当前位置:文档之家› 光伏组件封装材料综述

光伏组件封装材料综述

光伏组件封装材料综述
光伏组件封装材料综述

光伏组件封装材料综述

摘要

光伏市场在过去五到七年间的快速增长带动了封装材料市场的

强劲爆发,并导致供应链的暂时性短缺。与此同时,组件价格也出现显著下降,给生产成本和光伏组件原料成本带来巨大压力,促使封装材料市场朝着新型材料和创新供应商转变。由于封装材料对组件效率、稳定性和可靠性方面有着显著的影响,加之上述市场压力的推动,对封装技术和材料的选择便成为了组件设计过程中的一个关键步骤。本文对目前市场上的不同材料、光伏组件封装材料的整体需求以及这些材料与其它组件部件间的相互作用进行了综合介绍。

前言

光伏组件结构

晶体硅(c-Si)光伏组件通常由太阳能玻璃前盖、聚合物封装层、前后表面印刷有金属电极的单晶或多晶硅电池、连接单个电池的焊带以及聚合物(少数采用玻璃)背板组成。而薄膜光伏组件既可以通过在组件背面沉积半导体层的底衬工艺(substrateprocess)制造,也可以使用在组件前表面沉积半导体层的顶衬工艺(superstrateprocess)

制造而成(如图一中(b)和(c)所示)。

为了确保组件的力学稳定性和对整个太阳能电池吸收光谱范围内

的高透光率,并保护电池和金属电极不受外界环境侵蚀,必须在电池前表面使用太阳能玻璃。对于柔性太阳能电池技术,则选择聚合物作为前板,这层结构对材料阻挡特性要求非常高。背面材料同样要确保力学稳定性、电气安全性,使电池和组件其它部件不受外界影响。

生产工艺

一套标准的组件生产工艺由以下几个步骤组成:玻璃清洗和干燥;电池片串焊;组件层压,包括十字接头的焊接;固化;边缘密封和装框;安装接线盒;最后是功率测试。

有三种工艺可以将电池矩阵固定在这些材料中。其中最常用的是真空层压工艺,该工艺最初用于加工乙烯-醋酸乙烯酯(EVA)封装材料,之后还用于加工热塑性薄膜。对于薄膜电池工艺还有另一个选择,即装配了热压器的卷对卷层压机,该设备常见于玻璃行业。使用铸塑树脂可以避免使用层压工艺,例如硅胶。在c-Si组件工艺中,液态封

装材料需要分两次添加:第一次添加于玻璃表面,随后再添加于电池矩阵。

在一系列组件生产步骤中,固化工艺的耗时最长。而组件生产商追求的主要目标是通过研制能在相同时间内加工更多组件的层压机

来降低工艺耗时。除此之外还有另一种可行的方法,即对封装材料本身进行调整,例如添加经过优化的过氧化物交联剂以加快交联速度,或者使用热塑性封装材料。

“对于所有固化工艺来说,最主要的挑战是如何获得均匀和足够的固化或交联水平以确保粘合强度和稳定的层压效果”

对于所有固化工艺来说,最主要的挑战是如何获得均匀和足够的固化或交联水平以确保粘合强度和稳定的层压效果。要达到这一目的,组件封装操作必须提供良好的导热和均匀的压力、高度精确的温度控制以及保证工艺参数的长期稳定。

与组件效率相关的损失机制以及与其它部件的互相影响

电池-组件(CTM)效率比可以定义为互连电池片封装成组件后的

效率与封装前电池平均效率之间的关系。CTM值大小受电池种类的影响非常大。例如,对于同一种封装材料,拥有均匀减反射膜和高蓝光光谱响应的高效太阳电池的CTM损失通常比低效电池高。

从电池到组件,中间有几种因素影响着发电效率,但多数影响都是负面的。其中,由组件内部非活性区域引起的损失只影响组件效率而不会降低实际功率输出。能影响功率输出的因素可以分为光学和电学因素;其中电学损失主要是由电池间的串联电阻引起的。

电池封装后会出现某些交互光学效应(如图二所示)。首先,任何两种折射率不同的材料界面都会引起光反射。其次,位于电池前表面的所有材料层都会吸收部分入射光线。其中,来自电池表面的反射光,包括细栅、主栅和焊带反射光,可以被部分反射或全部反射回电池表面。通过使用高反射率背板,可以将入射到电池间隙的光线散射回来。如果散射光线到达组件的第一层界面,通常是玻璃—空气,会被部分或全部反射组件内部,反射效果决定于入射角。部分被反射回来的光线将射入到电池活性层,并提高电池电流和输出功率。对于封装材料,最关键的是避免吸收有用光谱区间的光线(其中c-Si电池的光谱区

