当前位置:文档之家› 2018版高考数学大一轮复习高考专题突破四高考中的不等式问题试题理

2018版高考数学大一轮复习高考专题突破四高考中的不等式问题试题理

2018版高考数学大一轮复习高考专题突破四高考中的不等式问题试题理
2018版高考数学大一轮复习高考专题突破四高考中的不等式问题试题理

高考专题突破四高考中的不等式问题试题理北师大版

1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为( )

A.相交B.平行

C.垂直相交D.不确定

答案 B

解析如图取B1C1中点为F,连接EF,DF,DE,

则EF∥A1B1,DF∥B1B,

∴平面EFD∥平面A1B1BA,

∴DE∥平面A1B1BA.

2.设x、y、z是空间不同的直线或平面,对下列四种情形:

①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.

其中使“x⊥z且y⊥z?x∥y”为真命题的是( )

A.③④ B.①③

C.②③ D.①②

答案 C

解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·成都模拟)如图是一个几何体的三视图(左视图中的弧线是半圆),则该几何体的表面积是( )

A .20+3π

B .24+3π

C .20+4π

D .24+4π

答案 A

解析 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4×5+2×π+2×

1

2π=20+3π.

4.(2016·沈阳模拟)设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b β;②a ∥γ,b ∥β;③b ∥β,a γ.如果命题“α∩β=a ,b γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________.(把所有正确的序号填上) 答案 ①或③

解析 由线面平行的性质定理可知,①正确;当b ∥β,a γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.

5.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.若PA ⊥AC ,PA =6,BC =8,DF =5.则直线PA 与平面DEF 的位置关系是________;平面BDE 与平面ABC 的位置关系是________.(填“平行”或“垂直”)

答案 平行 垂直

解析 ①因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .

又因为PA 平面DEF ,DE 平面DEF , 所以直线PA ∥平面DEF .

②因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,

所以DE ∥PA ,DE =12PA =3,EF =1

2BC =4.

又因为DF =5,故DF 2

=DE 2

+EF 2

, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .

因为AC ∩EF =E ,AC 平面ABC ,EF 平面ABC , 所以DE ⊥平面ABC ,又DE 平面BDE , 所以平面BDE ⊥平面ABC .

题型一 求空间几何体的表面积与体积

例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,

CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.

(1)证明:AC ⊥HD ′;

(2)若AB =5,AC =6,AE =5

4

,OD ′=22,求五棱锥D ′ABCFE 的体积.

(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD

,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.

(2)解 由EF ∥AC 得OH DO =AE AD =1

4

.

由AB =5,AC =6得DO =BO =AB 2

-AO 2

=4, 所以OH =1,D ′H =DH =3,

于是OD ′2

+OH 2

=(22)2

+12

=9=D ′H 2

, 故OD ′⊥OH .

由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,

又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =

DH DO 得EF =9

2

.

五边形ABCFE 的面积S =12×6×8-12×92×3=69

4.

所以五棱锥D ′ABCFE 的体积

V =1

3×694×22=

232

2

思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.

(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.

(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.

正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如

图).求:

(1)这个正三棱锥的表面积;

(2)这个正三棱锥内切球的表面积与体积. 解 (1)底面正三角形中心到一边的距离为 13×3

2

×26=2, 则正棱锥侧面的斜高为12

+ 2 2

= 3. ∴S 侧=3×1

2×26×3=9 2.

∴S 表=S 侧+S 底=92+12×32×(26)2

=92+6 3.

(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .

∴V P -ABC =V O -PAB +V O -PBC +V O -PAC +V O -ABC =13S 侧·r +13S △ABC ·r =1

3S 表·r =(32+23)r .

又V P -ABC =13×12×32×(26)2

×1=23,

∴(32+23)r =23,

得r =2332+23=23 32-23

18-12=6-2.

∴S 内切球=4π(6-2)2

=(40-166)π.

V 内切球=4

3π(6-2)3=83

(96-22)π.

