当前位置:文档之家› 【天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版)

【天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版)

【天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版)
【天津市2013届高三数学总复习之模块专题:27 导函数含参问题的基本讨论点(教师版)

导函数含参问题的基本讨论点

1、求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。

例1:设k R ∈

,函数1

,11(),()(),1x x f x F x f x kx x R x ?

-==-∈??≥?,试讨论函

数()F x 的单调性。

解:()(

)1 1 1 1 kx x x F x f x kx kx x ?-

-=-=??≥?,,,,

()(

)21

1 1 1 k x x F'x k x ?-

?-≥??,,,,对于()F x ,分段进行研究。 对于()()1

11F x kx x x

=

-<-,对k 分类: 当0k ≤时,()()

2

1

01F x k x '=

->-,∴函数()F x 在() 1-∞,

上是增函数; 当0k >时,()()

()

22

2

1

21

11kx kx k F x k x x -+-+'=

-=

--,

令()0F x '=

,得1x =

1x =+(舍), 函数()F x

在 1?-∞ ?,

上是减函数,在1 1??

???上是增函数;

对于)1(1)(≥---=x kx x x F ,k x x F ---

=1

21

)(',对k 分类:

当0k ≥时,()0F x '<,函数()F x 在)1 ??+∞,上是减函数; 当0k <时,由(

)0 F x k '=-=,解得21

14x k =+;

函数()F x 在211

14k ?

????

?+,上是减函数,在211 4k ??

????

++∞,上是增函数。 2、求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为

零的实根是否落在定义域内,从而引起讨论。 例2:已知a 是实数,函数(

))f x x a -。 (1)求函数()f x 的单调区间;

(2)设()g a 为()f x 在区间[]0,2上的最小值。 ①写出()g a 的表达式;

②求a 的取值范围,使得()62g a -≤≤-。

解:(1)函数的定义域为[)0,+∞,(

))'30a x f x x ?

?- ?

===>,

由'()0f x =得3a x =

。考虑3

a

是否落在导函数'()f x 的定义域()0,+∞内,需对参数a 的取值分0a ≤及0a >两种情况进行讨论。

当0a ≤时,则'()0f x >在()0,+∞上恒成立,所以()f x 的单调递增区间为[)0,+∞; 当0a >时,由'()0f x >,得3a x >

;由'()0f x <,得03

a

x <<; 因此,当0a >时,()f x 的单调递减区间为0,3a ??????,单调递增区间为,3a ??

+∞????

(2)①由第(1)问的结论可知:

当0a ≤时,()f x 在[)0,+∞上单调递增,从而()f x 在[]0,2上单调递增,所以

()()00g a f ==;

当0a >时,()f x 在0,3a ??????上单调递减,在,3a ??

+∞????

上单调递增,

所以:当()0,23a ∈,即06a <<时,()f x 在0,3a ??????上单调递减,在,23a ??

????

上单调递

增,所以(

)3a g a f ??

== ???932a a -=;

当[)2,3

a

∈+∞,即6a ≥时,()f x 在[]0,2上单调递减,

所以()(

))22g a f a ==-;

综上所述,(

))0,06

2,~6a g a a a a ?≤?

?=<

若0a ≤,无解; 若06a <<

,由62-≤≤-解得36a ≤<; 若6a ≥

,由)622a -≤-≤-

解得62a ≤≤+ 综上所述,a

的取值范围为32a ≤≤+

3、求导后,导函数为零有实根(或导函数的分子能分解因式),导函数为零的实根也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

例3:已知函数()()22

211

ax a f x x R x -+=∈+,其中a R ∈。 (1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)当0a ≠时,求函数()f x 的单调区间与极值。

解:(1)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x ;

(2)由于0a ≠,所以()()()()()()

2

2

'

2222

122122111a x a x a x x ax a a f x x x ?

?--+ ?+--+??==++, 由()'0f x =,得121

,x x a a

=-=。这两个实根都在定义域R 内,但不知它们之间的

大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。

当0a >时,则12x x <。易得()f x 在区间1,a ?

?-∞- ??

?,(),a +∞内为减函数,在区间

1,a a ??- ???为增函数。故函数()f x 在11x a =-处取得极小值2

1f a a ??-=- ???

