当前位置:文档之家› 重庆大学_数学实验_4线性规划(数学建模)

重庆大学_数学实验_4线性规划(数学建模)

重庆大学_数学实验_4线性规划(数学建模)
重庆大学_数学实验_4线性规划(数学建模)

重庆大学

学生实验报告

实验课程名称数学实验

开课实验室DS1407

学院材料学院

姓名聂志宇

开课时间2012 至2013 学年第 2 学期

数理学院制

开课学院、实验室:DS1407 实验时间:2012 年10月22日

现有五种饲料,公司希望找出满足动物营养需要使成本达到最低的混合饲料配置。每一种饲料每磅所含的营养成分

重庆大学数学模型数学实验作业四讲解

开课学院、实验室:数统学院实验时间:2015年10月28日 课程名称数学实验实验项目 名称 种群数量的状态转移—— 微分方程 实验项目类型 验证演示综合设计其他 指导 教师 肖剑成绩 实验目的 [1] 归纳和学习求解常微分方程(组)的基本原理和方法; [2] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [3] 熟悉MATLAB软件关于微分方程求解的各种命令; [4] 通过范例学习建立微分方程方面的数学模型以及求解全过程; 通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建 立微分方程方面的数学模型。这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟 悉处理大量的工程计算问题的方法是十分必要的。 实验内容 1.微分方程及方程组的解析求解法; 2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法; 3.直接使用MATLAB命令对微分方程(组)进行求解(包括解析解、数值解); 4.利用图形对解的特征作定性分析; 5.建立微分方程方面的数学模型,并了解建立数学模型的全过程。 基础实验 一、问题重述 1.求微分方程的解析解, 并画出它们的图形, y’= y + 2x, y(0) = 1, 0

数学模型与数学建模实验五

实验报告五 学院名称:理学院 专业年级: 姓 名: 学 号: 课 程:数学模型与数学建模 报告日期:2015年12月8日 一、实验题目 例2.2.1 水库库容量与高程 设一水库将河道分为上、下游两个河段,降雨的开始时刻为8时,这是水位的高程为 168m ,水库容量为38109.21m ?,预测上游的流量()()s m t Q /3,d 取值如表2.2.1所示。 表2.2.1 上有流量()t Q 的预测 已知水库中水的容量( )3 810m V 与水位高程H (m )的数值关系为表2.2.2 表2.2.2 水库库容量与水位高程的关系 如果当日从8时开始,水一直保持s m /10003 的泄流量,根据所给数据,预报从降雨时刻到56h 以内每小时整点时刻水库中水的库容量与水位高程。 例2.2.2 地下含沙量 某地区有优质细沙埋在地下,某公司拟在此处采沙,已得到该地区钻探资料图的一角如 下表,在每个格点上有三个数字列,都是相对于选定基点的高度(m ),最上面的数字是覆盖表面的标高,中间的数字是沙层顶部的标高最下面的数字是沙层底部的标高,每个格子都是正方形,边长50m 。画星号处,即沼泽表层地带,没有钻探数据。试估计整个矩形区域内的含沙量。

二、实验目的 插值模型是数据挖掘的另一类模型,插值(Interpolation )的目的是根据能够获得的观测数据推测缺损的数据,此时观测数据(){}n i i i y x 1,=被视为精确的基准数据,寻找一个至少 满足条件的函数()x y y =,使得()n i x y y i i ,,2,1,Λ==,在本节我们强调的是插值模型的应用,而不是插值方法的构造。 三、问题陈述 2.2.1 一维插值 例2.2.1 水库库容量与高程 2.2.2 二维插值 例2.2.2 地下含沙量 2.2.3 泛克里金插值 四、模型及求解结果 2.2.1 一维插值 一元函数差值公式为 ()() ∑==n i i i x y x y 1 λ 其中 () x i λ是满足条件 ()ij i x δ=λ的函数,依据插值的公式,如最近邻差值,线性插值、分

