当前位置:文档之家› 光纤差动保护动作原因分析

光纤差动保护动作原因分析

光纤差动保护动作原因分析
光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析

1、摘要

2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。

2、基本概况及事故发生经过

内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统.

根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患.

3、光纤差动保护误动的原因分析

经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

统电压可能为零.由于C相CT已经烧毁,影响到二次绕组电流的准确度(C相二次直流电阻增大数倍),至使主变差动保护动作,后备保护动作过负荷报警,主变主保护及后备保护动作还是可靠的.因为故障确实存在.

为什么主变差动保护动作会引起线路光纤差动保护动作呢?而且是两条线同时动作.主变出线柜CT烧毁的故障,针对光纤差动保护属于区外故障,不可能引起光纤差动保护动作.光纤差动保护的保护区间是线路两侧CT之间的引出线及整条线路,如果在此范围外动作,基本属于误动作.

一般光纤差动保护误动可能有以下几种原因:

1、线路两侧光纤差动保护CT的极性不对应,并非都指向线路。正常运行时,两侧电流叠加在一起产生差动电流,但没有制动电流.

2、CT的选型不一致,不是同厂同型产品,两侧CT在区外故障及故障恢复时,暂态特性偏差并较大,引起保护误动。

3、光纤差动保护装置本身的制动特性差,主变冲击合闸产生的励磁涌流中,直流分量和二次谐波对其影响较大。

根据上述事故经过,光纤差动保护多次误动,第一种情况的可能性是最大的,但是不可能两条线的光纤差动保护同时动作,或是正常操作断开一条线路时,另一条线路光纤差动保护动作跳闸,这是不合理的现象.第二种情况也有可能发生,但经核实两侧光纤差动保护所用CT都是同厂同型号的CT,变比也一致,而且当时并不存在短路故障电流,误动的可能性不会太大;第三种情况也存在,但只局限于主变冲击合闸时

发生,从几次的主变冲击合闸励磁涌流来看,并非是类似的故障电流,对光纤差动的影响基本可以排除.

由于Ⅰ段母线给启备变供电, 最后在启备变带上厂用电后,提高厂用的负荷电流,在311光纤差动保护装置上,看各侧的电流及差流.结果发现,311本侧有电流,对侧314没有电流,差流就是有电流一侧的电流值,而且三相都是如此.所以主变冲击合闸时,光纤差动保护动作是必然的.在检查321线路光纤差动保护装置时发现,315侧有电流,321侧没电流;当时只有314杭源一回供电,315杭源二回没有供电,那么315侧怎么会有电流.只有一种可能性,那就是两条线的光纤差动保护的光纤通道接交叉了.

为了落实光纤通道接错的真实性,又去了220KV变电站,在35KV 室内的,314及315出线光纤差动保护装置上,观察各侧电流采样及差流,结果同311及321进线光纤差动保护装置上看到的情况吻合,没投运的有对侧电流,投运的反而没有对侧电流.

4、结论:

杭源一回线、二回线光纤通道互为交叉,光缆熔接错误。即:314开关同321开关的光纤差动保护装置互为收发,315开关同311开关的光纤差动保护装置互为收发,造成两条线同时误动作跳闸,或是冲击主变时误动作跳闸。

5、总结:

事故的发生存在着偶然性,但是事故的发生又有必然导致其发生的原因,事故就是事故,不可能凭白无顾的发生。事故发生的原因在

事故发生之前处于潜伏状态,一但条件满足,会有意想不到的后果。如果在新投运之前,相关单位继电保护专业对两条线进行对调,马上会发现通道错误的现象,在送电前就可以改正。即使在投运后,曾经也发生过光纤差动保护误动作的事情,这就要引起运行人员的注意,当时如果多观察装置上的采样,也能发现各侧电流和差流不正常的现象,急时纠正,急时处理,也会避免此次事故的发生。

中化二建电仪安装有限公司调试队

2014年6月8日

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

光纤差动线路保护讲义

天王沟电站线路保护讲课讲义 一、我站线路保护配置 1. RCS-943包括以分相电流差动和零序电流差动为主体的快速 主保护,由三段相间和接地距离保护、四段零序方向过电流保护 构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能。

