当前位置:文档之家› 日常饮品中重金属的分析研究

日常饮品中重金属的分析研究

日常饮品中重金属的分析研究
日常饮品中重金属的分析研究

毕业设计(论文)

(2011 届本科)

题目:日常饮品中重金属含量的分析研究

学院:海洋

专业:环境工程

班级:

姓名:

学号:

指导教师:

20**年**月

目录

摘要 (5)

第一章前言 (6)

1.1 饮用水中重金属概述 (6)

1.2 各种重金属的危害与分析方法 (6)

1.2.1 镉 (6)

1.2.2 铜 (7)

1.2.3 铅 (7)

1.3 测定方法概述 (8)

1.3.1 原子吸收光谱法简介 (8)

1.3.2 原子吸收光谱法原理 (9)

1.3.3 原子吸收光谱法谱线轮廓 (9)

1.3.4 原子吸收光谱法谱线的特点 (10)

1.4 待测样品概述 (12)

1.5 相关标准概述 (13)

第二章实验部分 (14)

2.1 实验材料 (14)

2.2 铅测定实验方法 (14)

2.2.1 样品预处理 (14)

2.2.2 萃取分离与标准系列配制 (14)

2.3 铜测定实验方法 (15)

2.3.1 样品预处理 (15)

2.3.2 萃取分离与标准系列配制 (16)

2.3.3 测定 (16)

2.4 镉测定实验方法 (16)

2.4.1 样品预处理 (16)

2.4.2 萃取分离与标准系列配制 (17)

2.4.3 测定 (17)

第三章结果与讨论 (18)

3.1 数据结果 (18)

3.1.1 铅,铜,镉元素的标准曲线 (19)

3.1.2 方法的检测限及精密度 (20)

3.1.3 加标回收率 (20)

3.2测定方法与数据结果的讨论 (20)

3.2.1进样 (20)

3.2.2干燥 (20)

3.2.3灰化的温度选择 (21)

3.2.4酸度的选择 (21)

3.2.5数据与标准 (21)

第四章展望 (23)

致谢

参考文献

日常饮品中重金属含量的分析研究

摘要:

国内标准对食品及饮料的重金属测定方法有石墨炉原子吸收光谱法、氢化物原子荧光光谱法、火焰原子吸收光谱法等,笔者选用石墨炉原子吸收光谱法,采用浓缩样品5倍,硝化去除有机物,MIBK萃取等前处理,运用石墨炉原子吸收分光光度计,对五种饮料,三种矿泉水与自来水中的铅、铜、镉进行系统测定,测得三种重金属元素在饮品中的含量分别为:Pb 0.004~3.412μg/L;Cu 1.691~8.012μg/L;Cd 0.017~2.235μg/L,均符合国家安全标准。相对标准偏差为0.71~2.9%之间,检测限在0.023~0.041μg/L之间,样品的回收率在98.3%~103.1%之间,取得了满意的效果。

关键字:日常饮品;重金属;铅;铜;镉;石墨炉原子吸收

Drinks daily analysis of heavy metals

Abstract:

National standards for food and beverage Determination of heavy metal with AFS, AAS, AES, the authors used graphite furnace atomic absorption spectrometry, using 5 times concentrated samples, accumulation of heavy metals , MIBK extraction pre-treatment, the use of graphite furnace atomic absorption spectrophotometer, for five drinks, mineral water and tap water in three of Pb, Cu, Cd determination of the system, the measured heavy metals in content of beverages are: Pb 0.004 ~ 3.412μg / L; Cu 1.691 ~ 8.012μg / L; Cd 0.017 ~ 2.235μg / L, are in line with national safety standards. The relative standard deviation of 0.71 ~ 2.9%, Detection limit 0.023 ~ 0.041μg / L, and the sample recovery between 98.3% ~ 103.1%, and achieved satisfactory results.

Keywords: drinking water; heavy metals; Pb; Cu; Cd; AAS

第一章前言

1.1 饮用水中重金属概述

英国谚语说“罗马不是一日建成的”,而强大的罗马帝国的灭亡却用了没多少年。其中一大原因则是重金属中毒。在古罗马时代,对于金属的生产与应用就已经达到了高峰。当时的贵族就以使用铅为荣。铅中毒的现象相当严重。古罗马作家普莱尼曾提到,有人因饮用铅质容器制备的葡萄酒而导致“手不停摇摆或麻痹”。这是铅中毒引起的神经麻痹。以至后来的历史学家,通过毒理学、生物统计学、考古学等各方面的研究,来证明古罗马帝国的灭亡与铅中毒有直接的关系。

重金属在自然界中广泛存在,人类自有文字记载以来,一直在不断地开发和利用它。尤其是近一百年来,重金属被广泛应用在工业、农业,和人们的日常生活中。因此重金属污染的程度在不断加重,对人体健康的危害也在增加。

重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。饮用水中常见重金属的有8种:、砷、镉、铜、汞、铅、锌、镍、铬。本文主要针对的是铅,铜,镉。

1.2 各种重金属的危害与分析方法

1.2.1 镉

饮用水中镉的污染可能来自镀锌管中锌的杂志和焊料及某些金属配件,美国在公共供水中镉的平均浓度为1.3μg/L,我国饮用水中镉的浓度通常均低于1μg/L。

镉的毒性很大,摄入后最初在肾脏累积,生物半衰期约10~35年。肾脏是镉毒性的主要靶器官。食用镉污染的食物可能造成慢性中毒,在日本发生的“痛痛病”就是典型例子。镉具有通过吸入途径致癌的证据,但没有经口摄入途径致癌的证据,也没有明确的遗传毒性证据。IARC化学物致癌分类将镉及镉的化合物分在2类A组,对动物致癌性证据充分,对人致癌性证据有限。

世界卫生组织2004年发布的《饮用水水质准则(第3版)》饮用水中镉的准则值为0.003mg/L。美国(2004),欧盟(1998)饮用水中镉的标准植均为0.005mg/L。根据我国几年来实际工作情况认为,0.005mg/L的限值在我国是安全的,也是可以达到的,因而,GB5749-2006镉的水质限值为0.005mg/L。

直接吸入火焰原子吸收分光光度法测定镉快速、干扰少,适合分析废水和受污染的水体,萃取或离子交换浓缩火焰原子吸收分光光度法,适用于分析清洁水和地表水。石墨炉吸收分光光度法灵敏度高,但基体干扰比较复杂,适合分析清洁水。此外,双硫腙分光光度法、阳极溶出伏安法或示波极谱法也可以用于镉的测定,等离子发射光谱法是镉及其多种元素同时测定的方法,简便、快速、干扰少,适合于地表水和废水的测定。

1.2.2 铜

饮用水中的铜常来自水对铜管的侵蚀作用,水与铜水管接触的时间不同使水中铜的浓度有很大差别。例如,首先放出来的水比经过完全冲洗后水样中铜的浓度要高些。另一个影响铜水管溶出铜的因素是水的pH。当水的pH值较低时,即水的酸性较大时,铜的溶出浓度要比pH较高时溶出量要高得多。饮用水中的铜可能会增加镀锌铁、钢制管材和管件的腐蚀。当铜浓度大于1mg/L时衣服和卫生洁具会着色。当饮用水中铜的浓度大于5mg/L时,铜也会显色并使水带有令人厌恶的苦味。水源水中的铜多数来自厂矿废水污染或用以控制水中藻类繁殖的铜盐。日常食品中亦含有铜,铜是人体必需元素,在新陈代谢中参与细胞生长、繁殖和某些酶系统的活化过程。