题型二 空间点、线、面的位置关系

例2 (2016·济南模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.

(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.

(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB 平面ABC , 所以BB 1⊥AB .

又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB 平面ABE ,

所以平面ABE ⊥平面B 1BCC 1.

(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =1

2AC .

因为AC ∥A 1C 1,且AC =A 1C 1,

所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .

又因为EG 平面ABE ,C 1F 平面ABE , 所以C 1F ∥平面ABE .

方法二 如图2,取AC 的中点H ,连接C 1H ,FH .

因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,

所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,

又C 1H ∩HF =H ,AE ∩AB =A ,

所以平面ABE ∥平面C 1HF ,又C 1F 平面C 1HF , 所以C 1F ∥平面ABE .

(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2

-BC 2

= 3. 所以三棱锥E -ABC 的体积

V =13S △ABC ·AA 1=13×12×3×1×2=

33

. 思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.

(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.

如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,

垂足为F ,点E ,G 分别是棱SA ,SC 的中点.

求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .

证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .

(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF 平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .

又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA 平面SAB ,因此BC ⊥SA . 题型三 平面图形的翻折问题

例3 (2015·陕西)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π

2

,AB =BC =1,AD =2,

E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.

(1)证明:CD ⊥平面A 1OC ;

(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,连接EC , 因为AB =BC =1,AD =2, ∠BAD =π

2

AD ∥BC ,E 为AD 中点,

所以BC 綊ED ,BC 綊AE ,

所以四边形BCDE 为平行四边形,故有CD ∥BE , 所以ABCE 为正方形,所以BE ⊥AC ,

即在题图2中,BE ⊥OA 1,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又CD ∥BE , 所以CD ⊥平面A 1OC .

(2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,

所以∠A 1OC 为二面角A 1BEC 的平面角, 所以∠A 1OC =π

2

.

如图,以O 为原点,以OB ,OC ,OA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系,

因为A 1B =A 1E =BC =ED =1,BC ∥ED , 所以B ?

????22,0,0,E ? ??

??

-22,0,0, A 1?

?

???0,0,

22,C ? ??

??

0,22,0, 得BC →=? ?

???-22,22,0,A 1C →=? ????0,22,-22,

CD →=BE →

=(-2,0,0),

设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ, 则???

?? n 1·BC →=0,

n 1·A 1C →=0,得?

??

??

-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);

???

??

n 2·CD →=0,

n 2·A 1C →=0,

得?

??

??

x 2=0,y 2-z 2=0,取n 2=(0,1,1),

从而cos θ=|cos n 1,n 2 |=

2

3×2=6

3

, 即平面A 1BC 与平面A 1CD 夹角的余弦值为

63

. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.

(2016·深圳模拟)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC

=PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .

(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.

(1)证明 因为PD ⊥平面ABCD ,AD 平面ABCD , 所以PD ⊥AD .

又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD . 又CF 平面PCD , 所以AD ⊥CF ,即MD ⊥CF .

又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF . (2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°, 所以PD =3,由(1)知FD ⊥CF , 在直角三角形DCF 中,CF =12CD =1

2.

如图,过点F 作FG ⊥CD 交CD 于点G ,

得FG =FC sin 60°=12×32=3

4,

所以DE =FG =

34,故ME =PE =3-34=334

, 所以MD =ME 2

-DE 2

334 2- 34 2=6

2

.

S △CDE =1

2DE ·DC =12×

34×1=38

. 故V M -CDE =13MD ·S △CDE =13×62×38=2

16.

题型四 立体几何中的存在性问题

例4 (2016·邯郸第一中学研究性考试)在直棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,E ,F 分别是CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.

(1)证明:DF ⊥AE .

(2)是否存在一点D ,使得平面DEF 与平面ABC 所成的锐二面角的余弦值为14

14

?若存在,说明点D 的位置;若不存在,说明理由. (1)证明 ∵AE ⊥A 1B 1,A 1B 1∥AB , ∴AE ⊥AB .

