当前位置:文档之家› 第4章ANSYS边坡工程应用实例分析

第4章ANSYS边坡工程应用实例分析

第4章ANSYS边坡工程应用实例分析
第4章ANSYS边坡工程应用实例分析

本章首先对边坡工程进行了概述,然后介绍了ANSYS 模拟边坡稳定性分析的步骤,最后用实例详细介绍了ANSYS 进行边坡稳定性分析的全过程。

内容 提要 第4章 ANSYS 边坡工程应用实例分析

本章重点

边坡工程概述

ANSYS 边坡稳定性分析步骤

ANSYS 边坡稳定性实例分析

本章典型效果图

4.1 边坡工程概述

4.1.1 边坡工程

边坡指地壳表部一切具有侧向临空面的地质体,是坡面、坡顶及其下部一定深度坡体的总称。坡面与坡顶面下部至坡脚高程的岩体称为坡体。

倾斜的地面称为斜坡,铁路、公路建筑施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;水利、市政或露天煤矿等工程开挖施工所形成的斜坡也称为边坡;这些对应工程就称为边坡工程

对边坡工程进行地质分类时,考虑了下述各点。首先,按其物质组成,即按组成边坡的地层和岩性,可以分为岩质边坡和土质边坡(后者包括黄土边坡、砂土边坡、土石混合边坡)。地层和岩性是决定边坡工程地质特征的基本因素之一,也是研究区域性边坡稳定问题的主要依据.其次,再按边坡的结构状况进行分类。因为在岩性相同的条件下,坡体结构是决定边坡稳定状况的主要因素,它直接关系到边坡稳定性的评价和处理方法。最后,如果边坡已经变形,再按其主要变形形式进行划分。即边坡类属的称谓顺序是:岩性—结构—变形。

边坡工程对国民经济建设有重要的影响:在铁路、公路与水利建设中,边坡修建是不可避免的,边坡的稳定性严重影响到铁路、公路与水利工程的施工安全、运营安全以及建设成本。在路堤施工中,在路堤高度一定条件下,坡角越大,路基所占面积就越小,反之越大。在山区,坡角越大,则路堤所需填方量越少。因此,很有必要对边坡稳定性进行分析,

4.1.2 边坡变形破坏基本原理

4.1.2.1 应力分布状态

边坡从其形成开始,就处于各种应力作用(自重应力、构造应力、热应力等)之下。在边坡的发展变化过程中,由于边坡形态和结构的不断改变以及自然和人为营力的作用,边坡的应力状态也随之调整改变。根据资料及有限元法计算,应力主要发生以下变化:

(1)岩体中的主应力迹线发生明显偏转,边坡坡面附近最大主应力方向和坡而平行,而最小主应力方向则与坡面近于垂直,并开始出现水平方向的剪应力,其总趋势是由内向

外增多,愈近坡脚愈高,向坡内逐渐恢复到原始应力状态。

(2) 在坡脚逐渐形成明显的应力集中带。边坡愈陡,应力集中愈严重,最大最小主应力的

差值也愈大。此外,在边坡下边分别形成切向应力减弱带和水平应力紧缩带,而在靠

近边坡的表部所测得的应力值均大于按上覆岩体重量计算的数值。

(3) 边坡坡面岩体由于侧向应力近于零,实际上变为两向受力。在较陡边坡的坡面和顶面,

出现拉应力,形成拉应力带.拉应力带的分布位置与边坡的形状和坡面的角度有关。边

坡应力的调整和拉应力带的出现,是边坡变形破坏最初始的征兆。例如,由于坡脚应

力的集中,常是坡脚出现挤压破碎带的原因;由于坡面及坡顶出现拉应力带,常是表

层岩体松动变形的原因。

4.1.2.2 边坡岩体变形破坏基本形式

边坡在复杂的内外地质营力作用下形成,又在各种因素作用下变化发展。所有边坡都在不断变形过程中,通过变形逐步发展至破坏。其基本变形破坏形式主要有:松弛张裂、滑动、崩塌、倾倒、蠕动和流动。

4.1.3 影响边坡稳定性的因案

影响边坡稳定性的主要因素有:

(1)边坡材料力学特性参数:

包括弹性模量、泊松比、摩擦角、粘结力、容重、抗剪强度等参数。

(2)边坡的几何尺寸参数:

包括边坡高度、坡面角和边坡边界尺寸以及坡面后方坡体的几何形状,即坡体的不连续面与开挖面的坡度及方向之间的几何关系,它将确定坡体的各个部分是否滑动或塌落。

(3)边坡外部荷载:

包括地震力、重力场、渗流场、地质构造地应力等。

4.1.4 边坡稳定性的分析方法

分析边坡稳定问题,基本上可以分为两种方法:极限平衡方法和数值分析方法。

4.1.4.1 极限平衡方法

极限平衡方法的基本思想是:以摩尔一库仑抗剪强度理论为基础,将滑坡体划分成若干垂直条块,建立作用在垂直条块上的力的平衡方程式,求解安全系数。

这种计算分析方法遵循下列基本假定:

(1)遵循库仑定律或由此引伸的准则。

(2)将滑体作为均质刚性体考虑,认为滑体本身不变形,且可以传递应力。因此只研究滑动

面上的受力大小,不研究滑体及滑床内部的应力状态。

(3)将滑体的边界条件大大简化。如将复杂的滑体型态简化为简单的几何型态;将滑面简化

为圆弧面、平面或折面;一般将立体问题简化为平面问题,取沿滑动方向的代表性剖面,以表征滑体的基本型态;将均布力简化为集中力,有时还将力的作用点简化为通过滑体重心。

极限平衡方法包括以下几种方法:

(1)瑞典圆弧滑动法

(2)简化逼肖普法

(3)简布普通条分法

(4)摩根斯坦-普赖斯法

(5)不平衡推力传递法

以上各种方法都是假定土体是理想塑性材料,把土条作为一个刚体,按照极限平衡的原则进行力的分析,最大的不同之处在于对相邻上条之间的内力作何种假定,也就是如何增加已知条件使超静定问题变成静定问题。这些假定的物理意义不一样,所能满足的平衡条件也不相同,计算步骤有繁有简,使用时必须注意他们的适用场合。

极限平衡方法关键是对滑体的休型和滑面的形态进行分析、正确选用滑面的计算参数以及正确引用滑体的荷载条件等。因为极限平衡方法完全不考虑土体本身的应力-应变关系,不能真实地反映边坡失稳时的应力场和位移场,因此而受到质疑。

4.1.4.2 数值分析方法

数值数值分析方法考虑土体应力应变关系,克服了极限平衡方法完全不考虑土体本身的应力-应变关系缺点,为边坡稳定分析提供了较为正确和深入的概念。

边坡稳定性数值分析方法主要包含以下几种方法:

(1)有限元法

有限单元法是数值模拟方法在边坡稳定评价中应用最早的方法,也是目前最广泛使用的一种数值方法,可以用来求解弹性、弹塑性、粘弹塑性、粘塑性等问题。目前用有限元法求解边坡稳定主要有两种方法。

a.有限元滑面搜索法:将边坡体离散为有限单元格,按照施加的荷载及边界条件进行有限元计算可得到每个结点的应力张量。然后假定一个滑动面,用有限元数据给出滑动面任一点的向正应力和剪应力,根据摩尔一库仑准则可得该点的抗滑力,由此即能求得滑动面上每个结点的下滑力与抗滑力,再对滑动面上下滑力与抗滑力进行积分,就可以求得每一个滑动面的安全系数。

b.有限元强度折减法:首先选取初始折减系数,将岩土体强度参数进行折减,将折减后的参数作为输入,进行有限元计算,若程序收敛,则岩土体仍处于稳定状态,然后再增加折减系数,直到程序恰好不收敛,此时的折减系数即为稳定或安全系数。

(2)自适应有限元法

自20世纪70年代开始自适应理论被引入有限元计算,主导思想是减少前处理工作量和实现网格离散的客观控制。现已基本建立了一般弹性力学、流体动力学、渗流分析等领域的平面自适应分析系统,能使计算较为快速和准确。

(3)离散单元法

离散单元法的突出功能是它在反映岩块之间接触面的滑移、分离与倾翻等大位移的同时,

又能计算岩块内部的变形与应力分布。因此,任何一种岩体材料都可引入到模型中,例如弹性、粘弹性或断裂等均可考虑,故该法对块状结构、层状破裂或一般破裂结构岩体边坡比较合适。并且,它利用显式时间差分法(动态差分法)求解动力平衡方程,求解非线性大位移与动力问题比较容易。

离散元法在模拟过程中考虑了边坡失稳破坏的动态过程,允许岩土体存在滑动、平移、转动和岩体的断裂及松散等复杂过程,具有宏观上的不连续性和单个岩块休运动的随机性,可以较真实、动态地模拟边坡在形成和开挖过程中应力、位移和状态的变化,预测边坡的稳定性,因此在岩质高边坡稳定性的研究中得到广泛的应用。

(4)拉格朗日元法

为了克服有限元等方法不能求解大变形问题的缺陷,人们根据有限差分法的原理,提出了FLAC数值分析方法。该方法较有限元法能更好地考虑岩土体的不连续和大变形特性,求解速度较快。缺点是计算边界、单元网格的划分带有很大的随意性。

(5)界面元法

界面元法是一种基于累积单元变形于界面的界面应力元法模型,建立适用于分析不连续、非均匀、各向异性和各类非线性问题、场问题,以及能够完全模拟各类锚杆复杂空间布局和开挖扰动的方法。

4.1.4.3 有限元法用于边坡稳定性分析优点

有限元法考虑了介质的变形特征,真实地反应了边坡的受力状态。它可以模拟连续介质,也可以模拟不连续介质;能考虑边坡沿软弱结构面的破坏,也能分析边坡的整体稳定破坏。有限元法可以模拟边坡的圆弧滑动破坏和非圆弧滑动破坏。同时它还能适应各种边界条件和不规则几何形状,具有很广泛的适用性。

有限元法应用于边坡工程,有其独特的优越性。与一般解析方法相比,有限元法有以下优点:

(1) 它考虑了岩体的应力-应变关系,求出每一单元的应力与变形,反映了岩体真实工作状态。

(2)与极限平衡法相比,不需要进行条间力的简化,岩体自始至终处于平衡状态。

(3)不需要像极限平衡法一样事先假定边坡的滑动面,边坡的变形特性、塑性区形成都根据实际应力应变状态“自然”形成。

(4)若岩体的初始应力己知,可以模拟有构造应力边坡的受力状态。

(5)不但能像极限平衡法一样模拟边坡的整体破坏,还能模拟边坡的局部破坏,把边坡的整体破坏和局部破坏纳入统一的体系。

(6)可以模拟边坡的开挖过程,描述和反应岩体中存在的节理裂隙、断层等构造面。

鉴于有限元法具有如此多优点,本章借助通用有限元软件ANSYS来实现对边坡稳定性分析,用具体的边坡工程实例详细介绍应用ANSYS软件分析边坡稳定性问题。

4.2 ANSYS边坡稳定性分析步骤

ANSYS边坡稳定性分析一般分以下几个步骤:

1、创建物理环境

2、建立模型,划分网格,对模型的不同区域赋予特性

3、加边界条件和载荷

4、求解

5、后处理(查看计算结果)

4.2.1创建物理环境

在定义边坡稳定性分析问题的物理环境时,进入ANSYS前处理器,建立这个边坡稳定性分析的数学仿真模型。按照以下几个步骤来建立物理环境:

1、设置GUT菜单过滤

如果你希望通过GUI路径来运行ANSYS,当ANSYS被激活后第一件要做的事情就是选择菜单路径:Main Menu>Preferences,执行上述命令后,弹出一个如图4-1所示的对话框出现后,选择Structural。这样ANSYS会根据你所选择的参数来对GUI图形界面进行过滤,选择Structural以便在进行边坡稳定性分析时过滤掉一些不必要的菜单及相应图形界面。

2、定义分析标题(/TITLE)

在进行分析前,可以给你所要进行的分析起一个能够代表所分析内容的标题,比如“Slope stability Analysis”,以便能够从标题上与其他相似物理几何模型区别。用下列方法定义分析标题。

命令:/TITLE

GUI:Utility Menu>File>Change Title

3、说明单元类型及其选项(KEYOPT选项)

与ANSYS的其他分析一样,也要进行相应的单元选择。ANSYS软件提供了100种以上的单元类型,可以用来模拟工程中的各种结构和材料,各种不同的单元组合在一起,成为具体的物理问题的抽象模型。例如,不同材料属性的边坡土体用PLANE82单元来模拟。

大多数单元类型都有关键选项(KEYOPTS),这些选项用以修正单元特性。例如,PLANE82有如下KEYOPTS:

KEYOPT(2) 包含或抑制过大位移设置

KEYOPT(3) 平面应力、轴对称、平面应变或考虑厚度的平面应力设置

KEYOPT(9) 用户子程序初始应力设置

设置单元以及其关键选项的方式如下:

命令:ET

KEYOPT

GUI:Main Menu> Preprocessor> Element Type> Add/Edit/Delete

图4-1 GUI图形界面过滤

4定义单位

结构分析只有时间单位、长度单位和质量单位三个基本单位,则所有输入的数据都应当是这三个单位组成的表达方式。如标准国际单位制下,时间是秒(s),长度是米(m),质量是千克(kg),则导出力的单位是kg?m/s2(相当于牛顿N),材料的弹性模量单位是kg/m?s2(相当于帕Pa)。

命令:/UNITS

5、定义材料属性

大多数单元类型在进行程序分析时都需要指定材料特性,ANSYS程序可方便地定义各种材料的特性,如结构材料属性参数、热性能参数、流体性能参数和电磁性能参数等。

ANSYS程序可定义的材料特性有以下三种:

(1)线性或非线性。

(2)各向同性、正交异性或非弹性。

(3)随温度变化或不随温度变化。

因为分析的边坡模型采用理想弹塑性模型(D-P模型),因此边坡稳定性分析中需要定义边坡中不同土体的材料属性:容重、弹性模量、泊松比、凝聚力以及摩擦角。

命令:MP

GUI:Main Menu>Preprocessor>Material Props>Material Models

或Main Menu>Solution>Load Step Opts>Other>Change Mat Props>Material Models 进行边坡稳定性分析计算时,采用强度折减法来实现。首先选取初始折减系数F,然后对边坡土体材料强度系数进行折减,折减后凝聚力以及摩擦角分别见式4-1和式4-2。

F

C C =‘

(4-1) F ??t a n t a n =‘ (4-2) ◆ C 和?为边坡土体的初始凝聚力和摩擦角。

◆ 对C 和?进行折减,输入边坡模型计算,若收敛,则此时边坡是稳定的;继续增大

折减系数F ,直到程序恰好不收敛,此时的折减系数即为稳定或安全系数。

4.2.2 建立模型和划分网格

创建好物理环境,就可以建立模型。在进行边坡稳定性分析时,需要建立模拟边坡土体的PLANE82单元。在建立好的模型各个区域内指定特性(单元类型、选项、实常数和材料性质等)以后,就可以划分有限元网格了。

通过GUI 为模型中的各区赋予特性:

1、选择Main Menu> Preprocessor> Meshing> Mesh Attributes> Picked Areas

2、点击模型中要选定的区域。

3、在对话框中为所选定的区域说明材料号、实常数号、单元类型号和单元坐标系号。

4、重复以上三个步骤,直至处理完所有区域。

通过命令为模型中的各区赋予特性:

ASEL (选择模型区域)

MAT (说明材料号)

REAL (说明实常数组号)

TYPE (指定单元类型号)

ESYS (说明单元坐标系号)

4.2.3 施加约束和荷载

在施加边界条件和荷载时,既可以给实体模型(关键点、线、面)也可以给有限元模型(节点和单元)施加边界条件和荷载。在求解时,ANSYS 程序会自动将加到实体模型上的边界条件和载荷转递到有限元模型上。

边坡稳定性分析中,主要是给边坡两侧和底部施加自由度约束。

命令:D

施加荷载包括自重荷载以及边坡开挖荷载。

4.2.4 求解

接着就可以进行求解,ANSYS程序根据现有选项的设置,从数据库获取模型和载荷信息并进行计算求解,将结果数据写入到结果文件和数据库中。

命令:SOL VE

GUI:Main Menu>Solution>Solve> Current LS

4.2.5 后处理

后处理的目的是以图和表的形式描述计算结果。对于边坡稳定性分析中,进入后处理器后,查看边坡变形图和节点的位移、应力和应变。随着强度折减系数的增大,边坡的水平位移增大,塑性应变急剧发展,塑性区发展形成一个贯通区域时,计算不收敛,认为边坡发生了破坏。通过研究位移、应变和塑性区域,来综合判断边坡的稳定性。

命令:/POST1

GUI:Main Menu> General Postproc

4.2.6 补充说明

边坡的失稳破坏定义有很多种,对于采用弹塑性计算模型的边坡,需要综合考虑以下因素: (1)把有限元计算的收敛与否作为一个重要的衡量指标,边坡处于稳定状态,计算收敛,边坡破坏时,边坡不收敛。

(2)边坡失稳的同时还表现出位移急剧增加。

(3)边坡失稳总是伴随着塑性变形的明显增加和塑性区的发展,塑性区的发展状况反映了边坡是否处于稳定状态。

此外,采用弹塑性有限元法进行计算,它具有独特的优势:

(1)弹塑性分析假定岩体为弹塑性材料,岩体在受力初期处于弹性状态,达到一定的屈服准则后,处于塑性状态。采用弹塑性模型更能反应岩体的实际工作状态。

(2)岩体所承受的荷载超过材料强度时,就会出现明显的滑移破坏面。因此,弹塑性计算不需要假定破坏面的形状和位置,破坏面根据剪应力强度理论自动形成。当整个边坡破坏时,就会出现明显的塑性区。

(3 )能综合考虑边坡的局部失稳和整体失稳破坏。

4.3 ANSYS 边坡稳定性实例分析

4.3.1 实例描述 米米米

米米米

边坡围岩1弹性材料

边坡围岩2弹塑性材料

图4-2 边坡模型

边坡实例选取国内某矿,该边坡考虑弹性和塑性两种材料,边坡尺寸如图4-2所示。分析目的是对该边坡进行稳定性计算分析,以判断其稳定性和计算出安全系数,该边坡围岩材料属性见表4-1。

对于像边坡这样纵向很长的实体,计算模型可以简化为平面应变问题。假定边坡所承受的外力不随Z 轴变化,位移和应变都发生在自身平面内。对于边坡变形和稳定性分析,这种平面假设是合理的。实测经验表明,边坡的影响范围在2倍坡高范围,因此本文计算区域为边坡体横向延伸2倍坡高,纵向延伸3倍坡高。两侧边界水平位移为零,下侧边界竖向位移为零。弹性有限元的计算模型如图4-2所示。

采用双层模型,模型上部为理想弹塑性材料,下部为弹性材料,左右边界水平位移为零,下边界竖向位移为零。

◆双层模型考虑土体的弹塑性变形,其塑性区的发展,应力的分布更符合实际情况。

◆考虑双层模型,塑性区下部的单元可以产生一定的垂直变形和水平变形,基本消除了

由于边界效应在边坡下部出现的塑性区,更好地模拟了边坡的变形和塑性区的发展。

4.3.2 GUI操作方法

4.3.2.1 创建物理环境

1) 在【开始】菜单中依次选取【所有程序】/【ANSYS10.0】/【ANSYS Product Launcher】,得到“10.0ANSYS Product Launcher”对话框。

2)选中【File Management】,在“Working Directory”栏输入工作目录“D:\ansys\example4-1”,在“Job Name”栏输入文件名“Slope”。

3)单击“RUN”按钮,进入ANSYS10.0的GUI操作界面。

4)过滤图形界面:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。

5)定义工作标题:Utility Menu> File> Change Title,在弹出的对话框中输入“Slope stability Analysis”,单击“OK”,如图4-3。

图4-3 定义工作标题

6)定义单元类型:

a.定义PLANE82单元:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出一个单元类型对话框,单击“Add”按钮。弹出如图4-4所示对话框。在该对话框左面滚动栏中选择“Solid”,在右边的滚动栏中选择“Quad 8node 82”,单击“Apply”,就定义了“PLANE82”单元。

图4-4 定义PLANE82单元对话框

b.设定PLANE82单元选项:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出一个单元类型对话框,选中“Type 2 PLANE82”,单击“Options”按钮,弹出一个“PLANE82 element Type options”对话框,如图4-5所示。在“Element behavior K3”栏后面的下拉菜单中选取“Plane strain”,其它栏后面的下拉菜单采用ANSYS默认设置就可以,单击“OK”按钮。