成人每天需铜约2mg,学龄前儿童约1mg,婴儿缺乏铜可发生营养性贫血。铜的毒性小,但过多则对人体有害。如口服100mg/d,则可引起恶心、腹痛,长期摄入可引起肝硬化。根据现有资料,水中铜含量达1.5mg/L时即有明显的金属味,含铜量超过1.0mg/L时可使衣服及磁器染成绿色。按感官性状的要求,GB5749-2006将饮用水中铜的限值订为1.Omg/L。

直接吸入火焰原子吸收分光光度法快速、干扰少,适合分析废水和受污染的水体,分析清洁水可选用萃取或离子交换浓缩火焰原子吸收分光光度法,也可以选用石墨炉吸收分光光度法但后一种方法基体干扰比较复杂,要注意干扰的检验和校正,但基体干扰比较复杂,适合分析清洁水。此外,也可以选择二乙氨基二硫代甲酸钠萃取光度法、新亚铜灵萃取光度法、阳极溶出伏安法或示波极谱法,等离子发射光谱法,简便、快速、干扰少,也可以选用,但仪器比较昂贵。

1.2.3 铅

现代医学证实,铅对人体健康的危害,主要是损伤其神经系统,尤其是对6岁以下的儿童,他们的血液、神经、脑组织最容易受到毒害。(除了喝水,儿童食用的牛奶、果汁和食物都是自来水调配成的。因此饮用水中铅的含量对少年儿童的身体健康影响很大)从而引起行为动作的异常,这其中包括:多动症、身体与智力发育迟缓、眼和手动作协调能力差、学习障碍等症状。这些危害甚至可以一直延续到成年阶段。如果人体长期受到铅污染的危害,还会引起贫血、四肢神经损伤、骨骼与肌肉组织发充不正常、

男性精子数量减少,血铅含量高还可导致高血压、骨质疏松等症。世界卫生组织指出:13种与儿童健康有关的危害因素,铅即是其中一种。铅是一种具有神经毒性的重金属元素,在人体内无任何生理作用。然而铅又在环境中普遍存在。儿童由于代谢和发育的特点,对铅的毒性特别敏感。

饮用水中铅的来源主要有两个。第一个是工业污染物及废水的任意排放(主要是:冶炼、矿业、化工、印染等行业)。和农业生产中农药与杀虫剂的广泛应用,造成水体的严重污染。第二个来源,也是最主要的来源,是城镇自来水输水管网腐蚀造成的铅释放。这也是饮用水中铅对人体健康造成危害的主要原因。我国目前使用的自来水管道大多数是含铅的金属管。由于自来水使用氯作为消毒剂,而水中的余氯加速了含铅水管的侵蚀和老化。一般使用超过年限5年以上的水管,铅的释放量就会大量增加。自来水中铅的浓度也会升高。另一方面,所有管网中的焊接缝、家庭中使用的各种镀铬、黄铜等材料的水管、龙头都能析出铅。我国1985年制定的《生活饮用水标准》(至今还在执行)铅的限值为0.05mg/L (这个标准已经落后于国际上的标准),然而自来水在出厂时,即使能达到这个标准,在经过漫长的输水管网到达用户的自来水龙头时,水中铅的含量会远远超过这个限值。这时水中的铅含量对饮用者来说是不安全的。去年卫生部和国家标准化管理委员会共同发布的新的《生活饮用水卫生标准》(网上征求意见稿,还未正式执行),将铅的限值下调到0.01 mg/L。(这个标准已经与国际上的标准一致了)。但是,即使自来水厂经过工艺改造使出厂水能达到这个限值,如果不能加大力度进行输水管网的改造,杜绝自来水在管网中的二次污染,那么老百姓家中水龙头流出的水,要达到这个标准也是不可能的。

随着科技的发展,铅测定方法也有很大进展,尤其是在仪器分析方面发展更迅速。主要方法有:原子吸收分光光度法、分光光度法、示波极谱法、电位溶出法等

1.3 测定方法概述

1.3.1原子吸收光谱法简介

原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

原子吸收光谱法该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。

在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。即A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可

作标准曲线,求得未知液中待测元素浓度。

该实验中,我们将用到两种不同的原子吸收光谱法,分别是火焰原子吸收光谱法,石墨炉原子吸收光谱法测定日常饮品中重金属元素的含量。

1.3.2原子吸收光谱法原理

每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波原子吸收光谱原理图长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将

选择性地吸收其同种元素所发射的特征

谱线,使入射光减弱。特征谱线因吸收而

减弱的程度称吸光度A,与被测元素的含

量成正比:

图1.3.2 原子吸收光谱原理

A = -lg I V/I0V = K C

K为常数;C为试样浓度;I0V为原始光源强度;I V为吸收后特征谱线的强度。按上式可从所测未知试样的吸光度,对照着已知浓度的标准系列曲线进行定量分析。

由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。原子吸收光谱位于光谱的紫外区和可见区。

1.3.3原子吸收光谱法谱线轮廓

原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频原子吸收光谱曲线率或波长范围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素:

1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,这就是多普勒效应。原子吸收分析中,对于火焰和石墨炉原子吸收池,气态原子处于无序热运动中,相对于检测器而言,各发光原子有着不同的运动分量,即使每个原子发出的光是频率相同的单色光,但检测器所接受的光则是频率略有不同的光,

于是引起谱线的变宽。

2、碰撞变宽。当原子吸收区的原子浓度足够高时,碰

撞变宽是不可忽略的。因为基态原子是稳定的,其寿命可

视为无限长,因此对原子吸收测定所常用的共振吸收线而

言,谱线宽度仅与激发态原子的平均寿命有关,平均寿命

越长,则谱线宽度越窄。原子之间相互碰撞导致激发态原

子平均寿命缩短,引起谱线变宽。碰撞变宽分为两种,即

赫鲁兹马克变宽和洛伦茨变宽。

图1.3.3多普勒变宽

赫鲁兹马克变宽是指被测元素激发态原子与基态原子相互碰撞引起的变宽,称为共振变宽,又称赫鲁兹马克变宽或压力变宽。在通常的原子吸收测定条件下,被测元素的原子蒸气压力很少超过

10-3mmHg,共振变宽效应可以不予考虑,而当蒸气压力达到0.1mmHg时,共振变宽效应则明显地表现出来。洛伦茨变宽是指被测元素原子与其它元素的原子相互碰撞引起的变宽,称为洛伦茨变宽。洛伦茨变宽随原子区内原子蒸气压力增大和温度升高而增大。

除上述因素外,影响谱线变宽的还有其它一些因素,例如场致变宽、自吸效应等。但在通常的原子吸收分析实验条件下,吸收线的轮廓主要受多普勒和洛伦茨变宽的影响。在2000-3000K的温度范围内,原子吸收线的宽度约为10-3-10-2nm。

1.3.4原子吸收光谱法谱线的特点

1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。

而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。

2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使

分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100ul。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10ml即可。

3 、分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。

在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。

4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。

5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。若采用自动进样技术,则可改善测定的精密度。火焰法:RSD <1%,石墨炉3~5%。

