当前位置:文档之家› 金纳米笼胶囊的制备及其在肿瘤细胞药物投放中的应用

金纳米笼胶囊的制备及其在肿瘤细胞药物投放中的应用

金纳米笼胶囊的制备及其在肿瘤细胞药物投放中的应用
金纳米笼胶囊的制备及其在肿瘤细胞药物投放中的应用

金纳米棒的制备简史(四)——晶种法

金纳米棒的制备简史(四)——晶种法 2016-04-13 12:44来源:内江洛伯尔材料科技有限公司作者:研发部 晶种法制备可控长径比金纳米棒 晶种生长法是目前制备金纳米棒最成熟的方法.Murphy小组在柠檬酸盐保护的情况下,用硼氢化钠还原氯金酸溶液,得到直径3.5 nm的球形金纳米粒子,然后精细调控生长条件,如最优化C16TAB(十六烷基三甲基溴化铵)和抗坏血酸的浓度,通过两步或三步晶种法制得了高长径比的金纳米棒,棒的产率大约为4%.随后,他们改进了这一方法,仅仅调节反应的pH值,就使高长径比金纳米棒的产率提高到90%.El-Sayed小组进一步改进了这种方法.他们用CTAB代替柠檬酸盐封端的金纳米粒子作晶种,克服了先前方法的一些缺点和限制(如形成非棒状,φ形纳米粒子以及大量的球形粒子).此外,在单组份表面活性剂体系中,通过调节生长溶液中银量即可得到长径比在1.5-4.5之间的金纳米棒.为获得长径比为4.6-10的金纳米棒,则需要N-十六烷基-N,N-二甲基苄基氯化铵(BDAC)和CTAB混合使用.在Murphy小组和EI-Sayed小组工作的基础上,人们又进行了一些改进和调整.主要集中在各种参数的变化,如晶种陈化时间,晶种浓度或生长溶液中金离子量与晶种的比例,温度,不同性质的表面活性剂等. Michael等用硝酸代替硝酸银,得到的金纳米棒尺寸均一,直径19-20nm,长度400-500nm,平均长径比21-23.他们认为,与硝酸造成的轻微pH变化相比,硝酸根离子的存在对棒的形成影响更大. Zijlstra等利用无晶种生长途径,在高达97°C的条件下制得了金纳米棒.与晶种生长法中晶种异处制备相反,此处的晶种原位生成.即在剧烈搅拌的情况下,往生长溶液中快速注入硼氢化钠,成核与生长会在5s 后发生. 尽管具体的制备方式有差异,但晶种生长法的基本原理可以表述为:制备出小尺寸的金纳米粒子作为晶种,然后生长溶液中的金离子在这些晶种上还原沿特定晶面生长得到金纳米棒.晶种法对设备的要求比较低,且反应温和,能扩大生产,是目前制备金纳米棒最成功的方法.

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述 1.引言 纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。其中纳米二氧化钛作为一类无机功能材料备受关注。氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。制备和开发纳米二氧化钛成为国内外科技界研究的热点。纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。 2.气相法 气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。[3] 2.1 扩散火焰法 以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。典型的P25是德国的Deguss公司通过TiCl4氢氧火焰法制的,其反应方程式为: TiCl4(g)+2H2(g)+O2(g)→4Ti02(a)+4HC1(g) (1) 工艺流程见图1: 日本Aerosil公司和美国Cabot公司等也利用此方法制的了超细的纳米二氧化钛粉体。Jang等人分别用五路管径将空气与Ar,O2,Ar/TiCl4加入到经过改进的火焰反应器中,并且利用改变气体浓度来对二氧化钛的粒径和晶型进行控制。从前期文献可见,当反应器火焰的温度在1000℃一1700℃范围内时,可制得粒径在12nm-29nm范围的二氧化钛,所含锐钛矿所占的比例在28%-75%,产量最高可达到20g/h。 Katzer等人将N2 ,CH4 ,Ar/TiCl4与氧气混合使其反应,且通过对电极电场的控制来调整火焰的温度和结构,进而控制纳米二氧化钛的粒径和晶型。 此方法制备的纳米二氧化钛具有小粒径、高纯度、良好的分散性和大的表面活性、较小的团聚现象等优点,但是此过程要求温度较高,工艺参数的控制要比较精确,且对设备材质的要求比较严格,生产成本相对较高。[3] 2.2 TiCl4气相氧化法