二、线路保护简介 1. 光纤纵差保护 首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相 电流的向量和是否为零来确定是否动作,当接在电流互感器的二 次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。但是,光纤差动保护米用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: (以下几点作为了解,我站为 第3种) 1. )电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2. )微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3. )光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4. )导引线纵联保护,简称导引线保护,利用导引线直接比较线路两

端电流的幅值和相位,以判别区内、区外故障。 2. 线路距离保护 我站线路距离保护分为接地距离、相间距离保护 接地距离:以保护安装处故障相对地电压为测量电压、以带有零序电流补偿的故障相电流为测量电流的方式,就能够正确地反应各种接地故障的故障距离,所以它称为接地距离保护接线方式。 相间距离:以保护安装处两故障相相间电压为测量电压、以两故障相电流之差为测量电流的方式称为相间距离保护接线方式。 距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。并根据距离的远近而确定动作时间的一种保护装置。该装置的主要元件为距离(阻抗)继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗。当短路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路。用电压与电流的比值(即阻抗)构成的继电保护,又称阻抗保护,阻抗元件的阻抗值是接入该元件的电压与电流的比值: U/I=Z ,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。距离保护分的动作行为反映保护安装处到短路点距离的远近。与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小。 距离保护保护范围讲解:一般距离保护为山断式距离保护,第 一段保护范围为线路全长85%,二段保护范围位前面与一段重合,后面

发电机差动保护误动原因分析

发电机差动保护误动原因分析 [摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。 [关键词]差动保护;电流互感器;原因分析;整改措施 0 引言 多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。 1 发电机差动保护动作情况 山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。如图1 图1 8月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。差动保护回路因差流存在并达到动作限值引起差动保护动作,

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

南瑞RCS-931B光纤差动保护浅析

南瑞RCS-931B光纤差动保护浅析 一、光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在CT(电流互感器)的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。★★★但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护! RCS-931B保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及四个延时段零序方向过流构成全套后备保护。正常和外部故障时:Im=-In,制动量≥动作量,保护可靠不动作,内部故障时:Im=In时,制动量为零,动作最灵敏。 动作判据如下式(1)、(2),两式同时满足程序规定的次数即跳闸。 | Im + In | > ICD(1)| Im + In | > k | Im - In | (2) 式(1)为基本判据,ICD 表示线路电容电流,式(2)为主判据。 式(1)、(2)的动作特性如图1 所示,制动量随两侧电流大小、相位而改变,Im = In 时,制动量为零,动作最灵敏,区外故障,Im = - In,制动量》动作量,保护可靠不动作。

二、整组动作时间:1.工频变化量距离元件:近处3~10ms 末端<20ms222 2.差动保护全线路跳闸时间:<25ms(差流>1.5 倍差动电流高定值) 3.距离保护Ⅰ段:≈20ms 三、保护程序结构及跳闸逻辑:

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

(完整版)NSR-303A-G-R型光纤差动保护装置检修规程

NSR-303A-G-R型光纤差动保护装置检修规程 1 主题内容与适用范围 本标准规定了NSR-303A-G-R型光纤差动保护装置的检验类型、周期、检验的原则性要求、检验方法及质量标准的主要技术标准 本标准适用于继电保护人员对NSR-303A-G-R型光纤差动保护装置进行调试、检验 2 引用标准 《继电保护及电网安全自动装置检验条例》 《继电保护和安全自动装置基本试验方法》GB/T 7261-2016 《继电保护和安全自动装置技术规程》GB/T 14285-2006 《继电保护和电网安全自动装置检验规程》DL/T 995-2016 《继电保护及二次回路安装及验收规范》GB/T 50976-2014 《继电保护和电网安全自动装置现场工作保安规定》Q/GDW 267-2009 《继电保护和安全自动装置通用技术条件》DL/T 478-2013 《继电保护微机型试验装置技术条件》DL/T624-2010 《继电保护测试仪校准规范》DL/T 1153-2012 《防止电力生产重大事故的二十五项重点要求》【国家能源局】 《继电保护及安全自动装置运行管理规程》中华人民共和国电力行业标准中华人民共和国电力工业部《电力系统继电保护及安全自动装置反事故措施要点》 《国家电网公司十八项电网重大反事故措施》 《NSR-303系列超高压线路保护装置技术使用说明书》 3 主要技术参数 3.1 装置简介 NSR-303A-G-R光纤差动保护装置以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护 交流电压Un: 相电压:100/ V 线路抽取电压:100/ V或100V 交流电流In: 1A 频率:50Hz 额定直流电压:220V 打印机工作电压:AC 220V 50Hz