原则上讲,不能多元素同时分析。测定元素不同,必须更换光源灯,这是它的不便之处。原子吸收光谱法测定难熔元素的灵敏度还不怎么令人满意。在可以进行测定的七十多个元素中,比较常用的仅三十多个。当采用将试样溶液喷雾到火焰的方法实现原子化时,会产生一些变化因素,因此精密度比分光光度法差。现在还不能测定共振线处于真空紫外区域的元素,如磷、硫等。

标准工作曲线的线性范围窄(一般在一个数量级范围),这给实际分析工作带来不便。对于某些基体复杂的样品分析,尚存某些干扰问题需要解决。在高背景低含量样品测定任务中,精密度下降。如何进一步提高灵敏度和降低干扰,仍是当前和今后原子吸收光谱分析工作者研究的重要课题。

1.4待测样品概述

为了本次研究能更好的说明我国饮料行业重金属含量的现状,故选择了市场上最具代表性的七种饮料与矿泉水,与自来水、桶装水。

表1.4.1 待测样品明细说明表

序号品牌品名净含量

/ mL

保质期

/天

成分与备注

自来水2011年4月7日取自

上海某某大学海洋科学学院学院楼2楼

[b] 滴水源桶装水20L 上海某某大学所有师生饮用的桶装水

[c] 水森活矿泉水600 365 蒸馏水

[d] 农夫山泉矿泉水600 300 矿泉水;主要矿物质:钙、锌、钾、镁、锶、

钠、锂、硒

[e] 王老吉凉茶310 730 水、白砂糖、仙草、蛋花、菊花、金银花、夏

枯草、甘草、布渣叶仁

[f] 可口可乐可乐600 720 二氧化碳、水、白砂糖、主剂

[g] 乐百氏脉动600 300 纯净水、白砂糖、苹果汁、食用香精、食品添

加剂(柠檬酸、苹果酸、柠檬酸钠)维生素C、

食醋、烟酰胺、维生素B6、维生素B12 [h] 佳得乐佳得乐600 250 水、葡萄糖、白砂糖、柠檬酸、氢化钠、柠檬

酸钠、磷酸二氢钾、食用香料、柠檬黄。[i] 统一冰红茶500 365 纯净水、白砂糖、红茶、蜂蜜、维生素C、食

用香精

1.5相关标准概述

为了方便数据对比,笔者收集了相关国内外饮用水与饮料的卫生标准。

表1.5.1 相关标准

标准类型铅(μg/L)铜(μg/L)镉(μg/L)(GB2759.2—2003)《碳酸饮料卫生标准》300 5000 / (GB 2759) 《冷冻饮品卫生标准》300 5000 / (GB 15266-94) 《运动饮料国家标准》300 5000 / (GB 19296-2003) 《茶饮料卫生标准》300 5000 / (GB8537-1995) 《饮用天然矿泉水标准》10 1000 10 (GB5749-2006)《生活饮用水卫生标准》50 1000 5

日本饮用水标准10 1000 10

美国饮用水标准15 1300 5

欧盟饮用水标准10 2000 5

第二章实验部分

2.1 实验材料

本实验用水均为去离子水,试剂均为分析纯。

(1)硝酸-高氯酸(4:1).

(2)硫酸铵溶液(300g/L):称取30g硫酸铵[(NH4)2SO4],用水溶解并加水至100 mL.

(3)柠檬酸氨溶液(250g/L):称取25g柠檬酸氨,用水溶解并加水至100 mL。

(4)溴百里酚蓝水溶液(1g/L)。

(5)二乙基二硫代氨基甲酸钠(DDTC)溶液(50g/L):称取5g二乙基二硫代氨基甲酸钠,用水溶解并加水至100 mL。

(6)氨水(1:1)。

(7)4-甲基戊酮-2(MIBK)。

(8)铅标准储备液:1g/L(国家标准物质研究中心)。

(9)铅标准使用液:每次吸取铅标准储备液0.01 mL于1000 mL容量瓶中,加硝酸(0.5mol/l)或硝酸(1mol/l)至刻度。如此经过多次稀释,配置铅标准使用液为10ng/ mL。

(10)铜标准储备液:1g/L(国家标准物质研究中心)。

(11)铜标准使用液:每次吸取铜标准储备液1.0 mL于100 mL容量瓶中,加硝酸(0.5mol/l)或硝酸(1mol/l)至刻度。如此经过多次稀释,配置铜标准使用液为10μg/ mL。

(12)镉标准储备液:1g/L(国家标准物质研究中心)。

(13)镉标准使用液:每次吸取镉标准储备液1.0 mL于100 mL容量瓶中,加硝酸(0.5mol/l)或硝酸(1mol/l)至刻度。如此经过多次稀释,配置镉标准使用液为10μg/ mL。

(14)干燥恒温箱,可调式电热板,原子吸收分光光度计,石墨原子化器,原子荧光分析仪,空心阴极灯。

2.2铅的测定

2.2.1样品预处理

准确量取样品50 mL于烧杯中,与电热板上先蒸发至原体积的五分之一,冷却至常温,加入硝酸-高氯酸15 mL,冷消化12小时后用电热板加热,温度在160℃以上,直到烧杯中溶液变成无色或浅黄色透明溶液后,用去离子水定容至50 mL容量瓶中。

2.2.2萃取分离与标准系列配制

柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由黄变蓝,加硫酸铵溶液10 mL,DDTC 溶液10 mL,摇匀。放置5min左右,加入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL带刻度管中,备用。

分别吸取铅标准使用液0.0 mL、0.5 mL 、1.0 mL 、3.0 mL 、5.0 mL 、10 mL 于125 mL分液漏斗中,补水加水至60 mL。加2 mL柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由蓝变黄,加硫酸铵溶液10 mL,DDTC溶液10 mL,摇匀,放置5min左右,移入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL刻度管定容。配制标准系列浓度为0.0 ng/ mL、0.5 ng/ mL 、1.0 ng/ mL 、3.0 ng/ mL 、5.0ng/ mL 、10ng/ mL ,标准系列现用现配。

2.2.3测定

按照选定仪器的工作条件(见表2.2.1;2.2.2),使用移液枪手动进样10μL/次。测定铅标准系列及样品的吸光度,并且计算出标准曲线的线性回归方程。

表2.2.1 石墨炉原子吸收分光光度计工作参数

元素波长/nm 通带/nm 灯电流/mA 通样量/μL 测定方式

峰高

表2.2.2 石墨炉的升温程序

阶段时间/s 温度/℃升温方式氩气流量/L/min

干燥1 斜坡

干燥2 5 110 斜坡0.2

灰化15 300 斜坡0.2

原子化 2 1800 阶梯0

除残 2 2100 阶梯0.4

2.3 铜的测定

2.3.1 样品预处理

准确量取样品50 mL于烧杯中,与电热板上先蒸发至原体积的五分之一,冷却至常温,加入硝酸-高氯酸15 mL,冷消化12小时后用电热板加热,温度在160℃以上,直到烧杯中溶液变成无色或浅黄色透明溶液后,用去离子水定容至50 mL容量瓶中。

柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由黄变蓝,加硫酸铵溶液10 mL,DDTC 溶液10 mL,摇匀。放置5min左右,加入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL带刻度管中,备用。

分别吸取铅标准使用液0.0 mL、0.5 mL 、1.0 mL 、3.0 mL 、5.0 mL 、10 mL 于125 mL分液漏斗中,补水加水至60 mL。加2 mL柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由蓝变黄,加硫酸铵溶液10 mL,DDTC溶液10 mL,摇匀,放置5min左右,移入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL刻度管定容。配制标准系列浓度为0.0 ng/ mL、0.5 ng/ mL 、1.0 ng/ mL 、3.0 ng/ mL 、5.0ng/ mL 、10ng/ mL ,标准系列现用现配。