间为350-1200nm)

能削弱到达电池表面光线强度的损失机制有几种,它们分别为(如图二所示):

??①、③反射损失,发生于空气-组件前表面和前表面-封装材料界面;

??②、④吸收损失,发生在玻璃内部和封装材料内部;

??⑤电池吸收;

??⑥电池表面反射以及在玻璃-空气界面处的部分或全部再反射;

??⑦背板材料的吸收;

??⑧背板材料的反射,以及在玻璃-空气表面处的部分或全部再反射。

封装材料的折射率影响着玻璃-封装层界面以及硅-减反射膜(ARC)-封装层界面的反射损失。对于有陷光结构和ARC层的电池,光耦合引起的光增益会更少。

封装材料特性

对封装材料的要求

为了优化组件效率,对光伏组件封装的要求可以分为五个方面:发电量、电气安全、可靠性、组件工艺和成本。

??封装材料的光吸收率应该尽量低并提供合适的折射率以减少

界面反射

??高导热性能以降低工作温度并提高发电量

??根据IEC61215的标准类型批准测试,为了保证电气安全,漏电流必须足够低

??为了确保光伏组件可靠性,封装材料在UV辐射、高湿、温度循环、超低或超高环境温度、机械负载以及对地电势差等特性上都至关重要。此外,封装材料必须与其它组件部件保持足够的粘附性,以保护电池和金属线不受外界环境影响。

??同时,组件生产商对材料成本、工艺成本和生产时间、保存期限和质保方面也非常重视评估封装材料的参数和方法根据上述要求,在选择光伏封装材料时必须考虑以下几个重要因素(见表一)。除了基本材料特性,例如玻璃转变或熔融温度这种可以通过特性表征技术(差式扫描量热法DSC或动态机械分析法)测量的参数外,机械特性也同样至关重要,因为需要足够的缓冲效果以抵消机械冲撞和机械与热机械负载。

“一个被普遍忽略的事实是,材料温度严重影响着封装材料内部的水蒸气传送速率和氧分子传送速率”

影响光伏组件耐用性的重要因素包括背板和封装材料的气体(例

如氧气和水蒸气)扩散特性[2];这两种气体都能从聚合物背板表面进

入封装聚合物层并穿透光伏组件,到达电池和前表面玻璃之间的区域,从而加速衰退反应。一个被普遍忽略的事实是,材料温度严重影响着封装材料内部的水蒸气传送速率(WVTR)和氧分子传送速率(OTR)。如

图三所示,由于温度升高能大大加速渗透过程,尤其是高温下的高传送速率,组件内外将出现大量的粒子传输。

另一种用于材料表征和评估的有趣工具是拉曼光谱仪,该设备被

认为是一种用于分析小型测试层压样品或全面积光伏组件封装衰退

效应的快速且非破坏性方法。

封装材料

市场调查

在60至70年代,聚二甲基硅氧烷(PDMS)主要用于第一代光伏组件的封装,之后被其它材料所代替,例如EVA,并一直持续几十年。所有聚合物都是热塑性材料或人造橡胶;然而,后者必须在层压过程中发生交联反应,因此增加了生产周期和成本。受到降低光伏组件成本的压力驱使,新的封装材料纷纷被投入市场,但因为光伏制造商们必须保证其产品能够长期稳定使用,所以着重考虑影响可靠性的缺陷是必不可少的。

“受到降低光伏组件成本的压力驱使,新的封装材料纷纷被投入市场”

光伏市场在近几年的增长带动了许多新兴EVA材料供应商的涌现。同时,非EVA材料供应商的数量在过去几年也出现了增长:9家公司带着23种非EVA产品进入了该市场[5]。然而,虽然在用的不同聚合物数量非常多,但相比于光伏市场的总年度产量,该市场仍然是聚合物供应商有利可图的市场。因此化合物产品通常都是由小型公司生产的。图四显示了不同材料品种的产品数量。

材料特性和稳定性

封装材料可以分成1)非交联热塑性材料或热塑性橡胶(TPE)材料,以及2)橡胶材料;后者在聚合链之间形成共价键。而使用最广泛的封装材料EVA、双组分硅胶以及氨基甲酸乙酯(TPU)材料则需要经过交