重庆大学数学实验 方程模型及其求解算法 参考答案

实验2 方程模型及其求解算法 一、实验目的及意义 [1] 复习求解方程及方程组的基本原理和方法; [2] 掌握迭代算法; [3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句); [4] 通过范例展现求解实际问题的初步建模过程; 通过该实验的学习,复习和归纳方程求解或方程组求解的各种数值解法(简单迭代法、二分法、牛顿法、割线法等),初步了解数学建模过程。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验内容 1.方程求解和方程组的各种数值解法练习 2.直接使用MATLAB命令对方程和方程组进行求解练习 3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 基础实验 1.用图形放大法求解方程x sin(x) = 1. 并观察该方程有多少个根。 画出图形程序: x=-10:0.01:10; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB运行结果:

-10-8-6-4-20246810 -8-6 -4 -2 2 4 6 8 扩大区间画图程序: x=-50:0.01:50; y=x.*sin(x)-1; y1=zeros(size(x)); plot(x,y,x,y1) MATLAB 运行结果: -50-40-30-20-1001020304050 由上图可知,该方程有偶数个无数的根。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

数学建模实验报告(1)

四川师范大学数学与软件科学学院 实验报告 课程名称:数学建模 指导教师:陈东 班级:_2008级2班_____________ 学号:__2008060244___________ 姓名:___邢颖________ 总成绩:______________

数学与软件科学学院 实验报告 学期:_2009__ 年至2010 _年____ 第_ 二___ 学期 2010 年 4 月 1 _日 课程名称:_数学建模__ 专业:数学与应用数学____ 2008__ _级_ 2 ___班 实验编号: 1 实验项目_Matlab 入门_ 指导教师 陈东 姓名: 邢颖 ____ 学号: 2008060244 一、实验目的及要求 实验目的: 实验要求: 二、实验内容 (1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (2)有一个 4*5 矩阵,编程求出其最大值及其所处的位置. (3)编程求 (4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高? (5)有一函数 ,写一程序,输入自变量的值,输出函数值. 三、实验步骤(该部分不够填写.请填写附页) (2) x=[1 6 2 7 6;4 6 1 3 2;1 2 3 4 7;8 1 4 6 3]; t=x(1,1); for i=1:4 for j=1:5 if x(i,j)>t t=x(i,j); a=[i,j]; end ∑=20 1! n n y xy x y x f 2sin ),(2 ++=

end end (3)程序1: x(1)=1; s=1; for n=2:20 x(n)=x(n-1)*n; s=s+x(n); end s 程序2; s=0,m=1; for n=2:20; m=m*n; s=s+m; end s 结果:s = 2.5613e+018 (4)程序 s=100 h=s/2 for n=2:10 s=s+2*h h=h/2 end s,h 结果:s = 299.6094 h = 0.0977 (5)程序: function f=fun1(x,y) f=x^2+sin(x*y)+2*y

数学建模迭代实验报告(新)