2.3.3测定

按照选定仪器的工作条件(见表2.3.1;2.3.2),使用移液枪手动进样10μL/次。测定铅标准系列及样品的吸光度,并且计算出标准曲线的线性回归方程。

表2.3.1 石墨炉原子吸收分光光度计工作参数

元素波长/nm 通带/nm 灯电流/mA 通样量/μL 测定方式

Cu 324.8 0.5 1.7 20 峰高

表2.3.2 石墨炉的升温程序

阶段时间/s 温度/℃升温方式氩气流量/L/min

干燥1 斜坡

干燥2 10 250 斜坡 1.0

灰化10 500 阶梯 1.0

原子化 3 500 阶梯0

除残 3 2300 阶梯0

2.4 镉的测定

2.4.1 样品预处理

准确量取样品50 mL于烧杯中,与电热板上先蒸发至原体积的五分之一,冷却至常温,加入硝酸-高氯酸15 mL,冷消化12小时后用电热板加热,温度在160℃以上,直到烧杯中溶液变成无色或浅黄色透明溶液后,用去离子水定容至50 mL容量瓶中。

柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由黄变蓝,加硫酸铵溶液10 mL,DDTC 溶液10 mL,摇匀。放置5min左右,加入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL带刻度管中,备用。

分别吸取铅标准使用液0.0 mL、0.5 mL 、1.0 mL 、3.0 mL 、5.0 mL 、10 mL 于125 mL分液漏斗中,补水加水至60 mL。加2 mL柠檬酸氨溶液,溴百里酚蓝指示剂3~5滴,用氨水调PH至溶液由蓝变黄,加硫酸铵溶液10 mL,DDTC溶液10 mL,摇匀,放置5min左右,移入10.0 mLMIBK,剧烈震摇提取1min,静置分层后,弃水层,将MIBK层移入10 mL刻度管定容。配制标准系列浓度为0.0 ng/ mL、0.5 ng/ mL 、1.0 ng/ mL 、3.0 ng/ mL 、5.0ng/ mL 、10ng/ mL ,标准系列现用现配。

2.4.3测定

按照选定仪器的工作条件(见表2.4.1;2.4.2),使用移液枪手动进样10μL/次。测定铅标准系列及样品的吸光度,并且计算出标准曲线的线性回归方程。

表2.4.1 石墨炉原子吸收分光光度计工作参数

元素波长/nm 通带/nm 灯电流/mA 通样量/μL 测定方式

Cd 228.8 1.0 1.4 20 峰面积

表2.4.2 石墨炉的升温程序

阶段时间/s 温度/℃升温方式氩气流量/L/min

干燥1 斜坡

干燥2 10 250 斜坡 1.0

灰化10 300 阶梯 1.0

原子化 3 300 阶梯0

除残 3 150 阶梯0

第三章结果与讨论

3.1 数据结果

3.1.1 铅,铜,镉元素的标准曲线

按照仪器工作条件测定不同元素的标准曲线(图3.1.1~3.1.3)、并计算其回归方程和相关系数(表3.1.1)。由图和表可看出不同元素的标准曲线均在直线范围内。

图3.1.1 Pb标准曲线

图3.1.2 Cu标准曲线

图3.1.3 Cd标准曲线

表3.1.1 不同元素的标准曲线方程

元素回归方程相关系数R2

Pb y=0.0128x+0.0045 0.9912

Cu y=0.1522x-0.0033 0.9932

Cd y=0.0056x+0.00366 0.9912

表3.1.2 样品的分析结果

样品Pb(μg/L)Cu(μg/L)Cd(μg/L)

自来水 1.426 6.955 0.017

饮水机桶装水 1.613 1.691 0.231

水森活牌矿泉水0.004 2.506 1.623

农夫山泉牌矿泉水 1.301 8.012 0.525

王老吉0.161 13.31 0.120

可口可乐 3.314 8.051 0.741

脉动 2.206 6.412 2.350

佳得乐 3.412 7.394 1.770

统一牌冰红茶0.148 33.61 0.251

3.1.2方法的检测限及精密度

重复测定11次空白样本,计算得空白液吸光度标准偏差,以空白检测结果标准偏差的3倍除以标准曲线的斜率(K)作为方法的检出限。

通过回归方程计算,方法的最低检出限(见表3.1.3 标准差与检测限)。

表3.1.3 标准差与检测限

元素名称Pb Cu Cd

相对标准偏差(%)2.9 0.71 1.6

检测限(μg/L) 0.041 0.023 0.023

3.1.3加标回收率

精确称取已知含量的样品适量,分别加入已知浓度标准品制成供试品,测定其结果,(见表3.1.2)。

表3.1.4 加标回收率

元素本底值(μg/L)加入量(μg/L)测得值(μg/L)回收率(%)

Cu 13.31 10 17.92 103.1

Cd 1.623 10 11.91 97.6%

3.2 测定方法与数据结果的讨论

3.2.1进样

本方法由于采用了手动进样,精密度较自动进样会有所降低。因试样中所含有机物的含量并不大,灰化后基体简单,浓度很小,在不采用高温清洗石墨管的情况下,对下次测定影响也不大。因而在原子化后,不需进行清洗,原子化时载气为不停气方式,如欲测定更低含量的样品可采用停气式,以提高灵敏度。

3.2.2干燥

℃的速率升至80℃,保持5s再以同样速率升至160℃,期间通以干燥通过两步的进行,先用10/min

0.2L/min的氩气。这样可有效防止液体刚进入石墨炉发生的爆溅,保证分析的准确度。

3.2.3灰化的温度选择

重金属传播特性分析

重金属污染来源、分布、治理方法 点击次数:2540 发布时间:2011-2-16 摘要:文章阐明了重金属污染物来源与分布,同时对国内外土壤重金属污染治理的研究工作做了系统的综述,提出了土壤中重金属污染物防治的环境矿物学新方法,利用环境矿物材料治理土壤重金属污染物的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广阔的环境矿物学研究与应用前景。并提醒人们要提高土壤质量意识,保护生态环境。 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万 t、Cu为340万 t、Pb为500万 t、Mn为1500万 t、Ni为100万 t。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 重金属污染原理 重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。其形态又随pH和氧化还原条件而转化。(4)在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10毫克/升,汞、镉为0.01~0.001毫克/升);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布 土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。 1.1 大气中重金属沉降