图4-5 PLANE82单元库类型选项对话框

◆通过设置PLANE82单元选项“K3”为“Plane strain”来设定本实例分析采取平面应

变模型进行分析。因为边坡是纵向很长的实体,故计算模型可以简化为平面应变问题。

◆8节点PLANE82单元每个节点有UX和UY两个自由度,比4节点PLANE42单元具有更

高的精确性,对不规则网格适应性更强。

7)定义材料属性

a.定义边坡围岩1材料属性:Main Menu> Preprocessor> Material Props> Material Models,弹出“Define Material Model Behavior”对话框,如图4-6所示。

图4-6 定义材料本构模型对话框

在图4-6中右边栏中连续双击“Structural> Linear> Elastic>Isotropic”后,又弹出如图4-7所示“Linear Isotropic Properties for Material Number 1”对话框,在该对话框中“EX”后面的输入栏输入“3E10”,在“PRXY”后面的输入栏输入“0.25”,单击“OK”。再在选中“Density”并双击,弹出如图4-8所示“Density for Material Number 1”对话框,在“DENS”后面的栏中输入边坡土体材料的密度“2500”,单击“OK”按钮。

再次在图4-6中右边的栏中连续双击“Structural>Nonlinear> Inelastic>Non-metal plasticity>drucker-prager”后,又弹出一个如图4-9所示对话框。在“Cohesion”栏添入边坡围岩材料1的内聚力“0.9E6”,在“Fric Angle”栏添入边坡内摩擦角“42”,单击“OK”按钮。

图4-7 线弹性材料模型对话框图4-8材料密度输入对话框

图4-9 定义边坡材料1DP模型对话框

b.定义边坡围岩2材料属性:在图4-6对话框中,单击“Material> New Model…”,弹出一个“Define Material ID”对话框,在“ID”栏后面输入材料编号“2”,单击“OK”按钮。弹出一个定义材料模型对话框对话框,选中“Material Model Number 2”,和定义边坡围岩1材料一样,在右边的栏中连续双击“Structural> Linear> Elastic>Isotropic”后,又弹出一个“Linear Isotropic Properties for Material Number 2”对话框,在该对话框中“EX”后面的输入栏输入“3.2E10”,在“PRXY”后面的输入栏输入“0.24”,单击“OK”。再选中“Density”并双击,弹出一个“Density for Material Number 2”对话框,在“DENS”后面的栏中输入隧道围岩材料的密度“2700”,再单击“OK”按钮,弹出一个定义材料模型对话框。

c.复制边坡围岩1材料性质:在图4-6对话框中,用鼠标点击“Edit>copy….”,弹出一个“Copy Material Model”对话框,如图4-10所示。在“from Material number”栏后面的下拉菜单中选取“1”,在“TO Material number”栏后面输入“3”,单击“Apply”按钮。又弹出如土4-10所示对话框,然后依次在“TO Material number”栏后面输入“4”、“5”、“6”、“7”、“8”“9”、“10”,“11”、“12”、“13”,每输入一个数,就单击“Apply”按钮一次。

图4-10 复制本构模型对话框

最后得到10个复制围岩1的边坡材料本构模型,如图4-11所示。

图4-11 定义强度折减后材料模型对话框

图4-12 定义强度折减系数F=1.2时围岩材料对话框

d.定义10个强度折减后材料本构模型:首先定义强度折减系数F=1.2后边坡围岩材料模型,在图4-11对话框中,在鼠标依次双击“Material Model Number 3/Drucper-Prager”。弹出一个“Drucker- Prager Material Number 3”,如图4-12所示,在“Cohesion”栏添入强度折减系数F=1.2后边坡围岩材料1的内聚力“0.75E6”,在“Fric Angle”栏添入折减后边坡内摩擦角“37.7”,单击“OK”按钮。

用相同方法定义强度折减系数分别为:F=1.4、F=1.6、F=1.8、F=2.0、F=2.2、F=2.4、F=2.6、F=2.8、F=3.0的边坡围岩材料本构模型。

◆定义强度折减后本构模型目的是为了分析边坡稳定性。

◆强度折减就是降低内聚力和摩擦角,根据式4-1和式4-2进行折减。

4.3.2.2 建立模型和划分网格

1)创建边坡线模型

a.输入关键点:Main Menu> Preprocessor> Modeling> Create>Keypoints>In Active CS,弹出

“Creae Keypoints in Active Cooedinate System”对话框,如图4-13所示。在“NPT keypoint number”栏后面输入“1”,在“X,Y,Z Location in active CS”栏后面输入“(0,0,0)”,单击“Apply”按钮,这样就创建了关键点1。再依次重复在“NPT keypoint number”栏后面输入“2、3、4、5、6、7、8、9”,在对应“X,Y,Z Location in active CS”栏后面输入“(-800,0,0)、(-800,-800,0)、(-800,-1200,0)、(1200,-1200,0)、(1200,-800,0)、(1200,0,0)、(1200,378,0)、(430,378,0),最后单击“OK”按钮。

图4-13在当前坐标系创建关键点对话框

b.创建边坡线模型:Main Menu> Preprocessor> Modeling> Create>Lines>Straight line,弹出“Creae straight lines”对话框,用鼠标依次点击关键点1、2,单击“Apply”按钮,这样就创建了直接L1,同样分别连接关键点“2、3”,“3、4”,“4、5”,“5、6”,“6、7”,“7、4”,“7、8”,“8、9”,“9、1”,“9、2”,最后单击“OK”按钮,就得到边坡线模型,如图4-14所示。

图4-14 边坡线模型

3)创建边坡面模型

a.打开面编号显示:Utility Menu> PlotCtrls> Numbering,弹出“Plot Numbering Controls”对话框,如图4-15所示。选中“Aares Numbers”选项,后面的文字由“off”变为“on”,单击

“OK”关闭窗口。

图4-15 打开面编号对话框

图4-16 边坡面模型

b.创建边坡面模型:Main Menu> Preprocessor> Modeling> Create>Areas> Arbitrary> by line,弹出一个“Create Area by lines”对话框,在图形中选取线L4、L5、L3和L11,点击“Apply ”按钮,就生成了边坡弹性材料区域面积A1;再依次用鼠标在图形中选取线L1、L2、L6、L10、和L11,点击“Apply ”按钮,就生成了边坡塑性材料区域面积A2;再依次用鼠标在图形中选

取线L7、L8、L10和L9,点击“OK ”按钮,就生成了边坡开挖掉区域面积A3。最后得到边坡模型的面模型,如图4-16所示。

4)划分边坡围岩2单元网格

a. .给边坡围岩2赋予材料特性:Main Menu> Preprocessor> Meshing> MeshTool,弹出“MeshTool”对话框,如图4-17所示。在“Element Attributes”后面的下拉式选择栏中选择“Areas”,按“Set”按钮,弹出一个“Areas Attributes”面拾取框,在图形界面上拾取边坡围岩2区域,单击拾取框上的“OK”按钮,又弹出一个如图4-18所示的“Areas Attributes”对话框,在“Material number”后面的下拉式选择栏中选取“2”,在“Element type number ”后面的下拉式选择栏中选取“2 PLANE82”,单击“Apply”。