【精品】药物制剂技术

《药物制剂技术》 习题集

泉州医学高等专科学校 药剂教研室 二OO八年二月

药物制剂技术是药学专业主要专业课程之一,教学目的是使学生掌握药物剂型的设计及药物制剂制备生产的理论知识和技能,掌握药物制剂质量控制的方法并能对药物制剂的质量进行正确地评价。药物制剂技术实验课程对药学专业学生掌握相关领域知识和技术方面起着至关重要的作用。 本习题集是在泉州医学高等专科学校药学系各位老师的共同努力下,以普通高等专科教育药学类规划教材《药物制剂技术》为基础,参考各类相关资料,经过两年的教学验证后编写出来。本习题集实用性强,适用于本校药学专业专科学生使用,突出药物制剂技术理论知识的重点和难点。 由于水平所限,时间仓促,书中尚存在不足与错误之处,请师生提出批评和改 正意见,以便今后进一步修正提高。 药剂教研室 2008年2月

1、以下关于药物制成剂型的叙述中,错误的是() A、物剂型应与给药途径相适应 B、一种药物只可制成一种剂型 C、一种药物制成何种剂型与药物的性质有关 D、一种药物制成何种剂型与临床上的需要有关 E、药物供临床使用之前,都必须制成适合于应用的剂型 2、《中国药典》的英文缩写词为() A、USP B、BP C、JP D、Ch.P E、GMP 3、由药典、部颁标准收载的处方称()。 A、医师处方 B、法定处方 C、协定处方 D、验方 E、单方 4、根据药典或药政管理部门批准的标准、为适应治疗和预防的需要而制备的药物应用形式的具体品种称为() A、方剂 B、药物剂型 C、药剂学 D、调剂学 E、药物制剂 5、按形态分类,软膏剂属于下列哪种类型?()

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

氧化镓纳米带的制备研究

氧化镓纳米带的制备研究 Synthesis of -GaQ Nan obelts 物理系98级向杰 摘要:纳米带是继纳米线、纳米管之后,在2001年新报道的又一种准一维纳米 结构。本文介绍了Ga^O s纳米带制备的新方法。这种方法与首次报道的纳米带的生长方法有很大不同。用扫描电子显微镜和透射电子显微镜对产物形貌进行了分析发现,纳米带宽约200nm,厚度约10nm,宽度-厚度比大于20。选区电子衍射(SAED)分析表明,产物是纯净的Ga2O s单晶。实验还发现了一些特殊形态的纳米结构,如纳米片、柳叶状纳米带等,证明了纳米带是纳米线之外Ga2O3一种很常见并稳定存在的形态。最后,我还根据实验现象对纳米带的生长机制进行了初步的分析与讨论。 Abstracts: Nano belts are a n ewly discovered family of quasi-one dime nsional nan ostructures besides nano tubes and nano wires. Here we report a new route to syn thesis Ga 2Q nano belts, which is differe nt from previously reported. SEM and TEM an alysis of the samples revealed that our nano belts are approximately 200nm wide, 10nm thick, with a width-thickness ratio larger than 20. Selected Area Electron Diffraction (SAED) has con firmed that the products con sist of pure GaQ sin gle crystals. Other kind of nano structures, such as nano sheets and shuttle-shaped belts are also observed. We have suggested that the nan obelts can occur as com monly as nano wires and is thermally stable. A brief analysis and discussion on how such structure is formed are prese nted. 近几年来,低维纳米材料的研究逐渐成为一个热点问题,其研究的焦点是纳 米管和纳米线。这些纳米材料已经显示出奇特的介观物理特性,包括电子弹道输运1,库仑阻塞2,纳米激光3等。这些准一维材料的结构与大块材料不完全相同,如纳米碳管是由单层或多层石墨原子层卷曲而成的管状结构,它们同体材料一样 都是热力学稳定的。为什么会形成纳米线、纳米管这样独特的稳定结构,这个问题到现在还没有彻底搞清楚。现在已经提出了以下模型来解释纳米线和纳米管的生长机制:(1)VLS(Vapor-Liquid-Solid)机制。反应物在高温下蒸发,在温度降低时与催化剂形成低共熔体小液滴,小液滴互相聚合形成大液滴,并且共熔体液滴作为端部不断吸收粒子和小的液滴,最后因为过饱和而凝固形成纳米线或纳米