基于光纤差动保护的新型智能配电网设计

基于光纤差动保护的新型智能配电网设计 摘要:本文主要阐述了我国配网自动化建设的现状和发展趋势,并分析光纤差 动保护在10kV线路应用的优势,从而提出了一种基于光纤差动保护的新型智能 配电网设计,并分析这种配网自动化设计的应用优势。 关键词:配网自动化;光纤差动保护;新型智能电网设计 1 配网自动化建设的发展趋势 随着城市现代化建设的脚步不断向前,社会对用电可靠性的要求越来越高。传统意义上 的“集中控制型”、就地控制型”、“运行监测型”无法满足用电用户“零停电”的要求。而基于面 保护判断逻辑的“智能分布式”逻辑过于复杂,运行维护难度高,难以大范围运用。除了满足 用电用户的要求,配网自动化建设方案还要考虑到运行维护、检修、改造难度等方面的问题。 因此,寻找一种可靠性高、设计原理简单、便于运行维护检修且易于改造的配网自动化 方案,是我国配网自动化建设的发展趋势。 2光纤差动保护的优势 光纤差动保护相对比与其它类型的保护,其优势主要有: (1)光纤差动保护的原理简单,运用的是基尔霍夫电流基本定律,根据其原理本身,就可以正确判断区内故障与区外故障,具有成熟可靠的保护判断逻辑。 (2)光纤差动保护被广泛运用于220kV及以上电压等级的输电线路中,并作为主保护。因此,对于光纤差动保护,国内有着成熟的运行管理经验以及检修、维护经验。 (3)光纤差动保护中,线路两侧的保护装置不存在电联系,提高了系统运行的可靠性。 (4)光纤差动保护其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等情况,可适应各种不同的电力运行系统。 (5)光纤差动保护由于其原理简单,并且不受运行方式变化的影响,能更好地实现保护单元化,可灵活应用于线路改造、线路整改、开闭所改造。 纤差动保护技术在世界电力系统中广泛应用,其保护逻辑日益成熟、完善。并且,随着 光纤通讯技术的不断发展,使光纤差动保护的实施变得更加简单,其应用的领域将变得更加 广泛。 3一种基于光纤差动保护的新型智能配电网设计方案 3.1 新型智能配电网设计方案总述 新型智能配电网的主干线设计采用简单、可靠的单环网结构,单环网结构可以为开环系 统或者闭环系统。当为开环系统时,需要设置一个常开点作为转供电的联络开关。 智能配电网的高压开关均采用紧凑、环保型的真空断路器开关,故障发生时可实现快速 就地分闸隔离故障。 智能配电网的主保护采用光纤差动保护,并且设计后备保护。当光纤通讯异常,主保护 失效时,智能配电网主干线路的保护将自主切换为后备保护。 3.2 智能配电网保护设计 (1)主保护设计 主干线采用光纤差动保护。光纤接口采用FC型接口,采用单模双纤,发送器件为 1310nm InGaAsP/InPMQW-FP激光二极管(简称LD),光接收器件采用InGaAs光电二极管 (简称PIN),光纤传输距离可达10km。 保护装置与保护装置之间采用“专用光纤通道”传输数据,即保护装置与保护装置之间的 数据交互单独采用一组光纤,且为直接连接的方式,中间不经过任何转换。这样设计的好处 在于可保证数据传输的速度足够快,且稳定可靠。 光纤差动保护为分相电流保护,可分别检测A、B、C三相的差动电流。设计具备二次谐 波闭锁光纤差动保护功能,此功能是为了防止励磁涌流引起光纤差动保护误动。 主干线保护设计确保线路发现大电流的短路故障以及小电流的接地故障时,保护装置均 能灵敏检测并且可靠动作。光纤差动保护、光纤零序差动保护的逻辑判断及继电器出口动作 时间总和为≦40ms,开关的固有分闸时间为≦40ms,故障总处理时间为≦80ms。

