4-23)和式(4-24)可得:

1113

220420c s s s

T T T ω??=+= ???

(4-25) 则电压环控制系统频带宽度bv f 为:

3

0.0242202c

bv s s f f T ωππ

=≈?

(4-26) 上式中,s f 为PWM 开关频率。

5 仿真

针对设计的控制器,在MATLAB/Simulink中搭建仿真电路,检测控制器对抑制扰动、提高输入输出电压电流的动静态性能的效果。仿真图如下:

图5-1 三相电压型PWM整流器的仿真结构图

当三相VSR 控制系统稳定运行时,输出直流侧电压的仿真波形如图5-2

所示。图5-3给出了局部放大图,从图中可以看到直流电压的波动范围只有±0.5V,达到了较好的稳压效果。

图5-2 直流侧电压波形

图5-3 dc U 波形局部放大图

为了检验控制器对扰动抑制的作用,在0.1t s 时,将负载L R 的值增大,输出电压的波形图5-4所示:

图 5-4 突加负载时直流电压波形 图5-5为负载突减时直流电压(输出电压)波形:

图5-5突减负载时直流电压波形

由图5-4和5-5看出,当整流器负载突增或突减时,输出电压的扰动并不大,能稳定在期望值上,由此说明整个PWM整流系统对外界的扰动由良好的抑制作用,达到了控制器设计效果。

三相PWM整流器控制器设计(精)

三相PWM 整流器控制器设计 PWM 整流器能够实现整流器电网侧的电流为正弦,从而大大降低整流器对电网的谐波污染。PWM 整流器同时能够实现电网侧电流相位的控制,常见的有使得电网侧电流与电源电压同相位,从而实现单位功率因数控制,也可以根据需要使得电网侧电流相位超前或滞后对应的电源相电压,从而实现对电网的功率因数补偿。 三相PWM 整流器主电路和控制系统原理图如图1所示,其中A VR 为直流侧电压外环PI 调节器、ACR_d、ACR_q分别为具有解耦和电源电压补偿功能的dq 轴电流内环PI 调节器,PLL 为电源电压锁相环,SVPWM 为电压空间矢量运算器,Iabc to Idiq、Vabc to ValfaVbeta和Vdq to ValfaVbeta分别为三相静止坐标-两相旋转直角坐标变换、三相静止坐标-两相静止直角坐标变换和两相旋转直角坐标-两相静止直角坐标变换。 图1 基于空间矢量的三相PWM 整流器原理图

根据开关周期平均值概念、三相电压型PWM 整流器开关函数表等,可得到三相电压型PWM 整流器在dq 坐标下微分方程形式和等效电路形式的开关周期平均模型。经过dq 轴电流解耦和电源电压补偿的控制系统结构图如图2所示,其中小写的变量表示该变量的开关周期平均值,大写的变量表示该变量在工作点的值。 v dc d dc q 图2 基于dq 轴电流解耦和电源电压补偿的控制系统结构图 对解耦和电源电压补偿之后的dq 轴等效电路进行工作点附近的小信号分析,即可得到小信号下的传递函数如式(1、(2)和(3)所示,其中L 、R 分别为交流侧的滤波电感及其等效电阻,C 为直流侧滤波电容,Dd 为d 轴在工作点的占空比。 ~ i d (s αd (s ~ i q (s αq (s ~ v dc (s i d (s V dc (1

三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压源型PWM整流器 PI调节器参数整定的原理和方法 1引言 1.1 PID调节器简介 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。目前,在工业过程控制中,95%以上的控制回路具有PID结构。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的,其原理图如图1-1所示。 图1-1 PID控制系统原理图 PID控制器传递函数常见的表达式有以下两种: (1) ()i p d K G s K K s s =++ ,Kp代表比例增益,Ki代表积分增益,Kd代表微 分增益;