;函数()f x 在2x a =处取得极大值()1f a =。

当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1

(+∞-a 内为增函数,在区间

)1,(a a -为减函数。故函数()f x 在11x a =-处取得极小值21f a a ??-=- ???

;函数()f x 在

2x a =处取得极大值()1f a =。

点评:以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。因此,对含参数的导数问题的讨论,还是有一定的规律可循的。当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把握。

例4:设函数()()2ln 1f x x b x =++,其中0b ≠,求函数()f x 的极值点。

解:由题意可得()f x 的定义域为()1,-+∞,()2'

22211

b x x b

f x x x x ++=+=++,()'f x 的分母1x +在定义域()1,-+∞上恒为正,方程2220x x b ++=是否有实根,需要对参数b 的取值进行讨论。 当480b ?=-≤,即1

2

b ≥

时,方程2220x x b ++=无实根或只有唯一根12

x =-,所以()2220g x x x b =++≥在()1,-+∞上恒成立,则()'0f x ≥在()1,-+∞上

恒成立,所以函数()f x 在()1,-+∞上单调递增,从而函数()f x 在()1,-+∞上无极值点。

当480b ?=->,即1

2

b <时,方程2220x x b ++=,即()'0f x =有两个不相等的实根:

12x x =

=()1,-+∞内呢?又需

要对参数b 的取值分情况作如下讨论:

当0b <时,121,1x x =

<-=>-, 所以()()121,,1,x x ?-+∞∈-+∞。此时,()'f x 与()f x 随x 的变化情况如下表:

由此表可知:当0b <时,()f x 有唯一极小值点212

x -+=

当102b <<

时,121,1x x =>-=>-, 所以()()121,,1,x x ∈-+∞∈-+∞。此时,()'f x 与()f x 随x 的变化情况如下表:

由此表可知:当102b <<

时,()f x 有一个极大值点112

x -=和一个极小值

点2x =

。 综上所述:

当0b <时,()f x 有唯一极小值点x =

当102b <<

时,()f x 有一个极大值点x =

x =

当1

2

b ≥

时,()f x 无极值点。 点评:从以上诸例不难看出,在对含参数的导数问题的讨论时,只要把握以上三个基本讨论点,那么讨论就有了方向和切入点,即使问题较为复杂,讨论起来也会得心应手、层次分明,从而使问题迎刃而解。

练习1:已知函数32()f x ax x bx =++,其中常数R b a ∈,,

()()()g x f x f x '=+是奇函数。

(1)求()f x 的表达式;

(2)讨论()g x 的单调性,并求()g x 在区间]2,1[上的最大值和最小值。

练习2:已知函数1()ln 1()a

f x x ax a R x -=-+

-∈。

(I )当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程; (2)当1

2

a ≤

时,讨论()f x 的单调性。 解:(1)当1a =-时,1()ln 1()a f x x ax a R x -=-+-∈,

所以)('x f 222

,(0,)x x x x +-=∈+∞

因此,曲线()y f x =在点(2,(2))f 处的切线方程为02ln =+-y x ; (2)因为11ln )(--+

-=x

a

ax x x f , 所以211)('x a a x x f -+-=2

21x

a

x ax -+--=,),0(+∞∈x , 令,1)(2a x ax x g -+-=),,0(+∞∈x 当0,()1,(0,)a h x x x ==-+∈+∞时

所以,当(0,1),()0,()0x h x f x '∈><时此时,函数()f x 单调递减; 当(1,)x ∈+∞时,()0h x <,此时()0,f x '>函数f(x)单调递; 当0a '≠时,由f (x)=0,即210ax x a -+-=,解得121

1,1x x a

==- 当1

2

a =

时,12,()0x x h x =≥恒成立,此时()0f x '≤,函数()f x 在

),0(+∞∈x 上单调 递减;

当11

0,1102a a

<<->>时

(0,1)x ∈时,()0,()0,()h x f x f x '><此时函数单调递减; 1

(1,

1)x a

∈-时,()0,()0,()h x f x f x '<>此时函数单调递增; 1

(1,),()0x h x a

∈-+∞>时,此时()0f x '<,函数()f x 单调递减;