差动保护误动原因分析及解决措施

差动保护误动原因分析及解决措施 摘要:文章针对变压器差动保护误动率较高的现状,阐述了变压器差动保护的工作原理和作用,探究了引起变压器差动保护误动的原因,主要包括以下几方面:二次回路接线错误或设备性能欠佳、区外故障、电流互感器局部暂态饱和及和应涌流等,并提出了相应的解决措施。 关键词:差动保护;误动;和应涌流 变压器是配电网的重要组成设备,其运行状态直接影响着配电网供电的稳定性和可靠性,为了确保变压器安全、可靠的运行,通常给变压器安装差动保护装置,目前多数变压器都采用纵联差动保护为主保护。然而运行时,差动保护引起的保护误动时常出现,据相关部门的统计数据显示,某区域在2010~2013年,变压器差动保护共动作1 035次,其中误动作有237次,误动率高达22.9%,部分误动原因没有查清楚,就允许变压器继续运行,给整个配电网的可靠运行造成安全隐患。基于此,本文对变压器差动保护误动问题进行了探讨。 1 差动保护的基本工作原理及作用 1.1 基本工作原理 变压器正常运行时,高低两侧的不平衡电流近似于零,若保护区域内发生异常或者故障,同时不平衡电流数值达到差动继电器动作电流时,保护装置开始动作,跳开断路器,切断故障点。 1.2 保护作用 差动保护是相对合理、完善的快速保护之一,能准确反映出变压器绕组的各种短路,例如:相间、匝间及引出线上的相间短路等,避免变压器内部及引出线之间的各种短路导致变压器损坏的重要作用。 2 差动保护误动的原因分析及解决措施 2.1 二次回路接线错误或设备性能欠佳 经过多年运行统计可知,引起差动保护误动的一个原因是二次回路接线错误或者二次设备性能欠佳。变压器差动保护二次接线线路复杂,通常要进行三角形和星形接法的变换,现场调试时工作人员一疏忽就极易将接线弄错,主要表现在以下几方面:电流互感器极性接反、组别和相别错误。为了避免上述问题,可加强对调试安装人员进行专业技能培训,提高业务水平,在调试运行时,关键环节要重点进行检查。 2.2 区外故障

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

光纤差动保护原理分析

光纤差动保护原理分析 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。

当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。

对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。图中,Id 表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。 采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。 由于线路两侧电流互感器的测量误差和超高压线路运行时产生 的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。光差动保护必须按躲过此电流值进行整定,这也是在上面所示的图2中最小差电流整定值Isl不为零的原因所在。如何躲过该不平衡电流对差动保护的影响,不同类型的保护装置其采用的整定方法也不尽相同,一般采用固定门坎法进行整定,即将在正常运行中保护装置测量到的差电流作为被保护线路的纯电容电流,并将该电流值乘以一系数(一般为2-3)作为差动电流的动作门坎。 当差动元件判为区内故障发出跳闸命令时,除跳开线路本侧断路器外,还借助于光纤通道向线路对侧发出联跳信号,使得对侧断路器快速跳闸。 2 对通信系统的要求

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

光纤差动保护装置原理分析及其调试、运行注意事项

RCS-9613CS型光纤差动保护原理分析及其 调试、运行注意事项 一、开放条件 在保护功能已投入的情况下, RC S9613CS 型光纤差动保护装置的开放条件是: a) 保护启动且满足差动方程。 b) 保护没有启动, 但是相电压或相间电压由正常值变为低于65 % Ur ( Ur 为线路的额定电压) ,且满足差动方程。 c) 开关置于分位, 且满足差动方程。 一旦上述任一条件得到满足, 保护装置将给对侧发差动允许信号, 对侧如检测到有区内故障, 两侧保护出口将动作。上述开放条件仅对瞬时金属性短路故障而言。 二、闭锁条件 RC S9613CS型光纤差动保护装置的闭锁条件是: a) 保护功能压板不投; b) 开关位置为合位, 且三相电压正常(三相对称且幅值大于 65 %Ur ) ; c) 开关位置为分位, 但是保护没有接受到跳闸信号(如控制电源被切除) 。上述任一条件不满足, 则对侧保护装置检测到任何瞬时故障, 两侧光纤分相差动保护均被闭锁。上述闭锁条件只是针对瞬时金属性短路故障而言的, 当后备保护在投入状态或发生零序高阻接地故障时, 闭锁条件将不起作用。