金纳米棒的制备

金纳米棒的制备 2016-05-02 13:05来源:内江洛伯尔材料科技有限公司作者:研发部 金纳米棒的制备由于贵金属在医学,光学及其他运用场景下发挥的作用与其形貌特征有很大的关系。以往对于金等贵金属主要是从制备纳米球形的方向入手,这是最简单,最容易控制成核及尺寸的,但是棒状金纳米材料在其优异的性能影响下,越来越的研究也开始了。人们发现金纳米棒的尺寸和晶体结构的差异对于应用有着显著的影响,对金纳米棒合成的有效调控直接决定着其后续应用研究的效果。 采用模板法,电化学法,种子生长法和无种子生长法对金纳米棒进行制备,采用TEM等对金纳米棒进行深入的研究发现:电化学合成的金纳米棒具有单晶结构,这是经典的银离子辅助合成金纳米粒子,在无银离子辅助条件下合成的金纳米棒具有五重孪晶结构,这与银离子辅助条件下合成的单晶结构差别很大。研究发现,一旦种子长到一定的尺寸,孪晶层积缺陷便会产生以降低体系的表面能。影响金纳米棒生长,行核的关键因素主要有表面活性剂,卤化物,溴化物,他们决定着金纳米棒粒子的行核机制和生长尺寸等。同样,对于制备的金纳米棒粒子来说,分离纯化也是一个重要的过程。目前合成出来的产物中还存在着一定程度的形状和尺寸多分散性,因此需要进一步纯化产物,目前常用的分离方法是离心分离,它的一个重要作用是除去溶液中未反应的原料,如过量的CTAB,此外离心还有助于进行形状分离与长径比分离,由于颗粒的直径对其沉降速率影响最大,因此直径越大越容易沉降。另外对于分离纯化高长径比的金纳米棒也是一个重要的过程,目前主要利用重力沉降,静置10-12h后,纳米棒和纳米片沉降于离心管底部,球形颗粒仍留在液体中,将底部的产物取出分散后,加入复合物Au(Ⅲ)/CTAB,利用氧化刻蚀速率的形状依赖性,可使片状颗粒体积减少40%并转变为圆形的纳米盘,而纳米棒体积只减少20%。

含有金纳米棒的复合纤维的制备和性能研究

齐齐哈尔大学 毕业设计(论文) 题目含有金纳米棒的复合纤维的制备和性能研究 学院材料科学与工程学院 专业班级材料091班 学生姓名代文竹 指导教师闫尔云 成绩 2013年6 月13日

摘要 金纳米棒因为具有各向异性,化学性质稳定,合成方法简单,特殊的光电学特性等很多独特的性质,受到广大研究者的亲睐,广泛应用于生物医学领域(例如药物传输与控制释放、细胞成像与光热治疗),生物化学传感器,催化剂等领域。在课题中,我们采用晶种生长法制备分散性好,尺寸均匀的金纳米棒。然后,我们将具有不同长径比的金纳米棒掺杂到PVA/CS溶液中,通过静电纺丝技术制备出含有金纳米棒的复合纤维。扫描电镜分析表明,随着金纳米棒长径比的变化,纤维的直径及其分布没有明显的变化;纤维形态完好,但是存在些许粘连。接触角测试分析说明,在含有金纳米棒的PV A/CS 复合纳米纤维中,PV A含量越大,复合材料的亲水性越好。 关键词:金纳米棒;等离子共振吸收峰;静电纺丝;晶种生长法;复合纳米纤维