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

重金属超积累植物研究

重金属超积累植物研究 10化41 10234027 汪杉椿 摘要:土壤重金属污染是当前面临的一个重大环境问题,而土壤重金属污染的植物修复尤其是超积累植物的应用是治理污染土壤的重要手段之一。本文主要就重金属超累积植物的概念与选择标准,及其超累积的机理和在生态修复中的应用问题与前景进行综述。 关键词:重金属;超积累植物;植物修复 中国矿产资源蕴藏量丰富,分布遍及全国,随着铅锌矿的累年开发,矿渣、矿区废水不断污染周围农田。此外各种工业废水和废气的排放及农田污泥的施用都造成农田土壤的重金属污染。植物修复技术作为一种新兴的绿色生物技术,能在不破坏生态环境,保持土壤结构和微生物活性的状况下,通过植物的根系直接将污染元素吸收,从土壤中带走,从而修复被污染的土壤。 1 . 金属超累积植物 1.1重金属超累积植物的概念及选择标准 重金属超累积植物是指对重金属的吸收量较大,并能将其运移贮藏到地上部,且地上部重金属含量显著高于根部的植物,这类植物地上部的重金属含量是常规植物的10一500倍。 超累积植物吸收修复被重金属污染土壤的综合指标是净化率,即植物地上部吸收某种重金属的量与土壤中此种重金属总量的百分比。超累积植物一般对某种元素是专一的,但是某些植物也能同时超累积两种或多种植物。 理想的重金属超积累植物一般具有以下特征:(1)可以耐受高水平的重金属;(2)地上部超量积累某种或几种重金属时,不影响植物的正常生长,通常超出普通植物的100倍以上,比如超积累植物积累的Cd含量可达100Lg/g(干重)以上,Co、Ni、Cu、Pb达1 mg/g以上,而Mn、Zn达10 mg/g以上;(3)生长迅速;(4)生物量大;(5)根系发达。超积累植物可以用于环境污染的植物修复、

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

蔬菜中重金属含量测定

华南师范大学实验报告 学生姓名学号 专业)年级、班级 课程名称仪器分析实验实验项目蔬菜中重金属(Pb、Cd)含量的测定实验类型□验证□设计□综合实验时间 2011年月日 √ 实验指导老师实验评分 实验题目:蔬菜中重金属(Pb、Cd)含量的测定 引言: 蔬菜中含有丰富的维生素、矿质元素和膳食纤维等多种营养成分,是人们日常生活中必不可少的食物,但随着工业化进程,工业“三废”的排放、农药、化肥的不合理使用等,严重污染了水、土、气,致使菜区生态环境日益恶化,造成蔬菜品质下降,污染物积累,并通过食物链的传递放大作用,从而对整个生态环境以及人类健康带来极大危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 经查阅文献,发现目前有关铅、镉的测定方法主要有以下几种: 一、光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0 时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐 酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉 的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶 于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光 强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品 中铅镉浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工 作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线 性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同 浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长 283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶 液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀释配成含铅

重金属污染物的传播特征

重金属污染来源、分布、治理方法 摘要:文章阐明了重金属污染物来源与分布,同时对国内外土壤重金属污染治理的研究工作做了系统的综述,提出了土壤中重金属污染物防治的环境矿物学新方法,利用环境矿物材料治理土壤重金属污染物的方法,具有成本低、效果好、无二次污染及有用金属可回收利用等优点,展现出广阔的环境矿物学研究与应用前景。并提醒人们要提高土壤质量意识,保护生态环境。 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万t、Cu为340万t、Pb为500万t、Mn为1500万t、Ni为100万t。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 重金属污染原理 重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。其形态又随pH和氧化还原条件而转化。(4)在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10毫克/升,汞、镉为0.01~0.001毫克/升);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

重金属Pb的相关分析方法

pH的测定(《土壤元素的近代分析方法》,1992,中国环境科学出版社)玻璃电极法:称取土样10g于50ml烧杯中,加入无二氧化碳的水25ml,搅拌,静滞。土:水=1:2.5,做三个平行取平均值。 全铅的测定(HJ/T 166-2004 土壤环境监测技术规范) 四酸消解法:称取0.2-0.5g研磨过筛后的土壤样品,放入50ml聚四氟乙烯坩埚中,用水润湿,加入10ml HCl,于通风橱内的电热板上低温加热,待蒸发至约3ml,取下稍冷,然后加入5ml硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热1h,开盖继续加热除硅,经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机物充分分解。待坩埚壁上的黑色有机物消失后,开盖,驱赶白烟并蒸至粘稠状。 视消解情况,可再加入3ml硝酸,3ml氢氟酸,1ml高氯酸,重复上述消解过程。当白烟再次冒尽且粘稠,取下稍冷,用水冲洗坩埚盖及内壁,并加入1ml 盐酸溶液,然后全量转移至100ml分液漏斗中,加水至约50ml。 土样经消解后采用火焰原子吸收法测定。 土壤环境质量标准值mg kg-1 (GB 15618-1995 土壤环境质量标准) 土壤级别一级二级三级PH 自然背景<6.5 6.5~7.5 >7.5 >6.5 Pb≤35 250 300 350 500 Cd≤0.2 0.3 0.6 1.0 / 水田≤15 30 25 20 30 As 旱地≤15 40 30 25 40 土壤重金属的形态测定(HJ/T 166-2004 土壤环境监测技术规范)Tessier连续提取法:(1)可交换态:称2g待测样加入pH=7,1mol/L的MgCl2 20ml,在25℃下震荡1h,4000r/min离心5min,过滤上清液,水洗两次,收集定容50ml,待测定金属离子浓度; (2)碳酸盐结合态:步1中的残渣加入pH=5,1mol/L的乙酸钠20ml,振

重金属污染物的传播特征

第39卷第4期2010年8月当代化工C ontem por ar y C hem ical Industr y Vo1.39,No.4August ,2010 土壤中主要重金属污染物 的迁移转化及治理* *收稿日期:2010-06-07 作者简介:房存金(1957-),男,河南商丘人,副教授,1982年毕业于河南师范大学化学系,现从事无机与分析化学教学及化学在农牧业 方面的应用研究,已公开发表论文19篇, 获商丘市科技进步一等奖两项,河南省科技进步三等奖一项,通过河南省科研项目成果鉴定两项。E-mail :fcjsqzy@https://www.doczj.com/doc/288392795.html, 。 由于重金属一般不易随水淋滤,土壤微生物不 能分解,但能吸附于土壤胶体、被土壤微生物和植物所吸收,通过食物链或其它方式转化为毒性更强的物质,对人体健康的危害严重,所以土壤中重金属的污染问题比较突出。重金属在土壤中积累的初期,不容易被人们觉察和关注,属于潜在危害,但土壤一旦被重金属污染,就很难彻底消除。 重金属在土壤中的迁移转化受金属的化学特性、土壤的物理特性、生物特性和环境条件等因素影响。土壤环境中重金属的迁移转化过程分为物理迁移、化学迁移、物理化学迁移和生物迁移。其迁移转化形式复杂多样,是多种形式的错综结合[1-4]。 1土壤中主要重金属污染物的迁移转化 1.1汞的迁移转化 汞是一种对动植物及人体无生物学作用的有毒元素。土壤中汞的重要特点是能以零价(单质汞)形式存在,还有无机化合态汞和有机化合态汞。除甲基汞、HgCl 2、Hg (NO 3)2外, 大多数为难溶化合物。甲基汞和乙基汞的毒性在含汞化合物中最强[5-6]。土壤中汞的迁移转化比较复杂,主要有如下几种途径。1.1.1土壤中汞的氧化-还原 土壤中的汞有三种价态形式:Hg 、Hg 2+和Hg 2+2。汞的3种价态在一定的条件下可以相互转化。二价汞和有机汞在还原条件下的土壤中可以被还原为零价的金属汞。土壤中金属汞的含量甚微,但可从 土壤中挥发进入大气环境,而且会随着土壤温度的 升高,其挥发的速度加快。土壤中的金属汞可被植物的根系和叶片吸收。1.1.2土壤胶体对汞的吸附 土壤中的胶体对汞有强烈的表面吸附(物理吸附)和离子交换吸附作用。从而使汞及其他微量重金属从被污染的水体中转入土壤固相。土壤对汞的吸附还受土壤的pH 值及土壤中汞的浓度影响。当土壤pH 值在1~8的范围内时,其吸附量随着pH 值的增大而逐渐增大;当pH >8时,吸附的汞量基本不变。 1.1.3配位体对汞的配合-螯合作用 土壤中配位体与汞的配合-螯合作用对汞的 迁移转化有较大的影响。OH -、 C1-对汞的配合作用可大大提高汞化合物的溶解度。土壤中的腐殖质对汞离子有很强的螯合能力及吸附能力。通过生物小循环及土壤上层腐殖质的形成,并借助腐殖质对汞的螯合及吸附作用,将使土壤中的汞在土壤上层累积。 1.1.4汞的甲基化作用 在土壤中的嫌气细菌的作用下,无机汞化合物可转化为甲基汞(CH 3Hg +)和二甲基汞[(CH 3)2Hg]。当无机汞转化为甲基汞后,随水迁移的能力就会增大。由于二甲基汞[(CH 3)2Hg]的挥发性较强,而被土壤胶体吸附的能力相对较弱,因此二甲基汞较易进行气迁移和水迁移。 汞的甲基化作用还可在非生物的因素作用下进行,只要有甲基给予体,汞就可以被甲基化。 房存金 摘要:介绍了土壤中主要重金属污染物汞、镉、铅、铬、砷在土壤中的主要存在形式、来源、迁移及转化过程。对土壤中主要重金属污染物提出了治理方法。关 键 词:重金属;污染物;治理方法 中图分类号:S 159 文献标识码:A 文章编号:1671-0460(2010)04-0458-03 (商丘职业技术学院,河南商丘176000)