(2) 1 () p d i G s K T s T s =++ (也有表示成1 ()(1) p d i G s K T s T s =++),Kp代表比 例增益,Ti代表积分时间常数,Td代表微分时间常数。 这两种表达式并无本质区别,在不同的仿真软件和硬件电路中也都被广泛采用。 ?比例(P,Proportion)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系,能及时成比例地反映控制系统的偏差信号,偏差一旦产 生,调节器立即产生控制作用,以减少偏差。当仅有比例控制时系统输 出存在稳态误差(Steady-state error)。 ?积分(I,Integral)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制 系统是有稳态误差的或简称有差系统(System with Steady-state Error)。 为了消除稳态误差,在控制中必须引入“积分项”。积分项对误差取决 于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小, 积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误 差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系 统在进入稳态后无稳态误差。积分作用的强弱取决于积分时间常数Ti, Ti越大,积分作用越弱,反之则越强。 ?微分(D,Differential)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现 振荡或者失稳。其原因是在于由于存在有较大惯性组件(环节)或有滞 后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用“超前”,即在误差接近零时,抑制误 差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是 不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微 分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就

三相电压型PWM整流器与仿真

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月6 日

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB 软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

三相电压型PWM整流器建模及控制

三相电压型PWM 整流器建模及控制 摘要:本文通过基尔霍夫定律完成了对三相电压型PWM 整流器在三相静止对称坐标系下的数学建模。并通过MATLAB/SIMULINK 仿真工具对其数学模型进行了仿真验证,可以看出,仿真验证的结果证明了模型的准确性和可靠性。而后又介绍了一种直接电流控制方法即传统的双闭环PID 控制,并进行了仿真分析。 1 基于基尔霍夫定律对三相VSR 系统建模 三相电压型PWM 整流器的电路拓扑结构如图1-1所示。图中a u 、b u 、c u 为三相交流电源,L 和C 分别为滤波电感和滤波电容,R 是滤波电感的等效电阻, s R 是开关管的等效电阻。 记网侧三相交流电流分别为a i 、b i 、c i ,整流电流为dc i ,流过负载电阻的电流为L i ,负载两端电压为d c v 。 L e i O L 图1-1 三相电压型PWM 整流器电路图 针对三相VSR 一般数学模型的建立,通常作以下假设: (1) 电网电动势为三相平衡的正弦波电动势(a u ,b u ,c u )。 (2) 网侧滤波电感L 是线性的,且不考虑饱和。 (3) 功率开关管损耗以电阻s R 表示,即实际的功率开关管可由理想开关与损耗电阻s R 串联等效表示。 (4) 为描述VSR 能量的双向传输,三相VSR 其直流侧负载由L R 和直流电动势 L e 串联表示。当直流电动势0L e =时,三相 VSR 只能运行于整流模式;当L dc e v >时,三相VSR 既可运行于整流模式,又可运行于有源逆变模式;当L dc e v <时,三相VSR 则运行于整流模式。

为分析方便,定义单极性二值逻辑开关函数k s 为 10 k s ?=? ?上桥臂导通,下桥臂关断上桥臂关断,下桥臂导通 (,,)k a b c = (1-1) 将三相VSR 功率开关管损耗等效电阻s R 和交流滤波电感等效电阻l R 合并,记 s l R R R =+,采用基尔霍夫电压定律建立三相VSR a 相回路方程为 ()a a a aN N O di L R i u v v dt +=-+ (1-2) 当1S 导通而2S 关断时,1a s =,且aN dc v v =;当1S 关断而2S 导通时,开关函数0a s =,且0aN v =。由于aN dc a v v s =,上式可写成 ()a a a dc a N O di L R i u v s v dt +=-+ (1-3) 同理,可得b 相、c 相方程如下: ()b b b dc b N O di L R i u v s v dt +=-+ (1-4) () c c c dc c N O di L R i u v s v dt +=-+ (1-5) 考虑三相对称系统,则 a b c u u u ++= 0a b c i i i ++= (1-6) 故 ..3 dc NO k k a b c v v s ==- ∑ (1-7) 在图1-1中,任何瞬间总有三个开关管导通,其开关模式共有328=种,因此,直流侧电流dc i 可描述为 ()dc a a b c b b c a c c b a a b a b c i i s s s i s s s i s s s i i s s s =+++++ ()()()a c a c b b c b c a a b c a b c i i s s s i i s s s i i i s s s ++++++ a a b b c c i s i s i s =++ (1-8) 另外,对直流侧电容正极节点处应用基尔霍夫电流定律,得 dc dc L a a b b c c L dv v e C i s i s i s dt R -=++- (1-9) 则采用单极性二值逻辑开关函数描述的三相VSR 系统的一般数学模型表达式为:

三相电压型PWM整流器控制

分类号学号 M201071071 学校代码 10487 密级 硕士学位论文 三相电压型PWM整流器控制 学位申请人:万鹏 学科专业:电力电子与电力传动 指导教师:熊健副教授 答辩日期: 2013年1月6日

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering Control of Three Phase Voltage Source PWM Rectifier Candidate : Wan Peng Major : Power Electronics and Electric Drive Supervisor: Prof. Xiong Jian Huazhong University of Science & Technology Wuhan 430074, P.R.China January, 2013

独创性声明 本人声明所呈交的学位论文是我个人在导师的指导下进行的研究工作及取得的研究成果。尽我所知,除文中已标明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在______年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

三相电压型PWM整流器及仿真

电力电子课程设计课程设计报告 题目三相电压型PWM整流器与仿真专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月6 日 摘要:叙述了建立三相电压型PWM 整流器的数学模型。在此基础上,使用功能强 -可编辑修改-

大的MATLAB 软件进行了仿真,仿真结果证明了方法的可行性。关键词:整流器;PWM ;simulink

-可编辑修改-

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (6) 2.3 pwm 控制的基本原理 (9) 2.4 PWM 整流器的发展现状........................................ 1..0...三设计内容........................................................... 1..1 3.1 仿真模型...................................................... 1..1 3.2 各个元件参数.................................................. 1..5 3.3 仿真结果...................................................... 1..7 3.4 结果分析...................................................... 1..9 四总结............................................................... 2..0 五参考文献........................................................... 2..0

三相PWM整流器在电动汽车充电机上的应用

三相PWM整流器在电动汽车充电机上的应用 1 引言 电动汽车(ev)是由电机驱动前进的[1],而电机的动力则是来自可循环充电的电池[2],并且电动汽车对电池的工作特性的要求远超过了传统的电池系统。随着电池技术的提高,因为电动汽车电池系统中的高电压和大电流的以及复杂的充电算法,所以对电池的充电变得越来越复杂[3],这样会对现有的电网造成很大的干扰。因此,需要高效而且失真度低的充电机[4]。 从传统上来讲,充电器可以被分为两个大类:线性电源和开关电源[5][6][7]。线性电源主要有三方面的优势:设计简单,在输出端没有电气噪声而且成本比较低。但是线性电源的充电电路效率低对充电器来说是一个很严重的缺点。使用开关电源可以解决这些问题,开关电源的效率高,体积小而且成本也低。传统的开关电源式充电机采用不可控或者半控器件如晶闸管进行整流,虽然能够得到较为平滑的直流电压,但是同时也给电网注入了大量的无功功率和谐波电流,给电网造成很大的污染[8]。随着电力电子技术的发展,三相电压型pwm整流器(vsr)因其具有功率因数可控、网侧电流趋近于正弦、直流侧电压稳定等优点,应用在汽车充电器中,可以解决功率因数低、谐波电流大等问题[9]。 但是pwm整流器的开关元件在电压和电流全不为零的时候动作会消耗能量[10],而且随着开关频率增加,在开关器件上的损耗会变得越来越大[11]。使用谐振型零电压软开关可以解决这些问题,而且具有很多的优点:功率开关的软切换,在开关过程中的损耗将会很小,反过来会增加充电的效率而且可以增加运行的频率[12]。这样充电机的体积和重量也会得到减小[13]。另外一个好处是,在使用谐振[型软开关后,整流器中电压电流中的谐波含量会得到降低[14]。因此,当谐振型的整流器和传统整流器工作在相同的功率等级和开关频率时,谐振型的整流器造成的emi问题会小很多[15]。使用谐振型的整流[器去提高充电[16]机的功率等级、充电效率、可靠性和其他的工作特性[17]。 三相谐振型逆变器广泛的应用在电机调速控制等领域[20],本文以三相逆变器为原型,设计了三相pwm整流器。并且根据谐振型整流器的特点,对控制方法进行了改进,使其能够达到最低的失真度(df)和最小的总谐波失真(thd)。将它运用在电动汽车充电机上,能够减小充电站的功率因数校正环节的压力,而且由于采用了软开关技术,不会由于增加了可控开关管,而导致充电效率降低,为充电机的大规模并入电网提供了必要条件。 2 充电机的总体拓扑结构 图1从原理上描述了充电机的总体拓扑结构图,图中包括几个主要的部分: (1)emi滤波器:抑制交流电网中的高频干扰对设备的影响,同时屏蔽电动汽车充电机对交流电网造成的干扰; (2)三相pwm整流器:三相pwm整流器应用在充电机上能够提高功率因数,而且能够减少对电网的谐波污染;随着功率因数的提高,充电站功率因数校正(pfc)的压力会得到降低。由于其具有功率因数可控的功能,既可以将它应用在充电机上,也可用作整个充电站的功率因数校正(pfc),因此会有广泛的应用前景,本文将主要对他进行设计。 (3)全桥逆变器:将整流得到的直流电压逆变成高频交流方波,用以通过高频变压器,并通过调节占空比改变输出的电压电流的大小; (4)高频变压器:传输高频交流电能,同时能够将负载和前级电路进行隔离; (5)不可控整流桥:对高频变压器传输的交流方波整流,用于对电池进行充电。 在主电路中受控的主要是三相pwm整流桥和全桥逆变器两个主要环节,但是在提高功率因数和充电效率等方面,需要着重的分析三相pwm整流器的运行机理,所以在下文的讨论中