非 线 性 迭 代 实 验 报 告 一、实验背景与实验目的 迭代是数学研究中的一个非常重要的工具,通过函数或向量函数由初始结点生成迭代结点列,也可通过函数或向量函数由初值(向量)生成迭代数列或向量列。 蛛网图也是一个有用的数学工具,可以帮助理解通过一元函数由初值生成的迭代数列的敛散性,也帮助理解平衡点(两平面曲线交点)的稳定性。 本实验在Mathematica 平台上首先利用蛛网图和迭代数列研究不动点的类型;其次通过蛛网图和迭代数列研究Logistic 映射,探索周期点的性质、认识混沌现象;第三通过迭代数列或向量列求解方程(组)而寻求有效的求解方法;最后,利用结点迭代探索分形的性质。 二、实验材料 2.1迭代序列与不动点 给定实数域上光滑的实值函数)(x f 以及初值0x ,定义数列 )(1n n x f x =+, ,2,1,0=n (2.2.1) }{n x 称为)(x f 的一个迭代序列。 函数的迭代是数学研究中的一个非常重要的思想工具,利用迭代序列可以研究函数)(x f 的不动点。 对函数的迭代过程,我们可以用几何图象来直观地显示它——“蜘蛛网”。运行下列Mathematica 程序: Clear[f] f[x_] := (25*x - 85)/(x + 3); (实验时需改变函数) Solve[f[x]==x , x] (求出函数的不动点) g1=Plot[f[x], {x, -10, 20}, PlotStyle -> RGBColor[1, 0, 0], DisplayFunction -> Identity]; g2=Plot[x, {x, -10, 10}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]; x0=5.5; r = {}; r0=Graphics[{RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, x0}}]}]; For[i = 1, i <= 100, i++, r=Append[r, Graphics[{RGBColor[0, 0, 1], Line[{{x0, x0}, {x0, f[x0]}, {f[x0], f[x0]}}] }]]; x0=f[x0] ]; Show[g1, g2, r, r0, PlotRange -> {-1, 20}, (PlotRange 控制图形上下范围) DisplayFunction -> $DisplayFunction] x[0]=x0; x[i_]:=f[x[i-1]]; (定义序列) t=Table[x[i],{i,1,10}]//N ListPlot[t] (散点图) 观察蜘蛛网通过改变初值,你能得出什么结论? 如果只需迭代n 次产生相应的序列,用下列Mathematica 程序: Iterate[f_,x0_,n_Integer]:= Module[{ t={},temp= x0},AppendTo[t,temp]; For[i=1,i <= n, i++,temp= f[temp]; AppendTo[t,temp]]; t ] f[x_]:= (x+ 2/x)/2; Iterate[f,0.7,10]

数模实验报告

数学建模与实验实验报告 姓名:李明波 院系:仪器科学与工程学院 学号:22013108 老师:王峰

数学建模与实验实验报告 实验一 实验题目 (1)已知某平原地区的一条公路经过如下坐标所示的点,请采用样条插值绘出这条公路(不考虑 (2)对于上表给出的数据,估计公路长度。 实验过程 (1)第一问代码如下: X=[0,30,50,70,80,90,120,148,170,180,202,212,230,248,268,271,280,290,300,312,320,340,3 60,372,382,390,416,430,478]; Y=[80,64,47,42,48,66,80,120,121,138,160,182,200,208,212,210,200,196,188,186,200,184,1 88,200,202,240,246,280,296]; %给出坐标点 xx=0:1:478;%选取0~478内的点 yy=spline(X,Y,xx);%样条插值法找出曲线 plot(X,Y, 'p ',xx,yy, 'g ');%绘出曲线图 x=[440,420,380,360,340,320,314,280,240,200]; y=[308,334,328,334,346,356,360,392,390,400]; hold on xy=440:-1:200; yx=spline(x,y,xy); plot(x,y, 'p ',xy,yx, 'g '); 运行上述代码得到结果如下:

上图为所绘公路图 (2)代码如下: X=[0 30 50 70 80 90 120 148 170 180 202 212 230 248 268 271 280 290 300 312 320 340 360 372 382 390 416 430 478 440 420 380 360 340 320 314 280 240 200]; Y=[80 64 47 42 48 66 80 120 121 138 160 182 200 208 212 210 200 196 188 186 200 184 188 200 202 240 246 280 296 308 334 328 334 346 356 360 392 390 400]; for k=1:length(X)-1 len(k)=sqrt((X(k+1)-X(k))^2+(Y(k+1)-Y(k))^2); end; Len=sum(len);Len 运行得到结果如下: 即公路长为967.46米。