当0a <时,由于1

10a -<,

(0,1)x ∈时,()0h x >,此时()0f x '<,函数()f x 单调递减; (1,)x ∈+∞时,()0h x <,此时()0f x '>,函数()f x 单调递增。

综上所述:

当0a ≤时,函数()f x 在)1,0(上单调递减,函数()f x 在),1(+∞上单调递增;

当1

2

a =

时,函数()f x 在),0(+∞上单调递减; 当1

02

a <<时,函数()f x 在)1,0(上单调递减,在1(1,1)a -上单调递增,函数

1

()(1,)f x a

-+∞在上单调递减。

练习3:已知函数1()ln 1a

f x x ax x

-=-+-()a R ∈。 (1)当1

2

a ≤

时,讨论()f x 的单调性; (2)设2()2 4.g x x bx =-+,当1

4

a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使不

等式12()()f x g x ≥成立,求实数b 的取值范围。 解析:《审题要津与解法研究》435P 。

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

含参问题归纳总结 一、与函数零点(或者方程的根)有关的参数范围问题 函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 题型1.有关()x f 型 1.已知函数f(x)= e x x ?a ,g(x)= 3(e x ?ax) e x ,若方程f(x)=g(x)有4个不同的 实数解,则实数a 的取值范围是 A . (?∞,e ) B . (e,3)∪(3,+∞) C . (?∞,0)∪(e,+∞) D . (e,+∞) 2.若函数f(x)={e x ,?x ≥0?x 2+2x +1,?x <0 (其中e 是自然对数的底数),且函数y = |f(x)|?mx 有两个不同的零点,则实数m 的取值范围是( ) A . (0,1) B . (0,e) C . (?∞,0)∪(1,+∞) D . (?∞,0)∪(e,+∞) 3.设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒f (x )? f (?x )=0,当x ∈[?1,0]时,f (x )=x 2.若 g (x )=f (x )?log a x 在x ∈(0,+∞)上有且仅有三个零点,则a 的取值范围为( ) A . [3,5] B . [4,6] C . (3,5) D . (4,6) ()f x ()0f x =()f x x x

4.已知函数f(x)={xlnx?2x,x>0 x2+3 2 x,x≤0,若方程f(x)?mx+1=0恰有四个不 同的实数根,则实数m的取值范围是( ( A.(?1,?1 3)B.(?1,?1 2 )C.(?3 4 ,?1 2 )D.(?2,?1 2 ) 5.设f(x)=lnx+1 x ,若函数y=|f(x)|?ax2恰有3个零点,则实数a的取值范围为() A.(0,e2 3)B.(e2 3 ,e)C.(1 e ,1)D.(0,1 e )∪{e2 3 } 6.已知函数f(x)={x+1 x?1 ,x>1 2?e x,x≤1 ,若函数g(x)=f(x)?m(x?1)有两个零点,则实数m的取值范围是 7.若函数f(x)={ 2x+2?a,x≤0 x3?ax+2,x>0 有三个不同的零点,则实数a的取值范围 是_____.