又∵AA 1⊥AB ,AA 1∩AE =A , ∴AB ⊥平面A 1ACC 1.

又∵AC 平面A 1ACC 1,∴AB ⊥AC .

以A 为原点建立如图所示的空间直角坐标系,

则有A (0,0,0),E (0,1,12),F (12,1

2,0),A 1(0,0,1),B 1(1,0,1).

设D (x ,y ,z ),A 1D →=λA 1B 1→

,且λ∈(0,1), 即(x ,y ,z -1)=λ(1,0,0),则D (λ,0,1), ∴DF →=(1

2-λ,12,-1).

∵AE →

=(0,1,12

),

∴DF →·AE →=12-1

2

=0,∴DF ⊥AE .

(2)解 结论:存在一点D ,使得平面DEF 与平面ABC 所成的锐二面角的余弦值为

1414

.

理由如下:

由题意知平面ABC 的法向量为m =(0,0,1).

设平面DEF 的法向量为n =(x ,y ,z ),则???

??

n ·FE →=0,

n ·DF →=0.

∵FE →

=(-12,12,12),DF →=(12-λ,12,-1),

∴?????

-12x +12y +1

2z =0, 12-λ x +1

2

y -z =0,即?????

x =3

2 1-λ z ,y =1+2λ

2 1-λ z .

令z =2(1-λ),则n =(3,1+2λ,2(1-λ)). ∵平面DEF 与平面ABC 所成的锐二面角的余弦值为1414

, ∴|cos〈m ,n 〉|=|m ·n ||m ||n |=14

14,

|2 1-λ |

9+ 1+2λ 2

+4 1-λ

2

1414

, 解得λ=12或λ=7

4

(舍去),

∴存在满足条件的点D ,此时D 为A 1B 1的中点.

思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.

(2)对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.

如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =

CD =1,AA 1=AB =2,E 为棱AA 1的中点.

(1)证明:B 1C 1⊥CE ;

(2)求二面角B 1-CE -C 1的正弦值;

(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为

2

6

,求线段AM 的长. (1)证明 如图,以点A 为原点,分别以AD ,AA 1,AB 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).

易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →

=0,所以B 1C 1⊥CE . (2)解 B 1C →

=(1,-2,-1). 设平面B 1CE 的法向量m =(x ,y ,z ), 则???

??

m ·B 1C →=0,

m ·CE →=0,

即?

??

??

x -2y -z =0,

-x +y -z =0.

消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1). 由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,CC 1∩CE =C ,可得B 1C 1⊥平面CEC 1, 故B 1C 1→

=(1,0,-1)为平面CEC 1的一个法向量. 于是cos 〈m ,B 1C 1→

〉=m ·B 1C 1

|m ||B 1C 1→|

-4

14×2

=-277,从而sin 〈m ,B 1C 1→〉=217,

所以二面角B 1-CE -C 1的正弦值为

21

7

. (3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →

+EM →

=(λ,λ+1,λ).

可取AB →

=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →

〉|=|AM →·AB →||AM →||AB →|

λ2+ λ+1 2+λ2×2=λ

3λ2

+2λ+1

于是

λ3λ2

+2λ+1

26,解得λ=1

3

(负值舍去), 所以AM = 2.

1.(2016·北京顺义区一模)如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是( )

A .48

B .16

C .24 3

D .144 答案 C

解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥β. 令AM =t (0

-t 2

=4PA 2

-(6-t )2

, 所以PA 2

=12-4t .

所以PM =12-4t -t 2

,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =1

2×(4+8)×6=36.

所以V =13×36×12-4t -t 2=12- t +2 2

+16

≤12×12=24 3.

2.(2016·江西赣中南五校第一次联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( ) A .若α⊥γ,α⊥β,则γ∥β B .若m ∥n ,m α,n β,则α∥β C .若m ∥n ,m ⊥α,n ⊥β,则α∥β D .若m ∥n ,m ∥α,则n ∥α 答案 C

解析 对于A ,若α⊥γ,α⊥β,则γ∥β或相交;对于B ,若m ∥n ,m α,n β,则

α∥β或相交;对于D ,若m ∥n ,m ∥α,则n ∥α或n α.故选C.