图4-17 网格划分工具栏图4-18定义单元属性对话框

b.设置网格划分份数:在图4-17工具栏中“Size Control”栏,用鼠标点击“lines”后面的“Set”,弹出一个选择对话框,用鼠标在图形选择线L3和L5。弹出一个“Element Sizes on Picked Lines”,对话框,如图4-19所示,在“No of element division”栏后面输入“5”,单击“Apply”按钮,再选择线L4和L11,又弹出图4-19对话框,在“No of element division”栏后面输入“26”,单击“OK”按钮。

c.划分单元网格:在图4-17网格划分工具栏中单击“Mesh”按钮,弹出一个拾取面积对话框,拾取面积A1,单击拾取框上的“OK”按钮,生成边坡围岩2单元网格。

图4-19 设置网格份数对话框

5)划分边坡围岩1单元网格

图4-20 选取线对话框图4-21 设置网格分数对话框

a.设置网格份数:Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Layers>Picked Lines,弹出一个“Set Layer Controls”对话框,如图4-20所示,用鼠标选取线L1、L1和L6单击“OK”按钮。弹出一个“Area Layer Mesh Control on Picked lines”对话框,如图4-21所示,在“No of line division”栏后面输入“10”,单击“OK”按钮。

相同方法设置线L8和L10分割份数为16;设置线L7和L9线的分割份数为12。

b. 给边坡围岩1赋予材料特性:Main Menu> Preprocessor> Meshing> MeshTool,弹出“MeshTool”对话框,如图4-17所示。在“Element Attributes”后面的下拉式选择栏中选择“Areas”,按“Set”按钮,弹出一个“Areas Attributes”面拾取框,在图形界面上拾取面A2和A3,单击拾取框上的“OK”按钮,又弹出一个“Areas Attributes”对话框,在“Material number”后面的下拉式选择栏中选取“1”,在“Element type number ”后面的下拉式选择栏中选取“2 PLANE82”,单击“Apply”。

c.划分单元网格:在图3-97网格划分工具栏中单击“Mesh”按钮,弹出一个拾取面积对话框,拾取围岩,单击拾取框上的“OK”按钮,生成边坡围岩1单元网格。

最后得到边坡模型单元网格,如图4-22所示。

图4-22 边坡模型单元网格

4.3.2.3 施加约束和荷载

1)给边坡模型施加约束

a.给边坡模型两边施加约束:执行Main Menu>Solution>Define Loads>Apply>Structural> Displacement>on Nodes,弹出在节点上施加位移约束对话框,用鼠标选取隧道模型两侧边界上所有节点,单击“OK”按钮。弹出“Apply U,ROT on Nodes”对话框,如图4-23所示,在“DOFS to be constrained”栏后面中选取“UX”,在“Apply as”栏后面的下拉菜单中选取“Constant value”,在“Displacement value”栏后面输入“0”值,然后单击“OK”按钮。

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ansys考试重点整理

ANSYS复习试卷 一、填空题 1.启动ANSYS有命令方式和菜单方式两种方式。 2.典型的ANSYS分析步骤有创建有限元模型(预处理阶段)、施加载荷并求解(求解阶段)、查看结果(后处理阶段)等。 3.APDL语言的参数有变量参数和数组参数,前者有数值型和字符型,后者有数值型、字符型和表。 4.ANSYS中常用的实体建模方式有自下而上建模和自上而下建模两种。 5.ANSYS中的总体坐标系有总体迪卡尔坐标系 [csys,0]、总体柱坐标系(Z)[csys,1]、总体球坐标系[csys,2]和总体柱坐标系(Y)[csys,3]。 6.ANSYS中网格划分的方法有自由网格划分、映射网格划分、扫掠网格划分、过渡网格划分等。 7.ANSYS中载荷既可以加在实体模型上,也可以加在有限元模型上。 8.ANSYS中常用的加载方式有直接加载、表格加载和函数加载。 9.在ANSYS中常用的结果显示方式有图像显示、列表显示、动画显示等。 10.在ANSYS中结果后处理主要在通用后处理器 (POST1) 和时间历程后处理器 (POST26) 里完成。 11.谐响应分析中主要的三种求解方法是完全法、缩减法、模

态叠加法 。 12.模态分析主要用于计算结构的 固有频率 和 振型(模态) 。 13. ANSYS 热分析可分为 稳态传热 、 瞬态传热 和 耦合分析 三类。 14. 用于热辐射中净热量传递的斯蒂芬-波尔兹曼方程的表达式是4411212()q A F T T εσ=-。 15. 热传递的方式有 热传导 、 热对流 、 热辐射 三种。 16. 利用ANSYS 软件进行耦合分析的方法有 直接耦合 、 间接耦合 两种。 二、 简答题 1. 有限元方法计算的思路是什么包含哪几个过程 答:(1)有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 (2)物体离散化;单元特性分析;单元组装;求解节点自由度。 2. ANSYS 都有哪几个处理器各自用途是什么 答:(1)有6个,分别是:前处理器;求解器;通用后处理器;时间历程后处理器;拓扑优化器;优化器。 (2)前处理器:创建有限元或实体模型; 求解器:施加荷载并求解; 通用后处理器:查看模型在某一时刻的结果; 时间历程后处理器:查看模型在不同时间段或子步历程上的结果; 拓扑优化器:寻求物体对材料的最佳利用; 优化器:进行传统的优化设计;

机械创新设计案例

机械创新设计案例 我们知道,目前,机械产品的国际竞争非常激烈,要保持和发展我国机械产品在机械市场中的份额,关键靠的就是创新。我们要摆脱现在在机械创新设计上的落后局面,就要我国机械人才的创新设计能力。 机械创新设计是一个极其重要而又困难的实践性较强的研究课题。要进行机械创新设计要有两个必要条件:一是充分获取适用的知识;二是要使用符合创新设计思维并能激发创新思维的设计系统。设计过程充满了矛盾,所获取的知识应有助于矛盾的迅速解决,这就要求知识获取工具紧密集成到设计过程中,因此要统一研究知识获取工具与设计系统。另外,人类的创新设计思维模式是在长期的成功设计经验中总结形成的,因此设计系统必需符合创新设计思维规律。 案例一:新型内燃机的开发实例 一般圆柱凸轮机构是将凸轮的回转运动变为从动杆的往复运动,而此处利用反动作,即当活塞往复运动时,通过连杆端部的滑块在凸轮槽中滑动而推动凸轮转动,经输出轴输出转矩。活塞往复两次,凸轮旋转360°。系统中没有飞轮,控制回转运动平稳。 这种无曲轴式活塞发动机若将圆柱凸轮安装在发动机的中心部位,可在其周围设置多个气缸,制成多缸发动机。通过改变圆柱凸轮的凸轮轮廓形状可以改变输出轴的转速,达到减速增矩的目的。这种凸轮式无曲轴发动机已用于船舶、重型机械、建筑机械等行业。 旋转式发动机与传统的往复式发动机相比,在输出功率相同时,