联反应,该反应可以在高温或UV辐射或化学反应(双组分系统)条件

下完成。热塑性或TPE材料聚乙烯醇缩丁醛、TPSE和离子交联聚合

物以及改性聚烯烃(PO)在组件生产过程中熔化并且不会在聚合物分

子链(交联)之间形成化学键。

EVA

EVA共聚物是全球使用最广泛的光伏组件封装材料,并已经在光伏行业使用超过20年。长期以来,光伏EVA的耐用性这一受添加剂

成分高度影响的特性,特别是在褪色(黄变)问题上[6,7],已经得到

了巨大改进。这种在第一代光伏电站中便广泛出现的黄变现象主要是由添加剂的光热衰退效应造成的,例如UV光线稳定剂、UV吸收剂和抗氧化剂[8,9]。除了抗氧化剂分解之外,EVA主要的衰退反应是脱

乙酰、水解和光热分解[6],这些反应会生成腐蚀性降解副产品,特

别是醋酸,从而可能加速金属材料的腐蚀。

最初,通过在高温或UV辐射的条件下使用交联添加剂可以将热

塑性材料EVA转变成橡胶。交联反应不单对于组件生产时间是一个挑

战,在材料存储(交联剂的挥发)和质量管理(索式萃取法计算交联度)也同样存在问题。

聚乙烯醇缩丁醛(PVB)

PVB是一种热塑性聚合物,在80年代初期就作为光伏组件封装

材料使用。它是加工程度仅次于EVA的封装材料,且材料成本与EVA 相近。

与其他封装材料相比,由于吸水率非常高导致PVB对水解反应非常敏感;因此必须结合低WVTR的背板使用[2]。为了提高材料的力学

加工性能并改变它们的相变温度[10],需要在PVB层添加塑化剂[10]。相对于EVA,其主要优势在于更好的UV稳定性和更高的玻璃粘合度。此外,PVB的UV透明度与EVA相差无几,但层压工艺时间却比EVA

少50%[11]。

早期PVB工艺由于在高压和高温下进行,所以必须使用热压器,但新的PVB成分允许使用标准层压工艺。PVB在光伏行业的主要应用是光伏建筑一体化(BIPV)以及使用玻璃—玻璃结构的薄膜技术。

硅胶

硅胶是一种无机—有机聚合物,主要由硅、碳、氢和氧等元素组成。虽然非常有潜力成为光伏封装材料,但由于昂贵的价格和对要求

使用特殊工艺设备(以及技术),目前硅胶的使用范围还非常小。硅胶最常用于质量要求非常高的特殊场合,例如外太空应用。

得益于它们的化学特性,硅胶能有效阻挡氧气、臭氧和UV射线的渗入。硅胶的其它优点还包括温度稳定范围(-100℃至250℃)相当宽以及对UV-可见光光谱保持高透明度。此外,其较低的杨氏模量和玻璃转变温度(见表二)还表明硅胶能有效缓冲机械应力。硅胶的折射率处于1.38至1.58之间,具体大小受硅含量影响。由于吸水率较低(小于0.05%),硅胶封装不容易受雾气影响,使其非常适合于光学和光电器件[12]。

热塑性硅橡胶(TPSE)

TPSE是一种较新的封装材料,该材料集成了优良的硅胶性能以及热塑加工性,但由于价格相对较高,该材料目前只用于特殊场合。TPSE封装材料固化速度非常快且无需添加剂就可进行物理交联,加之其在不使用塑化剂的情况下仍然有优异的机械特性,使得它们非常有希望用于连续的层压工艺[13]。

由于交联反应是通过氢键完成的,采用TPSE的光伏组件将比EVA 光伏组件更易回收。TPSE显示了良好的抗UV特性和可见光透明度,温度使用范围也非常宽(-80℃至100℃)。此外,TPSE封装材料还有非常好电阻特性(见表二)以及相当高的疏水性。

热塑性聚烯烃橡胶(TPO)

TPO是一种由热塑性聚烯烃(例如聚乙烯和聚丙烯)和烯烃橡胶(例如乙烯-丙烯橡胶和乙烯-辛烯橡胶)组成的聚合物共混物。TPO因其低廉的价格而非常有希望用在光伏封装材料上,而在过去则经常用于汽车和建筑行业中[14]。该材料的电阻特性非常好,不溶于醋酸且不易水解,不过,TPO的水通透性远高于EVA材料。

“TPO因其低廉的价格而非常有希望用于光伏封装材料上”

离子聚合物(Ionomer)

离子聚合物,特别是乙烯离子聚合物,属于热塑性封装材料,并由乙烯和非饱和羧酸共单体反应生成(例如乙烯—甲基丙稀酸共聚物EMAA)。在光伏行业,离子聚合物属于级别不同而价格更昂贵的封装材料。过去十五年在建筑上的应用已经证明了离子聚合物的良好UV 稳定性[15]。此外,离子聚合物还应用在电线和电缆上[15]。