3.(2016·华中师大附中质检)已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,

BC =2,则二面角D -BC -A 的大小为________.

答案 90°

解析 如图,取BC 的中点E , 连接AE ,DE ,

∵AB =AC ,∴AE ⊥BC .

又三棱锥D -ABC 的三个侧面与底面全等, ∴BD =CD ,∴DE ⊥BC ,

则∠AED 是二面角D -BC -A 的平面角. 在△AED 中,AE =DE =

AB 2- 12

BC 2

= 3 2

-12

=2,AD =2, 由AE 2

+DE 2

=AD 2

,知∠AED =90°. 故二面角D -BC -A 的大小为90°.

4.如图梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD ∶BC ∶AB =2∶3∶4,E 、F 分别是AB 、CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出四个结论:

①DF ⊥BC ; ②BD ⊥FC ;

③平面DBF ⊥平面BFC ; ④平面DCF ⊥平面BFC .

在翻折过程中,可能成立的结论是________.(填写结论序号) 答案 ②③

解析 因为BC ∥AD ,AD 与DF 相交不垂直,所以BC 与DF 不垂直,则①错误;设点D 在平面

BCF上的投影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP 平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.

5.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CF

FD

=______时,D1E⊥平面AB1F.

答案 1

解析如图,连接A1B,则A1B是D1E在平面ABB1A1内的射影.

∵AB1⊥A1B,∴D1E⊥AB1,

又∵D1E⊥平面AB1F

?D1E⊥AF.

连接DE,则DE是D1E在底面ABCD内的投影,

∴D1E⊥AF?DE⊥AF.

∵ABCD是正方形,

E是BC的中点,

∴当且仅当F是CD的中点时,DE⊥AF,

即当点F是CD的中点时,D1E⊥平面AB1F,

∴CF

FD

=1时,D1E⊥平面AB1F.

6.如图,在三棱柱ABCA1B1C1中,∠BAC=90°,

AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.

(1)证明:A 1D ⊥平面A 1BC ;

(2)求二面角A 1BDB 1的平面角的余弦值. (1)证明 设E 为BC 的中点, 由题意得A 1E ⊥平面ABC , 因为AE 平面ABC ,所以A 1E ⊥AE . 因为AB =AC ,所以AE ⊥BC . 又A 1E ∩BC =E ,故AE ⊥平面A 1BC . 由D ,E 分别为B 1C 1,BC 的中点,得

DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,

所以四边形A 1AED 为平行四边形.故A 1D ∥AE . 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .

(2)解 方法一 如图所示,作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F .

由AE =EB =2,∠A 1EA =∠A 1EB =90°,得A 1B =A 1A =4. 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等. 由A 1F ⊥BD ,得B 1F ⊥BD ,

因此∠A 1FB 1为二面角A 1BDB 1的平面角. 由A 1D =2,A 1B =4,∠DA 1B =90°,得

BD =32,A 1F =B 1F =43

.

由余弦定理得cos∠A 1FB 1=-1

8

.

方法二 以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系,如图所示.

由题意知各点坐标如下:

A 1(0,0,14),

B (0,2,0),D (-2,0,14),B 1(-2,2,14).

因此A 1B →=(0,2,-14),BD →

=(-2,-2,14),

DB 1→

=(0,2,0).

设平面A 1BD 的法向量为m =(x 1,y 1,z 1), 平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由???

?? m ·A 1B →=0,

m ·BD →=0,

即??

? 2y 1-14z 1=0,

-2x 1-2y 1+14z 1=0,

可取m =(0,7,1). 由???

??

n ·DB 1→=0,

n ·BD →=0,

即??

?

2y 2=0,

-2x 2-2y 2+14z 2=0,

可取n =(7,0,1).

于是|cos 〈m ,n 〉|=|m ·n ||m ||n |=1

8

.