具有体积小、重量轻、噪声低、旋转速度范围大以及结构简单等优点,但在实用化生产的过程中还有许多问题需要解决。 随着生产科学技术的发展,必然会出现更多新型的内燃机和动力机械。人们总是在发现矛盾和解决矛盾的过程中不断取得进步。而在开发设计过程中敢于突破,善于运用类比、组合、替代等创新技法,认真进行科学分析,将会使人们得到更多创新的、进步的、高级的产品。 案例二:圆柱凸轮数控铣削装置的创新设计实例 圆柱凸轮作为一种机械传动控制部件,具有结构紧凑、工作可靠等突出优点,但其加工制作比较困难。东北大学东软集团生产的医用全身CT扫描机,有一对复杂的圆柱凸轮,过去一直采用手工加工,不仅制造精度低,而且劳动强度大,生产效率低,成本高。为此,负责机械加工的东北大学机械厂提出要研制一种精度较高、操作方便、成本较低的圆柱凸轮加工装置。圆柱凸轮数控铣削装置包括工作台直线运动坐标轴和工件回转运动坐标轴,在加工圆柱凸轮时,本装置根据数控加工程序控制工件作旋转进给运动和直线进给运动,通过普通立式铣床工作台的垂直运动进行切深调整,这样就可以实现一条凸轮曲线槽的连续自动化加工。 案例一图

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

机械创新设计心得(精选多篇)

机械创新设计心得(精选多篇) 第一篇:机械创新设计心得 有幸参加本次博亚杯机械创新设计大赛。不管是在准备过程中还是在比赛过程中,都学到了许多在平时的学习中所学不到和感受不到的东西。 参加比赛是对一个人各方面能力的全面锻炼。这是一个自我提升的过程。在这个过程中所得到的经验对以后的学习工作生活都很重要。总结自己团队的成败得失吸取成功团队的宝贵经验,个人觉得一个团队要取得成功以下几点非常重要: 首先需要一个优秀的领导者,在拥有必要的基本知识技能外还需要能够统筹全局,充分调动整个团队的积极性,发挥每个团队成员的长处,挖掘每个成员的潜能。这需要他能够准确把握宏观的方向也要注意很小的细节问题。 二,一个团结奋进的团队,不仅是个人能力有限,在思维的灵活、见识的广度、上个人都是无法和团队相比拟的。一个团结的团队会有不竭的动力,团员间互相鼓励保证了团队的旺盛的斗志。团员间相互交流相互理解使整个比赛过程更加协调。

三、明确的目标和坚定的信念以及不灭的斗志。坚持到最后就是胜利,说的容易但做起来却不是那么回事,很多时候在最需要坚持时,我们往往忘记了这句话。生活最怕没有目标,做一件事,参加一个比赛亦如此。没有一个明确而有强烈的目标很难取得比赛的成功。 四、各方面的支持。来自自己的内心,来自学校,来自老师。 比赛表面上是一件件参赛作品的比较,实质是思维和思想的比拼。在比赛中能够使自己在思想认识上得到提高在思维习惯上得到改善则是最大的收获。创新,一个不曾间断过的话题,但怎么做到创新,怎么才能有一个创新型的思维却很少有人做到。 另外,在比赛过程中和其他学校学生的交流,让我认识到了自己看到了现状。从对比中看到了自己的情况,对自己在今后的学习生活上也有很大的帮助,给自己今后在一些事情上的选择上提供了借鉴。 机械创新设计心得(2): 大三花了将近半年的时间去搞第三届大学生机械创新设计大赛的作品,本来比赛早就完成了,开学还将所有的比赛花费的发票递交了上去,最后学校还要我们写一篇比赛心得,

机械创新设计心得(精选多篇)

机械创新设计心得(精选多篇) 有幸参加本次“博亚杯”机械创新设计大赛。不管是在准备过程中还是在比赛过程中,都学到了许多在平时的学习中所学不到和感受不到的东西。 参加比赛是对一个人各方面能力的全面锻炼。这是一个自我提升的过程。在这个过程中所得到的经验对以后的学习工作生活都很重要。总结自己团队的成败得失吸取成功团队的宝贵经验,个人觉得一个团队要取得成功以下几点非常重要: 首先需要一个优秀的领导者,在拥有必要的基本知识技能外还需要能够统筹全局,充分调动整个团队的积极性,发挥每个团队成员的长处,挖掘每个成员的潜能。这需要他能够准确把握宏观的方向也要注意很小的细节问题。 二,一个团结奋进的团队,不仅是个人能力有限,在思维的灵活、见识的广度、上个人都是无法和团队相比拟的。一个团结的团队会有不竭的动力,团员间互相鼓励保证了团队的旺盛的斗志。团员间相互交流相互理解使整个比赛过程更加协调。 三、明确的目标和坚定的信念以及不灭的斗志。坚持到最后就是胜利,说的容易但做起来却不是那么回事,很多时候在最需要坚持时,我们往往忘记了这句话。生活最怕没有目标,做一件事,参加一个比赛亦如此。没有一个明确而有

强烈的目标很难取得比赛的成功。 四、各方面的支持。来自自己的内心,来自学校,来自老师。 比赛表面上是一件件参赛作品的比较,实质是思维和思想的比拼。在比赛中能够使自己在思想认识上得到提高在思维习惯上得到改善则是最大的收获。创新,一个不曾间断过的话题,但怎么做到创新,怎么才能有一个创新型的思维却很少有人做到。 另外,在比赛过程中和其他学校学生的交流,让我认识到了自己看到了现状。从对比中看到了自己的情况,对自己在今后的学习生活上也有很大的帮助,给自己今后在一些事情上的选择上提供了借鉴。 机械创新设计心得: 大三花了将近半年的时间去搞第三届大学生机械创新设计大赛的作品,本来比赛早就完成了,开学还将所有的比赛花费的发票递交了上去,最后学校还要我们写一篇比赛心得,今晚花了两个钟的时间写下了下来这篇比赛心得,真的有点长,转发到自己的博客上,见证下自己曾经的步伐。 转眼间,大三过去了,在大三的第一个学期的最后几天,我们的参赛作品——绿色环保自动吸尘黑板擦通过了答辩,最后得到了学校老师,领导的肯定,成为其中的一个立项项目,得到了学校的大力支持。

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ansys有限元分析作业

有限元分析作业 作业名称输气管道有限元建模分析 姓名邓伟 学号 p1202100706 班级:浦机械1007 题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5

管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。

机械创新设计心得

机械创新设计心得 有幸参加本次“博亚杯”机械创新设计大赛。不管是在准备过程中还是在比赛过程中,都学到了许多在平时的学习中所学不到和感受不到的东西。 参加比赛是对一个人各方面能力的全面锻炼。这是一个自我提升的过程。在这个过程中所得到的经验对以后的学习工作生活都很重要。总结自己团队的成败得失吸取成功团队的宝贵经验,个人觉得一个团队要取得成功以下几点非常重要: 首先需要一个优秀的领导者,在拥有必要的基本知识技能外还需要能够统筹全局,充分调动整个团队的积极性,发挥每个团队成员的长处,挖掘每个成员的潜能。这需要他能够准确把握宏观的方向也要注意很小的细节问题。 二,一个团结奋进的团队,不仅是个人能力有限,在思维的灵活、见识的广度、上个人都是无法和团队相比拟的。一个团结的团队会有不竭的动力,团员间互相鼓励保证了团队的旺盛的斗志。团员间相互交流相互理解使整个比赛过程更加协调。 三、明确的目标和坚定的信念以及不灭的斗志。坚持到最后就是胜利,说的容易但做起来却不是那么回事,很多时