三相pwm整流器

空间矢量的广义仿真与实验研究三相电压源逆变器的脉宽调制技术 文摘 调速驱动系统需要可变电压和频率总是从三相获得供应电压源逆变器(VSI)。一定数量的脉冲宽度调制(PWM)用于获取可变电压和方案从一个逆变器频率供应。最广泛使用的三相逆变器是舰载正弦脉宽调制方案脉宽调制和空间矢量脉宽调制(SVPWM)。有增加趋势,利用空间矢量PWM(SVPWM)因为他们的简单数字的认识和更好的直流总线利用率。然而,一个合适的仿真模型还没有可用的文学。因此,本文在一步一步的发展SVPWM紧随其后的MATLAB / SIMULINK仿真模型实验的实现。首先讨论了三相逆变器的模型基于空间向量表示。下一个简单和灵活的仿真模型的SVPWM的方法,使用MATLAB / SIMULINK开发。发达模型一般自然,因为它可以利用来实现连续和不连续空间矢量。论文的新颖性依赖提议的灵活和通用SVPWM的Matlab / Simulink仿真模型。实验及仿真结果验证该模式 关键词:空间矢量PWM 不连续PWM电压源逆变器 1.介绍 三相电压源逆变器广泛应用于变速交流电动机驱动应用程序因为他们提供变量电压和通过脉冲宽度调制控制变频输出。持续改进和高成本开关频率的功率半导体器件和机器控制算法的发展导致越来越感兴趣更精确的PWM技术。的工作已经在这个方向进行,评估的流行技术提出了由霍尔兹(1992)和霍尔兹(1994)。使用最广泛的是舰载sine-triangle PWM脉宽调制方法由于简单的实现方法在模拟和数字实现。在此方法中,然而,直流总线利用率低,直流5 V,这导致了客观的调查其他技术改善直流总线利用率。它是Houdsworth和格兰特(1984)发现注入零序(第三次谐波)扩展了范围的操作调制器15.5%。与大功率传动的应用程序相关的主要问题是高在逆变器开关的损失。来降低切换损失称为不连续PWM脉宽调制技术(DPWM)是由Depenbrock(1977)和Kolar et al。(1991)。拟议中的不连续PWM技术是基于triangle-intersection-implementation中非正弦调制信号与三角载波比较。一个广义不连续脉宽调制算法提出的有et al。(1998)包括的技术Depenbrock Kolar(1977)和:et al。(1991)。