茶叶中重金属含量分析

茶叶中重金属含量分析 学习目的: 1.通过实验了解茶叶中重金属检测的意义。 2.了解茶叶中重金属检测的方法。 中国是茶的发源地,不仅种植面积和茶类品种等均居世界前列,而且还拥有丰富的种质资源,这是人类宝贵财富,也是我国茶业发展的物质基础。但近年来随着我国加入世界贸易组织,部分贸易国调整了茶叶质量标准,也由于我国茶叶卫生质量总体不高,从而影响了我国茶叶出口圆。茶叶生产重金属超标问题,也严重制约着我国的茶产业经济效益!化学上常把相对密度在5以上的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。茶叶中的重金属主要包括铅(Pb)、铜(Cu)、汞(№)、铬(Cr)、砷(As)、镉(cd)等,这些重金属都有可能通过茶树吸收进入到茶叶中。虽然有些元素,如铜、铁等是人体不可缺少的微量元素,但大部分重金属元素并非人体生命活动所必需,摄人量过多时会对人体及动植物造成伤害。 茶叶中重金属来源:

检测方法: 1.原子吸收光谱 原子吸收光谱(Atomic Absorption Spectroscopy,AAS)即原子吸收光谱法,是基于气态的被测元素基态原子外层电子对紫外光和可见光范围的吸收为基础进行元素定量分析的方法。也是检测茶叶中重金属元素最常用的一种方法。 2. 分光光度法 分光光度法是一种经典的方法,其所需仪器常见,测定成本低,方法简单,稳定性、回收率均符合要求,适宜在实验室及中小型茶场中推广。但是对低含量的重金属检测达不到要求。 3.电化学分析法 电分析化学方法是一种公认的快速、灵敏、准确的微量和痕量分析方法,用于测定茶叶中重金属含量也有较多报道。其中又有伏安分析法、离子选择性电极法、极谱分析法、电位溶出法等。电化学法灵敏度、准确度高,测量范围宽,仪器设备简单,价格低廉,容易实现自动化,但条件苛刻,测定结果重现性差。 4. 电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(InductivelyCoupled Plasma-Atomic Emission Spectrometry,ICPAES)法是近几十年发展起来的一种新的分析技术,也是目前为止公认能够有效地进行多元素测定的方法。它具有灵敏度高、稳定性好、线性范围宽和同时测定或顺序测定多元素等特点,能够广泛地应用于各个行业中。 此外,茶叶中重金属的检测方法还有高效液相色谱法、毛细管离子分析法、电感耦合等离子体质谱分析法(Inductively Coupled Plasma Mass Spec—trometry,ICP—MS) 等。 样品处理方法: 传统方法一般分为灰化法和消化法两种。灰化法采用高温灼烧破坏样品中的有机物,最后用稀硝酸来溶解灰分中的重金属。消化法则利用浓硝酸和浓硫酸

重金属在水体中的存在形态及污染特征分析

重金属在水体中的存在形态及污染特征分析 摘要阐述了重金属在水体中的存在形态类型及迁移性质,介绍了重金属迁移规律的研究方法,并分析了重金属在水体中的污染特征。 关键词重金属;水体;存在形态;迁移规律;污染特征 1重金属在水体中的存在形态 1.1存在形态的类型 要分析污染物在水体中的迁移转化规律,首先就要了解污染物在水体中以何种形式存在以及各存在形态之间的关系,对重金属污染物的研究也不例外。汤鸿霄提出“所谓形态,实际上包括价态、化合态、结合态和结构态4个方面,有可能表现出来不同的生物毒性和环境行为”,这里所分析的存在形态主要指重金属在水体中的结合态。水体中重金属存在形态可分为溶解态和颗粒态,即用0.45μm滤膜过滤水样,滤水中的为溶解态(溶解于水中),原水样中未过滤的为颗粒态(包括存在于悬移质中的悬移态及存在于表层沉积物中的沉积态)。用Tessier等[1]提出的逐级化学提取法又可将颗粒态重金属继续划分为以下5种存在形态:一是可交换态,指吸附在悬浮沉积物中的黏土、矿物、有机质或铁锰氢氧物等表面上的重金属;二是碳酸盐结合态,指结合在碳酸盐沉淀上的重金属;三是铁锰水合氧化物结合态,指水体中重金属与水合氧化铁、氧化锰生成结合的部分;四是有机硫化物和硫化物结合态,指颗粒物中的重金属以不同形式进入或包括在有机颗粒上,同有机质发生螯合或生成硫化物;五是残渣态,指重金属存在于石英、黏土、矿物等结晶矿物晶格中的部分。 1.2迁移性质 不同存在形态的重金属在水体中的迁移性质不同。溶解态重金属对人类和水生生态系统的影响最直接,是人们判断水体中重金属污染程度的常用依据之一。颗粒态重金属组成复杂,其形态性质各不相同。可交换态是最不稳定的,只要环境条件变化,极易溶解于水或被其他极性较强的离子交换,是影响水质的重要组成部分;碳酸盐结合态在环境变化,特别是pH值变化时最易重新释放进入水体;铁锰水合氧化物结合态在环境变化时也会部分释放;有机硫化物和硫化物结合态不易被生物吸收,利用较稳定;残渣态最稳定,在相当长的时间内不会释放到水体中。