候在最需要坚持时,我们往往忘记了这句话。生活最怕没有目标,做一件事,参加一个比赛亦如此。没有一个明确而有强烈的目标很难取得比赛的成功。 四、各方面的支持。来自自己的内心,来自学校,来自老师。 比赛表面上是一件件参赛作品的比较,实质是思维和思想的比拼。在比赛中能够使自己在思想认识上得到提高在思维习惯上得到改善则是最大的收获。创新,一个不曾间断过的话题,但怎么做到创新,怎么才能有一个创新型的思维却很少有人做到。 另外,在比赛过程中和其他学校学生的交流,让我认识到了自己看到了现状。从对比中看到了自己的情况,对自己在今后的学习生活上也有很大的帮助,给自己今后在一些事情上的选择上提供了借鉴。 机械创新设计心得(2): 大三花了将近半年的时间去搞第三届大学生机械创新设计大赛的作品,本来比赛早就完成了,开学还将所有的比赛花费的发票递交了上去,最后学校还要我们写一篇比赛心得,今晚花了两个钟的时间写下了下来这篇比赛心得,真的有点长,转发到自己的博客上,见证下自己曾经的步伐。

ansys有限元分析报告大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。 二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:)(2 N/m 1090E .6

泊松比:0.33 质量密度:)(2 N/m 32.70E + 抗剪模量:)(2N/m 1060E .2+ 屈服强度:) (2N/m 875E .2+ 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid )。查资料可以知道3D 实体常用结构实体单元有下表。

ansys有限元分析考题

1. ANSYS交互界面环境包含交互界面主窗口和信息输出窗口。 2. 通用后处理器提供的图形显示方式有变形图、等值线图、矢量图、粒子轨迹图以及破裂和压碎图。 3. ANSYS软件是融结构、流体、电场、磁场、声场和耦合场分析于一体的有限元分析软件。 4. 启动ANSYS 10.0的程序,进入ANSYS交互界面环境,包含主窗口和输出窗口。 5. ANSYS程序主菜单包含有前处理、求解器、通用后处理、时间历程后处理器等主要处理器,另外还有拓扑优化设计、设计优化、概率设计等专用处理器。 6. 可以图形窗口中的模型进行缩放、移动和视角切换的对话框是图形变换对话框。 7. ANSYS软件默认的视图方位是主视图方向。 8. 在ANSYS中如果不指定工作文件名,则所有文件的文件名均为 file 。 9. ANSYS的工作文件名可以是长度不超过 64 个字符的字符串,必须以字母开头,可以包含字母、数字、下划线、横线等。 10. ANSYS常用的坐标系有总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、单元坐标系和结果坐标系。 11. ANSYS程序提供了4个总体坐标系,分别是:总体直角坐标系,固定内部编号为0;总体柱坐标系,固定内部编号为;总体球坐标系,固定内部编号为2;总体柱坐标系,固定内部编号为5。 12. 局部坐标系的类型分为直角坐标系、柱坐标系、球坐标系和环坐标系。 13. 局部坐标系的编号必须是大于或等于 11 的整数。 14. 选择菜单路径Utility Menu →WorkPlane→Display Working Plane,将在图形窗口显示工作平面。 15. 启动ANSYS进入ANSYS交互界面环境,最初的默认激活坐标系(当前坐标系)总是总体直角坐标系。 16. ANSYS实体建模的思路(方法)有两种,分别是自底向上的实体建模和自顶向下的实际建模。 17. 定义单元属性的操作主要包括定义单元类型、定义实常数和定义材料属性等。 18. 在有限元分析过程中,如单元选择不当,直接影响到计算能否进行和结果的精度。 19. 对于各向同性的线弹性结构材料,其材料属性参数主要有弹性模量和泊松比。

机械创新设计复习题

1.什么是机构的演化或变异什么是反求工程 机构的演化或变异是指以某机构为原始机构,在其基础上对组成机构的各个元素进行各种性质的改变或变换,而形成一种功能不同的机构。把别的国家的科技成果加以引进,消化吸收,改进提高,再进行创新设计,进而发展自己的新技术,称这一过程为反求工程。 2.什么是机械机械的特点有哪些方面 机械是用来传递运动或动力的能完成有用机械功的装置,用来变换或传递能量、物料与信息。其特点如下: 1)机械首先必须是执行机械运动的装置。 2)机械必须进行物料或信息的变换与传递,并完成有用的机械功。3)机械中必须要完成能量的转换。 3.为设计一个性能质量好,经济效益高的机械产品,在拟定机械的功能目标时必须注意哪五个方面的问题 答:1.拟定功能目标要进行可行性分析 2.拟定功能目标要分清主次,要利于功能的实现 3.拟定功能目标要利于扩大设计思路 4.拟定功能目标要具有一定的超前意识 5.拟定功能目标要注意产品的生命周期循环问 题 4.列举七种以上能够实现从连续转动到连续转动运动变换机构。 答:1.齿轮传动机构 2.摩擦轮传动机构3.瞬心线机构4.连杆机构5.带传动机构6.链传动机构7.绳索传动机构8.液力传动9.钢丝软轴传动机构10.万向联轴器 5.什么是定向思维、逆向思维、形象思维和抽象思维 定向思维:基本上属于逻辑性思维一类。其思维过程总是通过寻找合乎逻辑的、成熟的或常规的方法或途径,循序渐进地推断和认识事物。 逆向思维:是一种反逻辑和反常规的思维方式,其思维常摆脱正常的思考途径,以背逆正常思索途径来寻找解决问题的方法。 形象思维:这种思维形式表现为对事物表面特征的记印,对感知过的形象进行加工、改造,通过联想、想象,从而创造出新形象的过程、想象是形象思维的一种基本方法。 抽象思维:它是凭借概念、判断、推理来概括事物的本质,揭示各事物之间的联系与差距,从而推断出事物具有的新概念的思维模式 6. 设计增力机构将铰链四杆机构ABCD与摇杆滑块机构EFG串联组合成一个机构,实现滑块G的输出力Q增大。并简单计算输出力Q的大小(用公式表达即可)。 解:前置子机构为铰链四杆机构ABCD,后置子机构为摇杆滑块机构DCE。