焦梦数学模型与实验试卷

西南大学 数学与统计学院 《数学模型与实验》课程试题 命题人:焦梦 222009314011261 一、选择题:本大题共8小题,每小题5分,共40分。 1. 是指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。 ( ) A .对象 B .模型 C .参照物 D. 公式 2.当模型假设改变时,可以导出模型结构的相应变化;当观测数据有微小改变时,模型参数也只有相应的微小变化。说明模型的 好。 ( ) A .逼真性 B .可行性 C .渐进性 D. 强健性 3.经济订货批量公式(EOQ 公式)是 。 ( ) A .r c c T 212= ,222c r c Q = B .r c c T 21=,2 22c r c Q = C .r c c T 212= ,22c r c Q = D. r c c T 21 2=,2 22c r c Q = 4. 是参数估计的常用方法。 ( ) A .微分法 B .差分法 C .数值法 D.最小二乘法 5.人口的指数增长模型和阻滞增长模型都属于 。 ( ) A .优化模型 B .概率模型 C .微分方程模型 D. 统计回归模型 6.在生猪的出售时机一文中,令Q ’(t)=0,得p ’(t)w(t)+p(t)w ’(t)=4,则等式左边所表示的含义是 。 ( ) A .每天的收入 B .每天收入的增值 C .每天投入的资金 D.每天利润的增值 7.在数学建模的过程中,常用的数学软件不包括 。 ( ) A .PHOTOSHOP B .LINGO C .SPSS D. MAPLE 8.在MATLAB 中输入3x ,应键入字符 。 ( ) A .x.^3 B .x.^1/3 C .x.^(1/3) D. x.*(1/3) 二、填空题:本大题共4小题,每小题4分,共16分。 9. 模型假设的作用是 。

数学建模-实验报告11

《数学建模实验》实验报告 学号:______ 姓名: 实验十一:微分方程建模2 一只小船渡过宽为d的河流,目标是起点A 正对着的另一岸B点,已知河水流速w 与船在静水中的速度V2之比为k. 1?建立小船航线的方程,求其解析解; 2. 设d=100m,v i=1m/s,v2=2m/s,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较。 一、问题重述 我们建立数学模型的任务有: 1. 由已给定的船速、水速以及河宽求出渡河的轨迹方程; 2. 已知船速、水速、河宽,求在任意时刻船的位置以及渡船所需要的时间。 二、问题分析 此题是一道小船渡河物理应用题,为典型的常微分方程模型,问题中船速、水速、河宽已经给定,由速度、时间、位移的关系,我们容易得到小船的轨迹方程,同时小船的起点和终点已经确定,给我们的常微分方程模型提供了初始条件。 三、模型假设 1?假设小船与河水的速度恒为定值v「V2 ,不考虑人为因素及各种自然原因; 2. 小船行驶的路线为连续曲线,起点为A,终点为B ; 3. 船在行驶过程中始终向着B点前进,即船速v2始终指向B ; 4. 该段河流为理想直段,水速w与河岸始终保持平行。 四、模型建立 y | B A 兀、 % \ * r v A X 如图,以A为原点,以沿河岸向右方向为x轴正向,以垂直河岸到B端方向为y轴正向建立平面直角坐标系。其中河水流速为v i,小船速度为V2,且w:v2 k,合速度为v,河宽为d,为72与直线AB的夹角。

V x V y 在t 时刻, 船 dx dt V i 小船在x 轴方向的位移为 x v 2 sin v 2 cos V i V 2 0,x(0) 0, y(0) ;(d y) 0. \ (d y) d y ______ 2 2 ' x dy v 2 cos 由(2)/(1)得到dx y(0) v-1 v 2 sin 0. dx In (2) (i )题 dx 对上式求倒数得 dx dy x ,在y 轴方向上的位移为y ,则t 时刻, 方向 的速度 模型求解 v 2 sin V 1 v 2 co s —, 则上式可化为 dx d y dy d ?dp pdy ydp ,代入上式, k J p 2 整理,得 P 2 | ln| d Cy | 也就是 x 2 (d y )2 y P (d y ) dp P 2 kdy ,积分可得 y C k ( ------- )k ,代入 d y x d y d y 2 0, y 0 d k (d y )k (d y )k d k (见附 录) ,对该情况下的微分方程的数值解进行分 60.0000 6.5451 98.2803 60.1000 6.4519 98.3319 60.2000 6.3585 98.3827 60.3000 6.2649 98.4327 60.4000 6.1711 98.4819 60.5000 6.0771 98.5304 60.6000 5.9829 98.5782 60.7000 5.8886 98.6251 60.8000 5.7940 98.6713 60.9000 5.6993 98.7168 61.0000 5.6043 98.7615 61.1000 5.5092 98.8054 题 由初始条件,设计程序 析,结果如下(省略了前60s 的数据):