Abstract Gold nanorods with anisotropic, stable chemical properties, simple synthesis method and specific photoelectric properties were widely used in drug delivery and release, cell imaging and treatment of field of biological medicine, biological chemical sensors and catalyst, which have received the researchers’great attention. In this thesis, we used the seed-mediated growth method to prepare well dispersed and uniform gold nanorods. After that, we doped gold nanorods with different aspect ratios into PV A/CS solution and the composite fibers containing gold nanorods were prepared by the electrospinning technique. Scanning electron microscopy (sem) analysis showed that with the change of the aspect ratios of gold nanorods, the diameter and distribution of fibers had no obvious change; the morphology of fibers was in good condition, but there were some adhesion. Contact Angle test showed that in the PV A/CS composite nanofibers containing gold nanorods, the larger the content of PV A, the better the hydrophilicity of the composite material. Key words:Gold nanorods;Plasma resonance absorption peak;;Electrospinning; Seed-mediated growth method; Composite nanofibers

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

半导体纳米材料的制备

新型半导体纳米材料的制备

摘要: 简要论述了半导体纳米材料的特点,着重讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括溶胶一凝胶法、微乳液法、模板法、基于MBE 和MOCVD的纳米材料制备法、激光烧蚀法和应变自组装法等,并分析了以上几种纳米材料制备技术的优缺点及其应用前景。 关键词: 纳米材料;溶胶一凝胶法;分子束外延;金属有机物化学气相淀积;激光烧蚀淀积:应变自组装法; Several Major Fabrication Technologies of Novel Semi conductor Nanometer Materials Abstract: The characteristics of semiconductor nanometer materials are introduced. Several major fabrication technologies of semiconductor nanometer materials are discussed,including sol-gel process,tiny-latex process,template process,based on MBE and MOCVD,laser-ablation and strain-induced self-organized process,their advantages and disadvantages and their prospects are analyzed. Key words: nanometer material;sol-gel process; MBE; MOCVD: laser ablation deposition; strain-induced self-organized process; 1.引言