高三数学一轮复习学案:函数的概念及其表示

高三数学一轮复习学案:函数的概念及其表示 一、考试要求:1、了解映射的概念;2、理解函数的概念,了解构成函数的要素; 3、在实际情境中会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数 4、了解函数与映射的关系; 5、了解简单的分段函数,并能简单应用. 二、知识梳理: 1、函数(1)函数的定义:设集合A 是一个非空 集,对A 内任意数x ,按照______的法则f ,都有 ___ 数值y 与它对应,则这种对应关系叫做_________上的一个函数。 (2)函数的两大要素:函数自变量的取值范围(集合A )叫做函数的__________,所有函数值构成的集合叫做函数的___________。 (3)函数的表示方法:________、_________、_________。 (4)分段函数:在定义域内,对于自变量x 的不同取值范围有着不同的________,这样的函数通常叫做_________。 2、映射(1)映射的定义:设A 、B 是两个 集合,如果按照某种对应法则f 对集合A 中的 元素,在集合B 中 与x 对应,则称f 是集合A 到集合B 的映射。y 是x 在映射f 的作用下的 ,x 称作y 的 ,其中A 叫映射f 的 ,由所有象f(x)构成的集合叫映射f 的 。 (2)一一映射:如果映射f 是集合A 到集合B 的映射,并且对于集合B 中的 , 在集合A 中都有 ,则这两个集合的元素之间存在 关系,称这个映射叫集合A 到集合B 的一一映射。 3、函数与映射的关系:函数是一种特殊的________,其特殊性表现在__________。 三 基础练习: 1、下列四个命题:(1)函数是其定义域到值域的映射。 (2)x x x f -+-=23)(是函数。 (3)函数)(2N x x y ∈=的图象是一条直线.(4)函数???<-≥=) 0()0(22x x x x y 的图象是抛物线.其 中正确的个数是( ) A :1 B :2 C : 3 D : 4 2、下列四组函数中,表示同一函数的是( ) A :1-=x y 与2)1(-=x y B :1-=x y 与1 1--= x x y C :x y lg 4=与2lg 2x y = D :2lg -=x y 与100lg x y = 3、在x y 2=,x y 2log =,2x y =,x y 2cos = 这四个函数中,当1021<<+恒成立的函数个数是( ) A :0 B :1 C :2 D :3 4、(2007年江西卷)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一

高三文科数学三角函数专题测试题(后附答案)

高三文科数学三角函数专题测试题 1.在△ABC 中,已知a b =sin A cos B ,则B 的大小为( ) A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) A . 6 B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C . 3 D . 32 在△ABC 中, AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2 =2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高中数学含参导数问题

由参数引起的案—— 含参导数问题 一、已知两个函数k x x x f -+=168)(2 ,x x x x g 452)(2 3 ++=,按以下条件求k 的范围。 (1)对于任意的]3,3[-∈x ,都有)()(x g x f ≤成立。 (构造新函数,恒成立问题) (2)若存在成立。,使得)()(]3,3[000x g x f x ≤-∈ (与恒成立问题区别看待) (3)若对于任意的).()(]3,3[2121x g x f x x ≤-∈,都有、 (注意21,x x 可以不是同一个x ) (4)对于任意的)()(],3,3[]3,3[1001x f x g x x =-∈-∈使得,总存在。 (注意:哪个函数的值域含于哪个函数的值域取决于:谁的x 是任意取的,谁的x 是总存在的。) (5)若对于任意0x []3,3∈-,总存在相应的[]12,3,3x x ∈-,使得102()()()g x f x g x ≤≤成立; (与(4)相同) 二、已知函数()2 1ln (1)2 f x a x x a x =+-+, a R ∈ (1)函数f (x )在区间(2,﹢∞)上单调递增,则实数a 的取值范围是 ,

(2)函数f (x )在区间(2,3)上单调,则实数a 的取值范围是 . 三、设函数3()3f x x ax =- (a R ∈),若对于任意的[]1,1-∈x 都有()1f x ≤成立,求实数a 的取值范围. 四、含参数导数问题的三个基本讨论点 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根 是否落在定义域内,从而引起讨论。 三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落 在定义域内,但不知这些实根的大小关系,从而引起讨论。 例1、设函数3221 ()23()3 f x x ax a x a a R =-+-+∈.求函数)(x f 的单调区间和极值; (可因式分解,比较两根大小,注意别丢两根相等情况) 解: 2 2 ()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间, 函数的极大值是(3)f a a =;函数的极小值是3 4()3 f a a a =- ;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>, 因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间 函数的极大值是3 4()3 f a a a =- ,函数的极小值是(3)f a a = ………………10分 例1变式.若2 '()(1)f x x a x a =-++,若(0,)x ∈+∞,讨论()f x 的单调性。(比较根大小,考虑定义域)

高三数学一轮复习典型题专题训练:函数(含解析)