三相电压型PWM整流器仿真课程设计

第1章绪论 1.1PWM整流器概述 随着电力电子技术的发展,功率半导体开关器件性能不断提高,已从早期广泛使用的半控型功率半导体开关,如普通晶闸管(SCR)发展到如今性能各异且类型诸多的全控型功率开关.如双极型晶体管(BJT)、门极关断晶闸管(GTO)、绝缘栅双极型晶体管(IGBT)、集成门极换向晶闸管(IGcT)、电力场效应晶体管(MOSFET) 以及场控晶闸管(McT)等。而20世纪90年代发展起来的智能型功率模块(IPM)则开创了功率半导体开关器件新的发展方向。功率半导体开关器件技术的进步,促进了电力电子变流装置技术的迅速发展,出现了以脉宽调制(PWM)控制为基础的各类变流装置,如变频器、逆变电源、高频开关电源以及各类特种变流器等,这些变流装置在国民经济各领域中取得了广泛应用。但是,目前这些变流装置很大一部分需要整流环节以获得直流电压,由于常规整流环节广泛采用了二极管不控整流电路或晶闸管相控整流电路.因而对电网注入了大量谐波及无功,造成了严重的电网“污染”。治理这种电网“污染”最根本措施就是,要求变流装置实现网侧电流正弦化且运行于单位功率因数。因此,作为电网主要“污染”源的整流器,首先受到了学术界的关注,并开展了大量研究工作。其主要思路就是将PWM 技术引入整流器的控制之中,使整流器网侧电流正弦化且可运行于单位功率因数。 根据能量是否可双向流动,派生出两类不同拓扑结构的PWM整流器,即可逆PWM 整流器和不可逆PWM整流器。本论文只讨论能量可双向流动的可逆PWM整流器及控制策略,以下所称PWM整流器均指可逆PWM整流器。 第2章PWM整流器的拓扑结构及工作原理 2.1PWM整流器原理概述 从电力电子技术发展来看,整流器是较早应用的一种AC/DC变换装置。整流器的发展经历了由不控整流器(二极管整流)、相控整流器(晶闸管整流)到PWM 整流器(可关断功率开关)的发展历程。传统的相控整流器,虽应用时间较长,技术也较成熟,且被广泛使用,但仍然存在以下问题: (1) 晶闸管换流引起网侧电压波形畸变; (2) 网侧谐波电流对电网产生谐波“污染”;. (3) 深控时网侧功率因数降低; (4) 闭环控制时动态响应相对较慢。

三相PWM整流器

摘要 随着绿色能源技术的快速发展,PWM整流器技术己成为电力电子技术研究的热点和亮点。PWM整流器可成为用电设备或电网与其它电气设备的理想接口,因为它可以实现网侧电流正弦化和功率因数可调整。 本文首先分析了PWM整流器的基本原理,然后根据三相电压源型PWM整流器各相电压电流之间的关系和桥路的工作状态,给出系统在三相ABC坐标系和两相dq坐标系中的数学模型,利用电流反馈解耦控制,以及系统的基本控制框图。并设计了电压环和电流环数字化PI调节器,结合理论分析和实际对其参数进行了优化整定。 关键词:三相电压型PWM整流器;数学模型;dq变换。

1 三相电压源型PWM 整流器工作原理及数学模型 1.1 PWM 整流器原理 1.1.1 PWM 整流电路工作原理 将普通整流电路中的二极管或晶闸管换成IGBT 或MOSFET 等自关断器件,并将SPWM 技术应用于整流电路,这就形成了PWM 整流电路。通过对PWM 整流电路的适当控制,不仅可以使输入电流非常接近正弦波,而且还可以使输入电流和电压同相位,功率PWM 整流电路由于需要较大的直流储能电感以及交流侧LC 滤波环节所导致的电流畸变、振荡等问题,使其结构和控制复杂化,从而制约了它的应用和研究。相比之下,电压型PWM 整流电路以其结构简单,较低的损耗等优点,电压型PWM 整流电路的成功应用更现实鸭故选择电压型PWM 整流电路进行研究。下面分别介绍单相和三相PWM 整流电路的拓扑结构和工作原理。 图1-2 单相PWM 整流电路 图1-2为单相全桥PWM 整流电路,交流侧电感s L 包含外接电抗器的电感和交流电源内部电感,是电路正常工作所必需的。电阻s R 包含外接电抗器的电阻和交流电源内部电阻。同SPWM 逆变电路控制输出电压相类似,可在PWM 整流电路的交流输入端AB 产生一个正弦调制PWM 波AB u ,AB u 中除含有和开关频率有关的高次谐波外,不含低次谐波成分。由于电感s L 的滤波作用,这些高次谐波电压只会使交流电流

相关主题
文本预览
相关文档 最新文档