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性 3 王 凯 杨 光 龙 华 李玉华 戴能利 陆培祥 (华中科技大学武汉光电国家实验室激光科学与技术研究部,武汉 430074) (2007年10月26日收到;2007年11月14日收到修改稿) 采用纳米球蚀刻技术在石英衬底上制备了不同高度的金纳米颗粒阵列.通过扫描电子显微镜对其表面形貌进行了观测,表明金纳米颗粒为有序分布的三棱柱结构.通过红外—紫外吸收光谱仪在190—900nm 波长范围内对其光吸收特性进行了测量,并成功观测到了金纳米颗粒表面等离子体振荡效应引起的光吸收峰,结果表明随着金纳米颗粒高度的增加,其吸收峰的位置向短波方向移动(蓝移).同时对金纳米颗粒的光吸收特性进行了基于离散偶极子近似的理论计算,并与实验结果进行了比较. 关键词:纳米球蚀刻技术,金纳米颗粒,离散偶极子近似 PACC :7865E ,8116N 3国家自然科学基金(批准号:10604018,10574050)和高等学校博士学科点专项科研基金(批准号:20060487006)资助的课题. 通讯联系人.E 2mail :gyang @https://www.doczj.com/doc/2b9300632.html, E 2mail :lupeixiang @https://www.doczj.com/doc/2b9300632.html, 11引言 随着现代纳米技术的发展,贵金属纳米颗粒的制备和可控光学特性的研究,引起了人们广泛的兴趣.其在纳米光学 [1] 、非线性光学 [2] 、催化作用 [3] 、热 动力学[4] 和传感器[5] 以及医学诊断[6] 等研究领域都有着十分重要的应用前景. 贵金属纳米颗粒最具代表性的特性是在可见光范围内伴随有强烈的吸收峰,这是其颗粒里大量的自由传导电子对外界光波入射的响应.当电子振动频率和入射光波频率相等时,即发生表面等离子体 振荡(surface plasm on res onance ,SPR )效应,从而产生强烈的吸收峰.SPR 光谱峰位对颗粒的形状、大小、分布以及外部环境的变化非常敏感. 以往制备贵金属纳米颗粒主要采用溅射或离子注入等方法,但通过上述方法制备的纳米颗粒,其形状不一,而且分布不均匀,不便于定量地研究其光学特性.在1995年,Van Duyne 研究组[7] 在自然蚀刻法[8] 的基础上提出了纳米球刻蚀技术(nanosphere lithography ,NS L ),即将尺寸均匀的聚苯乙烯纳米球的悬浊液滴在衬底上,形成单层或双层纳米球的自组装密排的掩膜板.在沉积金属颗粒的过程中,掩 膜板只允许金属通过纳米球之间的间隙沉积到衬底 上.再用超声波清洗去除聚苯乙烯纳米球,得到二维纳米颗粒阵列.最近几年,科学家们通过这种方法制备出了不同尺寸和形状的Ag ,Au ,Cu ,Pt 等金属纳米颗粒.其中Au 纳米颗粒由于其优良的化学稳定性、生物吸附性[9] 和光学特性,成为金属纳米颗粒研究中的热点方向. 另一方面,科学家们尝试从理论上合理解释贵金属纳米颗粒的可控光学特性.离散偶极子近似 (discrete dipole approximation ,DDA )最初是由Purcell 和Pennypacker [10] 在计算天体尘埃的散射时提出的. 目前,DDA 法被广泛应用于小颗粒光学特性的理论 研究中 [11,12] .随着算法的改进,基于DDA 算法的软 件包DDSC AT [13] 使得能在计算机上计算不同大小、 形状、高度、种类和外部环境的颗粒的光学特质.目前已经有一些关于Au 和Ag 纳米颗粒的理论计算的报道 [14—16] ,其结果基本与实验结果相符合. 本实验中结合NS L 和脉冲激光沉积(pulsed laser deposition ,P LD )技术在石英衬底上制备了不同高度的Au 纳米颗粒阵列,对其表面形貌、尺寸进行了观测,对其在可见光范围内的光谱吸收特性进行了测量,并通过理论模拟对Au 纳米颗粒的光学特性进行了计算. 第57卷第6期2008年6月100023290Π2008Π57(06)Π3862206 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.57,N o.6,June ,2008 ν2008Chin.Phys.S oc.

金纳米颗粒的合成方法

金纳米颗粒的盐酸羟胺种子合成法 摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。 许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。 我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ能很好的预测金纳米颗粒的粒径;ⅲ能很好的应用到表面修饰的金纳米颗粒。 图1 金纳米颗粒的生长过程 紫外吸收光谱可以很好监测金纳米颗粒合成的整个过程。图2表明加入 17nM,12nm的种子后,盐酸羟胺与氯金酸反应的过程。上面的吸收光谱是以10s 的间隔记录的,金纳米颗粒的等离子体共振峰的强度增长很明显。这些改变可能是颗粒增长或者新的金纳米颗粒的形成引起的。下面的吸收光谱是氯金酸和盐酸羟胺混合物30min前后的紫外吸收光谱。没有出现金纳米颗粒的紫外吸收峰,说明没有新的金纳米颗粒核生成。因此,在520nm金纳米颗粒的吸收峰增强是由于