三、特殊试验条件下的反应 特殊试验条件下RC S9613CS型光纤差动保护装置的反应情况: a) 对空载充电线路, 在断路器断开侧对保护装置进行加电流试验。若只投主保护压板, 其它后备保护压板不投, 模拟各类型故障(故障电压低于40 V) ,则两侧光纤差动保护装置均不动作; 投入主保护压板及其它后备保护压板, 加故障电流, 如本侧开关断开, 则后备加速保护动作, 开关合位时, 后备保护动作, 经一定延时后, 光纤差动保护装置动作, 此时,对侧光纤差动保护装置也随之跳闸; 若只投主保护压板, 其它后备保护压板不投, 空载充电线路有启动电流, 则两侧光纤差动保护装置动作; 任一侧开关跳闸异常, 不影响两侧光纤差动保护的逻辑判别。 b) 空载充电线路发生故障时, 断路器断开侧光纤差动保护装置不动作。 c) 当空载充电线路发生非高阻接地的瞬时故障(故障延时小于50 ms) 时, 如断路器断开侧控制电源被误退出, 将导致电源侧光纤差动保护拒动。 d) 任一侧主保护压板退出, 均闭锁两侧光纤差动保护。 e) 通道异常, 则可靠闭锁两侧主保护。 f ) 光纤差动保护不经复合电压、电压互感器断线等闭锁。 g) 任一侧断路器断开或三相电压低于65 %Ur ,将开放对侧光纤差动保护。 四、RC S9613CS型光纤差动保护装置的特点

电动机差动保护误动原因分析与对策

电动机差动保护误动原因分析与对策 摘要:随着新建火力发电动机组容量地不断扩大,相应的辅机容量随之增大,纵联差动保护作为2MV A及以上高压电动机的主保护得到了越来越广泛地应用。介绍了电动机纵联差动保护,并针对纵联差动保护经常误动的情况,分析了电动机纵联差动保护误动作的原因,并给出了相应地解决办法,以确保机组地安全稳定运行。 关键词: 差动保护电流互感器不平衡电流 Abstract: along with the newly built thermal power motivation group capacity expands unceasingly, the corresponding auxiliary capacity increases, longitudinal differential protection of high voltage motor as2MV A and above the main protection is applied more and more widely. Introduces motor differential protection, and for longitudinal differential protection maloperation analysis often, motor differential protection maloperation cause, and gives corresponding solutions, to ensure the safe and stable operation of unit. Key words: differential protection current transformer current balance 0 引言 随着电力行业的不断发展,新建火力发电动机组容量越来越大,相应的辅机容量也随之增大。根据第9.6.1条的规定:2MV A及以上的电动机应装设纵联差动保护。对于2MV A以下中性点具有分相引线的电动机,当电流速断保护灵敏性不够时,也应装设本保护。在纵联差动保护的实际应用中,经常由于两侧电流互感器的相序、极性连接不当或电流互感器本身选择不合理等原因误动作,严重影响主要辅机的正常运转,危及机组地安全运行。为解决这个问题,须找出差动保护误动作的原因,并提出切合可行的改进措施。 1 纵联差动保护介绍 由图1可见,在不考虑电流互感器励磁电流影响的情况下,当电动机正常运行时,流过电动机绕组两侧的电流一致。以A相电流为例,电动机一次侧的电流Ia1和Ia2大小相等,方向一致,经过电流互感器转换到二次侧电流分别是Ia1’和Ia2’,从理论上讲Ia1’和Ia2’也应大小相等,方向一致。这样,流过纵联差动保护装置内部差动元件的电流就为零,差动保护不动作。当电动机内部发生相

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

相关主题
相关文档 最新文档