重金属传播特征讲解

重金属传播特征 重金属原义是指比重大于 5的金属,包括金、银、铜、铁、铅等,重金属在人体中累积达到一定程度,会造成慢性中毒。对什么是重金属目前尚无严格的定义,化学上跟据金属的密度把金属分成重金属和轻金属,常把密度大于 4.5g/cm3的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约 45种。 从环境污染方面所说的重金属是指:汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。 对人体毒害最大的有 5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物或无机物。 在领域中,重金属主要是指对生物有明显毒性的金属元素或类金属元素,如汞、镉、铅、铬、锌、铜、钴、镍、锡、砷等,此类污染物不易被微生物降解。 随着全球经济化的迅速发展, 含重金属的污染物通过各种途径进入土壤, 造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降, 并可通过食物链危害人类的健康, 也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前, 世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg 约 1.5万 t 、 Cu 为 340万 t 、 Pb 为 500万 t 、 Mn 为 1500万 t 、 Ni 为 100万t 。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染, 如北京、天津、西安、沈阳、济南、长春、郑州等地; 。南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看, 到 2000年底中国人均耕地仅为 0.1 hm2, 而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等, 土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量 , 将成为生态环境保护工作中十分重要的一项内容。 重金属污染原理

各类电池重金属含量分析

各类电池重金属含量分析 在用无线鼠标、电动牙刷、电子手表、遥控器时攒了一堆废旧电池。存亦忧,弃亦忧,左右为难,不知如何处理。 由于重金属镉与骨组织的钙类似,镉进入人体会使人患上骨痛病,另外锌锰干电池和纽扣电池会在锌电极上镀一层汞来防止电池在不使用时产生氢气而导致爆炸。所以才会有起始于20世纪70年代的废旧电池回收运动。 雾霾将大家的环保意识提到了很高的层次,废旧电池回收宣传已深入人心,随着电池技术的不断发展,是否还需要“执古以绳今”呢?还是先说一下大众能看到的电池,普遍使用的电池有碱性干电池(包括但不限于AA:5号、AAA:7号、C:2号、D:1号、9伏电池,多用于报警器等要求电池寿命较长的产品),纽扣电池(电子表等),铅蓄电池(电动自行车,汽车等),锂离子电池(手机、电脑、相机等)以及不间断电源(UPS)。《重金属污染综合防治“十二五”规划》指出,重点防控的重金属污染物是铅、汞、镉、铬和类金属砷等。 大部分人对电池回收的态度是肯定的,他们认为电池和污染对等。如果你告诉他们于2003年10月9日发布的《废电池污染防治技术政策》中明确规定从2005年1月1日起停止生产汞量大于0.0001%的碱性锌锰电池,“在缺乏有效回收的技术经济条件下,不鼓励集中收集已达到国家低汞或无汞要求的废一次电池。”他们肯定会略显诧异。如果你再告诉他们环境保护部、国家发改委于2008年6月6日下发规定:家庭日常生活中产生的废镍镉电池和氧化汞电池可以不按照危险废物进行管理,而可以随生活垃圾混合收集和填埋时,他们可能会摇摇头。那为什么上学时会有让我们写电池回收宣传语的习题?那随处可见的电池回收箱只是摆设?那废弃的电池真可以随生活垃圾一块儿丢弃吗? 作为市场主体也就是我们最常碰到的是锌锰电池、碱锰电池,占比80%左右,由于其汞含量已经在国家有关规定面前得以控制,不再会污染环境,也不会随着食物链进入人体,大家可以将其作为固体废弃物,随生活垃圾处理。 那需要回收的是什么样的电池呢? 首先,对小作坊生产的伪劣电池我们要坚决回收。另外如铅酸电池,因其含有重金属铅,放入环境可能增高人体的血铅浓度,对人的智力造成影响;除了铅酸电池,生活中用

重金属污染物的传播特征,以及产生污染的原因

重金属污染物在土壤中的传播特征 重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万t、Cu为340万t、Pb为500万t、Mn为1500万t、Ni 为100万t[1]。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。 南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。 本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布 土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。 1.1 大气中重金属沉降 大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染[3],它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂[4]铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。俄罗斯的一个硫酸生产厂[5]也是由工厂烟囱排放造成S、V、As的污染。 公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁—杭公路南京段[6]两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁—连一级公路淮阴段[7]两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高。在法国索洛涅地区A71号高速公路[8]沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值

国内外有关中药中重金属和砷盐的限量标准及分析

国内外有关中药中重金属和砷盐的限量标准及分析 来源:中国论文下载中心 [ 08-05-16 10:05:00 ] 编辑:studa20 作者:李敏刘渝周睿林琪宇吴伯英 【摘要】对比分析了国内外有关中药中重金属和砷盐的限量标准,为提高中药的国际竞争力和顺应绿色中药的发展趋势,建议制定既符合我国国情,又符合国际规则的中药重金属和砷盐的限量标准。 【关键词】重金属砷盐中药限量标准 Abstract:To compare and analyze the limit standards for heavy metals and arsenic salts in traditional Chinese medicine both at home and abroad,for improving the competition and going with the current of green TCM,suggest to establish the limit standards for heavy metals and arsenic salts in traditional Chinese medicine to accord with concrete situation and international rules. Key wordsHeavy metals;Arsenic salts;Traditional Chinese medicine;Limit standards 加入WTO后,中药的国际贸易将以国际通行的标准进行。目前,国际上虽然尚无植物类中药的国际标准,但是FAO和WHO均制定了食品、蔬菜及茶叶重金属的允许摄入量和农药残留限量。美国、欧盟及传统出口中药的东南亚地区均对中药提出了重金属和农药残留限量的指标,并有提高的趋势。 近年来国际贸易中以环保标准为基础的绿色认证制度日趋盛行,“环保标签”在许多情况下变成贸易壁垒。在中药材生产过程中,由于对土壤选择不严,以及长期施用农药、化肥和除草剂,加之对农药的盲目选择,施用时间和剂量等达不到技术要求,导致目前药材普遍存在农药残留量和有害重金属含量超标,这是造成中药材质量下降的重要因素,也是制约我国中药及其它农副产品难以走向国际市场的重要原因之一,直接影响了中药在国际市场上的竞争力。据报道,川芎、黄芪、人参出口受阻即是重金属检测超标的结果;而曾在德国风靡一时的普洱减肥茶现已被迫完全退出了德国市场,罪魁祸首也是重金属和农药残留超标问题。另据《中国中医药报》(1996 04 26)报道,我国向新加坡出口的岷山牌归脾丸、岷山牌香砂养胃丸、神农牌泻吐灵和中国灵芝等24种中药,由于被检出含有西药成分和重金属(尤其是含砷及水银)超标,已遭新加坡卫生部禁售。又如1999年美国加州卫生署公布了260种中成药的检测结果,其中,不合格的123个中成药中,中国大陆有93个,中国香港17个,中国台湾2个,日本2个,泰国3个。而不合格中成药所含铅、砷、汞(Pb、As、Hg)等重金属大大超过了FDA规定的指标,有的则是农药残留超标或含FDA认定的毒性成分。外经贸技发[2000]第625号文述及2000年7月,欧盟致函外经贸部,指出我国出口欧盟的花生仁中黄曲霉毒素严重超标,并逐项列出16个月中40余批次不合格产品,其超标的黄