高三数学一轮复习典型题专题训练 函 数 一、填空题 1、(南京市、镇江市2019届高三上学期期中考试)函数() 27log 43y x x =-+的定义域为 _____________ 2、(南京市2019届高三9月学情调研)若函数f (x )=a +12x -1 是奇函数,则实数a 的值为 ▲ 3、(苏州市2019届高三上学期期中调研)函数()lg(2)2f x x x =-++的定义域是 ▲ . 4、(无锡市2019届高三上学期期中考试)已知8a =2,log a x =3a ,则实数x = 5、(徐州市2019届高三上学期期中质量抽测)已知奇函数()y f x =是R 上的单调函数,若函数2()()()g x f x f a x =+-只有一个零点,则实数a 的值为 ▲ . 6、(盐城市2019届高三第一学期期中考试)已知函数2 1()()(1)2 x f x x m e x m x =+--+在R 上单调递增,则实数m 的取值集合为 . 7、(扬州市2019届高三上学期期中调研)已知函数()f x 为偶函数,且x >0时,3 2 ()f x x x =+,则(1)f -= . 8、(常州市武进区2019届高三上学期期中考试)已知函数()(1)()f x x px q =-+为偶函数,且在 (0,)+∞单调递减,则(3)0f x -<的解集为 ▲ 9、(常州市2019届高三上学期期末)函数1ln y x =-的定义域为________. 10、(海安市2019届高三上学期期末)已知函数f (x )=? ????3x -4,x <0,log 2x ,x >0,若关于x 的不等式f (x )>a 的解 集为(a 2,+∞),则实数a 的所有可能值之和为 . 11、(南京市、盐城市2019届高三上学期期末)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln2)的值为 ▲ . 12、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末) 函数 有3个不同的零点,则实数a 的取值范围为____ 13、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知,a b ∈R ,函数()(2)() f x x ax b =-+为偶函数,且在(0,)+∞上是减函数,则关于x 的不等式(2)0f x ->的解集为 . 14、(苏州市2019届高三上学期期末)设函数220 ()20 x x x f x x x ?-+≥=?-

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

高三数学第一轮复习 函数的奇偶性教案 文

函数的奇偶性 一、知识梳理:(阅读教材必修1第33页—第36页) 1、 函数的奇偶性定义: 2、 利用定义判断函数奇偶性的步骤 (1) 首先确定函数的定义域,并判断定义域是否关于原点对称; (2) 确定与的关系; (3) 作出相应结论 3、 奇偶函数的性质: (1)定义域关于原点对称; (2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)为偶函数 (4)若奇函数的定义域包含0,则 (5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须 注意使定义域不受影响; (6)牢记奇偶函数的图象特征,有助于判断函数的奇偶性; (7)判断函数的奇偶性有时可以用定义的等价形式: 4、一些重要类型的奇偶函数 (1)、f(x)= (a>0,a) 为偶函数; f(x)= (a>0,a) 为奇函数; (2)、f(x)= (3)、f(x)= (4)、f(x)=x+ (5)、f(x)=g(|x|)为偶函数; 二、题型探究 [探究一]:判断函数的奇偶性 例1:判断下列函数的奇偶性 1. 【15年北京文科】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x = D .2x y -= 【答案】B 【解析】 试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定 义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性. 2. 【15年广东文科】下列函数中,既不是奇函数,也不是偶函数的是( )

A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】 试题分析:函数()2 sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数 ()2cos f x x x =-的定义域为R ,关于原点对称,因为 ()()()()2 2cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122 x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为 ()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函 数.故选A . 考点:函数的奇偶性. 3. 【15年福建文科】下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=- 【答案】D 【解析】 试题分析:函数y x = 和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇 函数,故选D . 考点:函数的奇偶性. [探究二]:应用函数的奇偶性解题 例3、【2014高考湖南卷改编】 已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( ) A. 3- B. 1- C. 1 D. 3