由图可知,所求二面角的平面角是钝角,故二面角A 1BDB 1的平面角的余弦值为-1

8

.

7.(2016·山东牟平一中期末)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AC ⊥B 1D ,BB 1⊥底面ABCD ,

E ,

F ,H 分别为AD ,CD ,DD 1的中点,EF 与BD 交于点

G .

(1)证明:平面ACD 1⊥平面BB 1D ; (2)证明:GH ∥平面ACD 1.

证明 (1)∵BB 1⊥平面ABCD ,AC 平面ABCD ,

∴AC ⊥BB 1.

又AC ⊥B 1D ,BB 1∩B 1D =B 1, ∴AC ⊥平面BB 1D . ∵AC 平面ACD 1, ∴平面ACD 1⊥平面BB 1D . (2)设AC ∩BD =O ,连接OD 1. ∵E ,F 分别为AD ,CD 的中点,

EF ∩OD =G ,

∴G 为OD 的中点.

∵H 为DD 1的中点,∴HG ∥OD 1.

∵GH

平面ACD 1,OD 1 平面ACD 1,

∴GH ∥平面ACD 1

8.(2016·四川广安第二次诊断)如图,在四棱锥P -ABCD 中,PA ⊥底面直角梯形ABCD ,∠DAB 为直角,AD =CD =2,AB =1,E ,F 分别为PC ,CD 的中点.

(1)求证:CD ⊥平面BEF ;

(2)设PA =k ,且二面角E -BD -C 的平面角大于30°,求k 的取值范围.

(1)证明 如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (2,2,0),D (0,2,0),F (1,2,0),

从而DC →=(2,0,0),BF →

=(0,2,0), 所以DC →·BF →=0,故DC →⊥BF →

,即DC ⊥BF . 设PA =b ,则P (0,0,b ).

因为E 为PC 的中点,所以E (1,1,b

2

),

从而BE →=(0,1,b 2

),所以DC →·BE →

=0,

故DC →⊥BE →

,即DC ⊥BE .

又BE ∩BF =B ,由此得CD ⊥平面BEF .

(2)解 设E 在xOy 平面上的射影为G ,过点G 作GH ⊥BD ,垂足为点H ,连接EH ,

?

???

?EG ⊥BD

GH ⊥BD EG ∩GH =G ?BD ⊥平面EGH , 又EH 平面EGH ,∴EH ⊥BD ,

从而∠EHG 即为二面角E -BD -C 的平面角. 由PA =k ,得P (0,0,k ),E (1,1,k

2),G (1,1,0).

设H (x ,y,0),则GH →=(x -1,y -1,0),BD →

=(-1,2,0). 由GH →·BD →

=0,得-(x -1)+2(y -1)=0, 即x -2y =-1.①

又BH →=(x -1,y,0),且BH →与BD →

的方向相同, 故

x -1-1

=y

2

,即2x +y =2.② 由①②解得x =35,y =45,从而GH →

=(-25,-15,0),

所以|GH →

|=55

.

从而tan∠EHG =|EG →||GH →|

=5

2k .

由k >0知∠EHG 是锐角,由∠EHG >30°, 得tan∠EHG >tan 30°, 即

52k >33

. 故k 的取值范围为k >21515

.

9.(2016·铁岭模拟)如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =1

2

AE =2,O ,M 分别为CE ,AB 的中点.

(1)求证:OD ∥平面ABC ;

(2)求直线CD 和平面ODM 所成角的正弦值;

(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由.

(1)证明 如图,取AC 中点F ,连接OF ,FB .

∵F 是AC 中点,O 为CE 中点, ∴OF ∥EA 且OF =1

2EA .

又BD ∥AE 且BD =1

2AE ,

∴OF ∥DB 且OF =DB ,

∴四边形BDOF 是平行四边形,∴OD ∥FB . 又∵FB 平面ABC ,OD 平面ABC , ∴OD ∥平面ABC .

(2)解 ∵平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB 平面ABDE ,且BD ⊥BA , ∴DB ⊥平面ABC .