ansys考试题

1、 使用 ansys 可以进行的分析类型有哪些? 结构分析、热分析、电磁分析、流体分析以及耦合场分析 2、ANSYS 典型分析过程由哪三个部分组成? 前处理、求解计算和后处理 3、 a nsys 第一次运行时缺省的文件名是什么? 4、 前处理模块主要包括哪两部分? 5、简述 ANSYS 软件的分析具体求解步骤 具体步骤如下: 1) 启动ansyso 已交互模式进入 ansys,定义工作文件名 2) 设定单元类型。对于任何分析,必须在单元库中选择一个或几个合适分析的单元类 型,单 元类型决定了辅加的自由度,许多单元还要设置一些单元选项,诸如单元特 性和假设 3) 定义材料属性。材料属性是与结构无关的本构属性,例如杨氏模量、密度等,一个 分析中 可以定义多种材料,每种材料设定一个材料编号。 4) 对几何模型划分网格 5)加载 6)结果后处理 6、ansys 常用的文件类型有哪些? 1)Jobname.db ansys 数据库文件,记录有限元单元、节点、载荷等数据,它包含了所 有的输入数据和部分结果数据。 2)Jobname.log ansys 日志文件,以追加式记录所有执行过的命令,使用 INPUT 命令 读取,可以对崩溃的系统或严重的用户错误进行恢复。 3) Jobname.err ANSYS 出错记录文件,记录所有运行中的警告、错误信息 4) Jobname.out ANSYS 输出文件,记录命令执行情况 7、 A NSYS 使用的模型可分为哪两大类? 实体模型和有限元模型,其中实体模型不参与有限元分析 8、 A NSYS 的整体坐标系有哪三类? 笛卡尔坐标系、柱坐标系、球坐标系 9、在ansys 对话框中"0K"按钮和“ Apply "按钮的区别是什么? 在ansys 对话框中“ 0K "按钮表示执行操作,并退出此对话框;而“ apply "按钮表示执 行操作,但并不退出此对话框,可以重复执行操作。 10、ANSYS 软件中提供了的创建模型的方法有哪些? 5) Jobname.rst ANSYS 结果文件,记录一般结构分析的结果数据 6) Jobname.rth ANSYS 结果文件,记录一般热分析的结果数据 7) Jobname.rmg ANSYS 结果文件,记录一般磁场分析的结果数据 File 参数定义和建立有限元模型

ANSYS有限元分析作业

1.工程背景 房屋刚性独立基础 当建筑物上部结构采用框架结构或单层排架结构承重时,基础常采用方形、圆柱形和多边形等形式的独立式基础,是整个或局部结构物下的无筋或配筋基础。本例以独立坡形基础为例。 2.几何参数及材料 底部:3m*3m,全高:1.8m,上部平台面积:0.6m*0.6m,斜坡坡高:1.2m,坡脚:45°,截面为正方形,选取1/2的单向简化模型。 桩体材料:线弹性材料,弹性模量GPa,泊松比0.2,密度2700kg/m3 土体材料:DP材料,弹性模量25MPa,泊松比0.45,密度2000kg/m3,粘聚力10,摩擦角30°,膨胀角30° 3.建模过程 (1)前处理 1——定义单元类型及材料属性 2——建立平面模型 3——进行网格划分 4——拉伸成体 (2)加载及求解 1——施加约束(整体模型的对称面X=0处施加对称约束,模型底面Y=-2施加全自由度约束,顶面为自由面,其余三个侧面约束其平面外的平动自由度) 2——施加重力荷载 3——施加上部约束 (3)后处理 1——自重荷载下的受力及变形 2——施加约束后的结果 4.命令流 /CLEAR /prep7 et,1,plane182 et,2,solid65 mp,ex,1,2.5e10 !桩的弹性模量 mp,nuxy,1,0.2 !桩的泊松比 mp,dens,1,2700 !桩的密度 mp,ex,2,2.5e7 !土的弹性模量 mp,nuxy,2,0.45 !土的泊松比

mp,dens,2,2000 !土的密度 tb,dp,2 tbdata,1,10,30,30 !粘聚力c为10,摩擦角为30度,膨胀角为30 !keypoints k,1 !建立模型关键点 k,2,1.5 k,3,1.5,0.3 k,4,0.3,1.5 k,5,0.3,1.8 k,6,0,1.8 k,7,1.5,1.8 k,8,4,1.8 k,9,4,0 k,10,4,-2 k,11,0,-2 *do,i,1,5 !连接关键点成线 l,i,i+1 *enddo l,1,6 l,3,7 l,5,7 *do,i,7,10 l,i,i+1 *enddo l,2,9 l,11,1 /pnum,line,1 lplot al,1,2,3,4,5,6 !显示直线编号 al,3,4,8,7 !绘制直线 al,2,7,9,10,13 !围成基础面 al,1,13,11,12,14 !生成土体面 /pnum,area,1 aplot aglue,all !显示面 nummrg,all !粘贴各部分 numcmp,all lsel,s,,,2,8,1 !选择直线 lsel,u,,,3 !去除L3 lesize,all,0.15 !设定划分尺寸 lsel,s,,,3 !选择L3 lesize,all,,,10 !分10份 lsel,s,,,all !反选L2-L8 lsel,u,,,2,8,1

机械创新设计(设计实例论文)

机械创新设计 说明书 设计题目:洗瓶机推瓶机构设计组号: 院系 专业: 指导教师:

目录

1,设计目的及意义 由于工业生产和社会生活的需要,大量的玻璃瓶、塑料瓶需要进行回收清洗后再利用,节省了大量制瓶洗所需要的费用同时也提高了工业生产的生产效率。然而就在此时也出现了回收后再清洗的问题。产品盛载是车间的最后一道关键工序,因此玻璃瓶的供应速度也就决定了总的生产效率的高低。从而产生了对洗瓶机设备的研究与改进工作。 随着啤酒市场不断地发展变化,酒瓶种类、标纸和粘接剂品种不断增加,特别是现在的头标铝箔纸的出现,给洗瓶设备和工艺提出了新的更高的要求在长期使用多种洗瓶机的过程中。为了适应现在啤酒回收瓶的洗涤要求,我们同该洗瓶机的制造厂家进行了广泛地讨论和研究,对洗瓶机适时地进行了一系列的技术改进。 洗瓶机器设备的出现并且运用到实际生产中,改变了人工刷洗的传统工艺,实现了自动化生产方式,达到了减少劳动力、节约费用、提高工作效率、增加企业经济效益之目的。并且得到了广大用户的支持和好评,而且使得化、制药、食品等行业的生产率产生了质的飞跃。 洗瓶机推瓶机构的原理方案分析: (1)功能分解:

(2) 功能描 述 原理解法 瓶子移 动 外部推力;传送带传送等清洗刷子清洗;高压水清洗等 (3)求功能元解 洗瓶机推瓶机构形态学矩阵 功能元 功能元解 12345 动力电动汽油柴油液气

源机机机动机动马达 移物传动 齿轮 传动 蜗杆 传动 带传 动 链 传动 清洗毛巾 清洗 高压 水清洗 刷子 清洗 2.设计题目 2.1推瓶机推瓶机构的改进设计 洗瓶机主要是由推瓶机构、导辊机构、转刷机构组成。待洗的瓶子放在两个同向转动的导辊上,导辊带动瓶子旋转。当推头M把瓶子推向前进时,转动着的刷子就把瓶子外面洗净。当前一个瓶子将洗刷完毕时,后一个待洗的瓶子已送入导辊待推。如图1所示。 图1 洗瓶机工作示意图 2,原理方案设计

相关主题
文本预览
相关文档 最新文档