高三文科数学知识点总结

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 名称 记号 意义 性质 示意图 子集 B A ? (或 )A B ? A 中的任一元素都属 于B A ?(1)A A ?? (2) A C ?,则B C ?且B A ?若(3) A B =,则B A ?且B A ?若(4) A(B) 或 B A 真子集 A ≠?B (或B ≠ ?A ) B A ?中至少 B ,且有一元素不属于A 为非空子集) A (A ≠ ??)1( A C ≠ ?,则 B C ≠ ?且A B ≠ ?若(2) B A 集合 相等 A B = A 中的任一元素都属 于B ,B 中的任一元素 都属于A B ?(1)A A ?(2)B A(B) (7)已知集合A 有(1)n n ≥个元素,则它有2个子集,它有21-个真子集,它有21-个非空子集,它有22-非空真 子集. 【1.1.3】集合的基本运算 名称 记号 意义 性质 示意图 交集 A B I {|,x x A ∈且 }x B ∈ (1) A A A =I (2)A ?=?I (3)A B A ?I A B B ?I B A 并集 A B U {|,x x A ∈或 }x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A 补集 U A e {|,}x x U x A ∈?且 ()U A A U =U e2 ()U A A =? I e1 (1不等式 解集 ||(0)x a a <> {|}x a x a -<< ||(0)x a a >> |x x a <-或}x a > ||,||(0)ax b c ax b c c +<+>> , ||x a <看成一个整体,化成 ax b +把 型不等式来求解 ||(0)x a a >> (2()()()U U U A B A B =I U 痧 ?()()() U U U A B A B =U I 痧?

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

高三数学第一轮复习计划

高三数学第一轮复习计划 王旭丽 高考数学命题近年来经历了由“知识立意”向“能力立意”的转变,体现了对能力和潜能的考察,使知识考查服务于能力考查。针对这一命题走向,怎样在短暂的时间内搞好总复习,提高效率,减轻负担是我的核心理念。 一、夯实基础。 今年高考数学试题的一个显著特点是注重基础。扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1.注重课本的基础作用和考试说明的导向作用;2.加强主干知识的生成,重视知识的交汇点;3.培养逻辑思维能力、直觉思维、规范解题习惯;4.加强反思,完善复习方法。 二、解决好课内课外关系。 课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。对题目尽量做到一题多解,一题多用。一题多解的题目让学生领会不同方法的优劣,一题多用的题目

让学生领会知识间的联系。(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。(3)每节课留10分钟让学生疏理本节知识,理解本节内容。 课外:除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,判作业时面批面改,指出知识的疏漏。 三、注重师生互动 1.多让学生思考回答问题,对于有些章节知识,按难易程度选择六至八道,尽量独自完成,无法独立解决的可以提示思路。 2.让学生自我小结,每一章复习完后,让学生自己建立知识网络结构,包括典型题目、思想方法、解题技巧,易错易做之题; 3.每次考试结束后,让学生自己总结:①试题考查了哪些知识点; ②怎样审题,怎样打开解题思路;③试题主要运用了哪些方法,技巧,关键步在哪里;④答题中有哪些典型错误,哪些是知识、逻辑心理因素造成,哪些是属于思路上的。 四、精选习题。 1.把握好题目的难度,增强题目针对性,所选题目以小题、中档题为主,且应突出知识重点,体现思想方法、兼顾学生易错之处。 2.减少题目数量,加强质量。

高三数学一轮复习函数测试题

高三数学一轮复习函数测试题 姓名_________ 班级_________ 分数_________ 1.2sin lg ln y x y x y x y =+=== 下列函数是偶函数的是( ) A. B. C. D. ()()()()1 2.lg(1)1,11,1,11,(,)f x x x ++--∞-+∞-+∞-∞+∞函数()= 的定义域是( ) A. B. C. D. 2443.log 3.6,log 3.2,log 3.6,a b c a b c a c b b a c c a b ===>>>>>>>>已知则( ) A. B. C. D. 1 3 4.y x =函数 ) 5.已知函数2 2 )(m mx x x f --=,则)(x f ( ) A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 } { (]136.=124,log 1110,,2(,2)0,233x R x B x x ???? <<=≤??????????-∞ ? ????? 已知集合A ,则A (C B)=( ) A. B. C. D. 10020000003,07..()3,log ,0 808808x x f x f x x x x x x x x x x +?≤>?>?><><<<<<已知函数是()=若则的取值范围是( ) A. B.或 C.0 D.或0 8.()43111113 0444224 x f x e x =+--在下列区间中,函数的零点所在的区间为( ) A.(,0) B.(,) C.(,) D.(,) 9.设函数???<+≥+-=0 ,60 ,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( ) A ),3()1,3(+∞?- B ),2()1,3(+∞?- C ),3()1,1(+∞?- D )3,1()3,(?--∞

相关主题
文本预览
相关文档 最新文档