∵BD ∥AE ,∴EA ⊥平面ABC .

又△ABC 是等腰直角三角形,且AC =BC , ∴∠ACB =90°,

∴以C 为原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,如图所示.

∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),D (0,4,2),E (4,0,4),O (2,0,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →

=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

高考数学全国卷选做题之不等式

2010——2016《不等式》高考真题 2010全国卷设函数f(x)=241 x-+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围. 2011全国卷设函数()||3 =-+,其中0 f x x a x a>. (I)当a=1时,求不等式()32 ≥+的解集. f x x (II)若不等式()0 x≤-,求a的值. f x≤的解集为{x|1}

2012全国卷已知函数f (x ) = |x + a | + |x -2|. (Ⅰ)当a =-3时,求不等式f (x )≥3的解集; (Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。 2013全国卷Ⅰ 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12 )时,()f x ≤()g x ,求a 的取值范围.

2013全国卷Ⅱ 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)2221a b c b c a ++≥. 2014全国卷Ⅰ 若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.

2014全国卷Ⅱ设函数() f x=1(0) ++-> x x a a a (Ⅰ)证明:() f<,求a的取值范围. f x≥2 (Ⅱ)若()35 2015全国卷Ⅰ已知函数=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集; (Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

最新数学不等式高考真题【精】

1.(2018?卷Ⅱ)设函数 (1)当时,求不等式的解集; (2)若,求的取值范围 2.(2013?辽宁)已知函数f(x)=|x﹣a|,其中a>1 (1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集; (2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (Ⅰ)求不等式f(x)≥1的解集; (Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 4.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 5.(2017?新课标Ⅰ卷)[选修4-5:不等式选讲] 已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围. 6.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 7.(2018?卷Ⅰ)已知 (1)当时,求不等式的解集 (2)若时,不等式成立,求的取值范围 8.(2018?卷Ⅰ)已知f(x)=|x+1|-|ax-1| (1)当a=1时,求不等式f(x)>1的解集 (2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围 9.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 10.(2014?新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0). (1)证明:f(x)≥2; (2)若f(3)<5,求a的取值范围. 11.(2015·福建)选修4-5:不等式选讲 已知,函数的最小值为4.(1)求的值;

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

2015-2019高考数学全国卷真题(不等式选讲)

2015-2019高考数学全国卷真题(不等式选讲) 2019-3-23.设,,,x y z R ∈且1x y z + +=. (1)求()()()222111x y z -++++的最小值; (2)()()()2221213x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 2019-2-23.已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 2019-1-23.已知a ,b ,c 为正数,且满足1=abc .证明: (1)22211 1 a b c a b c ++≤++; (2)333()()()24a b b c c a +++≥++. 2018-3-23.已知函数()211f x x x =++-. (1)画出()y f x =的图像; (2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 2018-2-23.设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 2018-1-23.已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范. 2017-3-23.已知函数21)(--+=x x x f . (1)求不等式1)(≥x f 的解集; (2)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.

2020高考数学---均值不等式

第45炼 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:12 111n n n H a a a = ++ + (2 )几何平均数:n G = (3)代数平均数:12n n a a a A n ++ + = (4)平方平均数: n Q = 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 特别的,当2n =时,22G A ≤?2 a b + ≤ 即基本不等式 3、基本不等式的几个变形: (1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 3y x x =+≥,右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两 个 2x ,则22422y x x x x x =+=++≥=

② 乘积的式子→和为定值,例如3 02 x << ,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2 112329 322322228 x x f x x x x x +-??=-=?-≤= ???(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突) ② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求 m n x y +的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求 32 x y +的最小值 解: ()3232942366y x x y x y x y x y ??+=++=+++ ??? 94121224y x x y =+ +≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值 解:()2 2 21 1222 228 x y x y xy x y ++??=??≤ = ? ?? 所以()() 2 224248 x y x y xy x y +++=?++ ≥ 即()()2 282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

相关主题
文本预览
相关文档 最新文档