重庆大学数学实验报告七

开课学院、实验室:数统学院DS1421实验时间:2013年03月17日

由于matlab中小数只能是四位,所以我在编程的过程中将距离扩大了1000倍,但是并不会影响我们所求得的结果。 运行程序之后我们得到的结果为: 我们可以得到当金星与地球的距离(米)的对数值为9.9351799时,只一天恰好是25号。 8.编写的matlab程序如下: x=0:400:2800; y=0:400:2400; z=[1180 1320 1450 1420 1400 1300 700 900 1230 1390 1500 1500 1400 900 1100 1060 1270 1500 1200 1100 1350 1450 1200 1150 1370 1500 1200 1100 1550 1600 1550 1380 1460 1500 1550 1600 1550 1600 1600 1600 1450 1480 1500 1550 1510 1430 1300 1200 1430 1450 1470 1320 1280 1200 1080 940]; [xi,yi]=meshgrid(0:5:2800,0:5:2400); zi=interp2(x,y,z,xi,yi,'cubic'); mesh(xi,yi,zi); xlabel('x'),ylabel('y'),zlabel('高程'); title('某山区地貌图'); figure(2); contour(xi,yi,zi,30); 运行程序我们得到的结果如下所示: 山区的地貌图如下所示:

等高线图如下所示: 三、附录(程序等) 6. y=18:2:30;

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

重庆大学数学实验一 matlab的基本应用 参考答案

《数学实验》第一次上机实验 1. 设有分块矩阵?? ? ???= ????22322333S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证?? ????+= 22 S 0RS R E A 。 程序及结果: E=eye(3); %创建单位矩阵E% R=rand(3,2); %创建随机矩阵R% O=zeros(2,3); %创建0矩阵% S=diag(1:2); %创建对角矩阵% A=[E,R;O,S]; %创建A 矩阵% B=[E,(R+R*S);zeros(2,3),S^2] %计算等号右边的值% A^2 %计算等号左边的值% 运行结果: B = 1.00 0 0 1.63 2.74 0 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.00 ans = 1.00 0 0 1.63 2.74 0 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.00 2.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量如表1.1,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该10种商品的总收入和总利润。 表1.1 1)程序: a=[7.15 8.25 3.20 10.30 6.68 12.03 16.85 17.51 9.30]; b=[11.10 15.00 6.00 16.25 9.90 18.25 20.80 24.15 15.50]; c=[568 1205 753 580 395 2104 1538 810 694];

数学建模实验报告

湖南城市学院 数学与计算科学学院《数学建模》实验报告 专业: 学号: 姓名: 指导教师: 成绩: 年月日

实验一 初等模型 实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。 实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。 A 题 飞机的降落曲线 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。 (1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。 y 0x 一、 确定飞机降落曲线的方程

如图所示,我们假设飞机降落的曲线的方程为I d cx bx ax x f +++=23)( 由题设有 h x f f ==)(,0)0(0。 由于曲线是光滑的,所以f(x)还要满足0)(,0)0(0='='x f f ,代入f(x) 可以得到 ?? ? ? ?? ?=++='=+++==='==0 23)()(0)0(0)0(020*******c bx ax x f h d cx bx ax x f c f d f 得 ,0,0,3,22 3 ===- =d c x h b x h a 飞机的降落曲线为 )32()(2 30 2 0x x x x h x f --= 二、 找出最佳着陆点 飞机的垂直速度是关于时间t 的导数,所以 dt dx x x x x h dt dy )66(20 20--= 其中 dt dx 是飞机的水平速度, ,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 20202 2--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 2 02-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2 26)(max x hu x a = []0,0x x ∈ 设计要求 1062 2g x hu ≤ ,所以g h u x 600?≥ (允许的最小值)

相关主题
文本预览
相关文档 最新文档