地表灰尘重金属含量及分布特征 彭东旭

地表灰尘重金属含量及分布特征彭东旭 发表时间:2019-04-26T15:46:12.093Z 来源:《基层建设》2019年第3期作者:彭东旭 [导读] 摘要:为了对地理学科进行更加深入的探讨和研究,为了能更具有针对性地治理大气污染以及粉尘污染,为了更高效地明确各城市地表灰尘的来源以及更好地总结各大城市地表灰尘重金属的分布规律,此篇论文在查阅了多篇相关文献的基础上,论证了我国城市地表灰尘重金属含量及分布特征,并且通过实地调查和考研,分析了地表灰尘重金属的表现形式以及来源,也进一步阐述了地表灰尘重金属分布特点的形成原因和影响因素。 广西理工职业技术学院广西崇左 532200 摘要:为了对地理学科进行更加深入的探讨和研究,为了能更具有针对性地治理大气污染以及粉尘污染,为了更高效地明确各城市地表灰尘的来源以及更好地总结各大城市地表灰尘重金属的分布规律,此篇论文在查阅了多篇相关文献的基础上,论证了我国城市地表灰尘重金属含量及分布特征,并且通过实地调查和考研,分析了地表灰尘重金属的表现形式以及来源,也进一步阐述了地表灰尘重金属分布特点的形成原因和影响因素。 关键词:重金属; 累积; 灰尘; 城市功能区 前言 随着工业化进程的进一步加快,城市空气污染日益严重,若遇见大风天气,地表灰尘则会随风肆虐,常常会影响居民出行和交通安全,特别是在地表灰尘重金属超标的情况下,若人类大肆吸入此类灰尘,常常会造成呼吸道感染,严重者还会危及生命。所以,对城市地表灰尘重金属含量及分布特征进行研究与分析是十分有必要的。不少地理学家对我国的大中型城市特别是一二线城市进行了地表灰尘重金属含量的研究和探索,虽然城市不同,但其地表灰尘重金属基本上都是包括 Cd、Cu、Pb和Zn等化学元素,并且这些元素在城市工厂集中分布地区表现地最为明显。而且,不同城市因布局不同或城市规划以及道路建设的不同,其地表灰尘重金属含量及分布特征有明显差异。本文根据已有文献和在先人研究的成果的基础上,从空间、时间、地域等多重角度入手,通过互联网技术收集大数据,以全国各地区地表灰尘中重金属含量数据为样本,以省会城市的不同功能区为样例,随机选取几个城市,地表灰尘重金属数据的分析和比对,阐述我国地表灰尘重金属含量以及其分布特征。 1城市不同功能区地表灰尘重金属分布的表现形式 本次研究过程中我们将从全国随机抽取调查,并对随机抽取的数据进行相关的统计,我们可以看得出其实地表灰尘重金属分布在不同的城市中,地表灰尘的差异性较大,比如说有的城市中Cd的含量要远远超过其它城市,甚至于高出了将近9倍的含量,可见地表灰尘的严重性,而有在这些随机抽选的城市中,有的城市地表灰尘Cu含量却在39.3-850mg?kg。可见这些城市中地表灰尘的严重程度。 1.1商业区地表灰尘重金属分布 不同城市之间商业区地表灰尘重金属含量的分布比较均匀,众所皆知,城市地表灰尘重金属 4个元素即是 Cd、Cu、Pb 和 Zn,这4个元素的含量变异度均低于 100%。其中,Cd、Cu、Pb和Zn 含量最高的城市分别为沈杭州和洛阳,Cd 含量最低的城市是贵阳,Cu、Pb 和Zn含量最低的城市是济南。所以,综上所述,这些省会城市中,商业区地表灰尘重金属含量较高的城市是洛阳,地表灰尘重金属含量较低的城市是济南。 1.2交通区地表灰尘重金属分布 因某市特殊的地理位置和地貌结构,地表灰尘重金属中Cd含量远远高于其它城市,所以其参与比较的各功能区不同城市之间 Cd 的变化程度都较高。除Cd外,不同城市交通区地表灰尘Pb的变异度相对较高,最高值437 mg?kg 。而北京是最低值60.7 mg?kg的7.2倍。其它两个化学元素的含量变异度都较低,特别是 Zn,最高值788 mg?kg相差仅3.72倍。所以,总体看来,在这些省会城市中,交通区地表灰尘重金属含量较高的城市是重庆,地表灰尘重金属含量较低的城市是西安。 2城市不同功能区地表灰尘重金属来源 一般城市的功能分区划分为工业区、交通区、商业区和居民文教区,下面将重点分析这四大功能区的地表灰尘重金属来源及影响因素。工业区地表灰尘重金属含量远高于城市土壤,说明该区域灰尘重金属并不主要来源于土壤,而是很大程度上来源于工业生产。与之相关的不同类型的工业活动释放的重金属元素不同,其城市不同功能区地表灰尘重金属的表现形式也随之不同。若城市的工业类型以重工业为主,那么其工业区的地表灰尘重金属元素的表现形式则是 Zn,例如钢铁制造业的是Zn,汽车制造业的是 Pb ,冶炼和机械加工因原材料的不同释放的元素也不同,如洛阳的铜业生产则可能释放大量的含 Cu的微量元素,这种微量元素进入周边环境之后会导致灰尘 Cu 含量增高,影响让人们的生活质量。另外, Cd 的释放可能与机械、电镀等工业类型有关,热电工业与 Pb 等多种重金属的释放有关,若地表灰尘重金属中这两种元素的含量过多,也容易引起呼吸道疾病的传播与感染。 在研究的过程中发现,能够影响地表灰尘的是交通活动,城市之间的交通区地表灰尘重金属来源主要是机动车辆在刹车的过程中刹车块、轮胎及其它零件的磨损以及汽车尾气的排放和道路旁反复扬起或沉积的灰尘。其中,化学元素Zn主要来源于轮胎的磨损,ZnO元素作为硬化过程的催化剂被添加到轮胎中,在轮胎中占0.4% ~4%; 而所谓的Cu元素,其主要来自于刹车块的磨损时所产生的。 Pb元素可能来源于平衡轮胎的铅块的磨损和尾气的排放; 而反复扬起和沉积的道路扬尘的物质组成较为复杂,它包含了多种来源的有害重金属,以印度交通路口的重悬浮颗粒物为例,不少科学家对其作了定量分析,研究显示41%来自道路灰尘,15%来自机车释放,15%来自海洋气溶胶,6%来自金属工业,6%来自煤的燃烧。因此扬尘的再次沉降是交通区地表灰尘多种元素的共同来源。 商业区地表灰尘来源相对多样和复杂,与工业区和交通区不同,商业区没有工业生产和交通运输等释放重金属的主体活动,商业区的特点是位于城市干道旁、商品种类繁多和人群聚集且流动量大,因此商业区地表灰尘重金属既来源于土壤、空气沉降,又部分受交通活动的影响,还与建筑物外墙的风化、城市设施表面油漆碎片的脱落、商品的磨蚀以及人群的聚集所产生的灰尘有关,人群聚集较多的地区其地表灰尘的重金属含量也会较高。居民文教区相对于工业区而言,其污染源较少;相对于交通区而言,其车辆密集度不高,道路扬尘现象也并不严重;相对于商业区而言,人群聚集现象较为可观,所以这一区域的地表灰尘金属含量较少。但是,这并不代表居民文教区的地表灰尘不含有金属。由于这一区域小区众多,而小区内的环境参差不齐,有些小区绿化面积较好,这种小区内的地表灰尘重金属含量就较低,反之,则地表灰尘重金属的含量就较高。另外,家庭所用的家具和日用品所释放的重金属的微粒经过日积月累的沉积然后通过垃圾倾倒等方式进入室外,与室外的空气相流通,最后的结果就是沉降到地表,造成地表灰尘重金属含量过高,特别是灰尘中的Pb和Cd两种化学

相关主题
文本预览
相关文档 最新文档