金纳米棒的制备和应用

金纳米棒的制备及其在生命科学 上的应用 第一章研究背景 金属纳米微粒的研究,尤其是对其形貌可控制备及其相关应用的性质和应用研究一直是材料科学以及相关领域的前沿热点。非球形的金纳米颗粒如棒、线、管及核壳结构相继被成功合成,其各种性质不仅仅依赖于尺寸而且还依赖于拓扑结构,其中金纳米棒(gold nanorods,GNRs)是最受关注的一类。 金纳米棒是一种尺度从几纳米到上百纳米的棒状金纳米颗粒。金是一种贵金属材料,化学性质非常稳定,金纳米颗粒沿袭了其体相材料的这个性质,因此具有相对稳定,却非常丰富的化学物理性质。金纳米棒拥有随长宽比变化,从可见到近红外连续可调的表面等离子体共振波长,极高的表面电场强度增强效应(高至107倍),极大的光学吸收、散射截面,以及从50%到100%连续可调的光热转换效率。由于它独特的光学、光电、光热、光化学、以及分子生物学性质,金纳米棒在材料科学界正受到强烈的关注,并引发众多材料学家、生物化学家、医学家、物理学家、微电子工程师等科研工作者对之进行广泛和深入的研究。 第二章 GNRs的制备及修饰 2.1 GNRs的制备 近年来,对于金纳米棒的合成已经研究出来许多有效的方法。主要分为晶种生长法,模板法,电化学法和光化学法等不同方法制备出分散性好颗粒均匀的金纳米棒。

2.1.1 晶种法 晶种法研究的时间最长,因此研究的最深入。晶种可以是球型金纳米粒子,或者是短的金纳米棒。晶种法合成金纳米棒可以分为三个步骤:晶种的制备、生长液的配置、金纳米棒的生成。 1 种子制备:将5mL 0.50 mM氯金酸(HAuCl4)溶液与5 mL 0.2M 十六烷基溴化铵(CTAB)混合,加入0.6 mL 冰冻的0.01 M 硼 氢化钠(NaBH4)溶液,搅拌 2 min 后 25℃静置2h。 2 生长溶液制备:向反应容器中依次加入5mL 0.20 M CTAB,5 mL 1 mM HAuCl4, 0.5 mL硝酸银(AgNO3), 0.07 mL 0.10 M 抗坏血酸(AA),搅拌 2 min。 3 GNRs制备:在生长溶液中加入0.012 mL种子溶液,搅拌2min后 28℃,静置3h,得到充分生长的GNRs。 在生长过程中纳米棒的纵横比可以通过改变晶种与金属盐的比例进行控制。在随后的研究中,通过调节溶液的 pH 也可改善纳米棒的合成。对于长的金纳米棒的制备,侧需使生长液中同时存在一定比例的CTAB 与 BDAC。另外通过控制 CTAB 浓度,也能进一步还原并获得高纵横比的金纳米棒。而 Danielle K. Smith等报道应用不同厂家生产的CTAB都会对金纳米棒的制备产生影响。一定范围内Ag+的加入量能控制金纳米棒的纵横比,提高金纳米棒的产率。这种方法设备要求低,制备过程简单,改变反应物浓度就可改变纵横比,使用最广泛。 2.1.2 模板法 模板法是指用孔径为纳米级到微米级的多孔材料作为模板,使前驱体进入后在模板的孔壁上反应,结合电化学沉淀法、溶胶凝胶法和气相沉淀法等技术,形成所需的纳米棒。模板法具有良好的可控制性:通过对模板尺寸的控制,可以制备出粒径分布范围窄、粒径可控、反应易于控制等贵金属纳米颗粒。 Martin等最早利用模板法制备金纳米棒,利用金纳米棒的生长空间受限的原理,来合成金纳米棒。van der Zande等发展了该方法,利用电化学沉积法将金沉积在纳米多孔聚碳酸酯或氧化铝模板内,先喷上少量的导电基底,再电沉积金,随后去除模板,加入PVP以保护和分散金纳米棒,具体的制备流程如图1所示。邵桂妮等利用HAuCl4以柠檬酸三钠为还原剂,利用在多孔氧化铝(AAO)模板中浸泡金溶胶,制备出一维金

相关主题
文本预览
相关文档 最新文档