聚合物内离子成分间的物理交联反应是在合成期间自动完成的,不需要任何额外交联步骤,这与EVA工艺有所不同。此外,在环境测试时没有发现醋酸的形成,而保存期限也相对延长(高达三年)[17]。过去两年离子聚合物的研究重点已经转向薄膜太阳电池技术,原因是它能大幅度提高湿气敏感度并拥有比EVA更低的WVTR[18]。第一代无框CIGS组件已经在最近通过结合离子聚合物实现[19]。离子聚合物增强与背板的粘合度还使得它们有希望用于c-Si技术上[20]。此外,离子聚合物还拥有高体电阻和高强度力学稳定性(见表二)。

不同封装所需的工艺温度和时间如表三所示。不同材料的参数变化范围相当广,且能通过特定添加剂来改变性能。当两种硅胶结合时,其工艺时间和温度会因不同催化剂而改变,导致结合时间达到5-50分钟,而工艺温度则在室温到120℃之间变化。

与光伏组件其它部件的相互作用

除了聚合物老化之外,光伏组件中无机材料的腐蚀也是光伏组件最严重的问题之一。电池衰减(例如减反射膜)或金属线、焊带粘合和背金属的腐蚀都会导致光伏组件性能大幅度降低[21,22]。因为EVA 降解可能伴随着腐蚀副产品的产生,例如醋酸,所以可能加速金属的腐蚀过程[23,24]。此外,水的渗入加速了EVA从电池表面的脱落过程[25]从而导致金属线分解[26]。

新型电池与组件设计以及它们对光伏组件要求的影响

高效晶体太阳能电池(μ>19.0%)通过提高蓝光/UV光谱响应来增加功率输出。因此将封装材料的UV透光极限值移动到350nm以下将变得更加重要,而这一改变能带来超过1%的相对效率提升。

另一个要求与降低组件重量相关,做法通常是使用更薄的前表面玻璃或甚至将其替换成刚性聚合物层。对于后者,为了确保与这些替代材料良好的粘合度,必须使用其它封装材料,例如聚甲基丙烯酸甲酯(PMMA)。如果刚性层应用在组件背部,可供选择的材料非常多,例如玻璃纤维材料或甚至结构铝合金。前表面可以覆盖上高透明度的聚合物薄膜,例如乙烯四氟乙烯(ETFE)。当使用聚合物材料封装易碎太阳电池时,为了降低热膨胀错配,必须选择更适合的封装材料。

此外,目前R&D层面上较关注的新电池技术包括了铜金属化晶体硅太阳电池。因此需要根据与铜的化学活性来调整封装材料。

“为封装选择合适的材料组合至关重要”

结论与展望

由于封装材料对效率和可靠性影响非常大,所以选择合适材料在组件设计环节显得举足轻重。至于耐用性和安全性,封装材料必须满足在各种环境和工作条件下长期使用的要求。对于所使用的聚合物材料,微环境条件在这些衰退过程中非常重要,并受组件其它材料特别是前表面和背部材料的强烈影响。因此,为封装选择合适的材料组合相当重要。

除了上述的技术要求之外,来自组件市场的经济压力也在逐渐上升,所以降低生产成本是无法回避的问题。一方面,需要提高UV光谱波段的透光率,另一方面还要缩短生产周期以降低生产成本。但由于组件生产商承诺的长保质期限制了新材料和新生产工艺的引入,所以只能考虑小部分的材料种类。虽然EVA依靠其较高的性价比以及几十年的应用经验依然占据市场主导,但其它封装材料的数量和种类仍然出现了显著增长。

广西关于成立光伏封装材料生产制造公司可行性报告

广西关于成立光伏封装材料生产制造公司 可行性报告 投资分析/实施方案

报告摘要说明 封装对于光伏电池性能尤为重要。由于太阳能电池对氧气、水极为敏感,容易产生化学反应而导致老化失灵,因此太阳能电池在进行实际应用前,需要对其进行保护性封装,最终形成电池组件。目前太阳能电池的封 装技术主要分为玻璃封装(刚性封装)和非玻璃封装(柔性封装)。 xxx投资公司由xxx公司(以下简称“A公司”)与xxx集团(以 下简称“B公司”)共同出资成立,其中:A公司出资730.0万元,占 公司股份74%;B公司出资260.0万元,占公司股份26%。 xxx投资公司以光伏封装材料产业为核心,依托A公司的渠道资源 和B公司的行业经验,xxx投资公司将快速形成行业竞争力,通过3-5 年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx投资公司计划总投资9715.42万元,其中:固定资产投资7717.95万元,占总投资的79.44%;流动资金1997.47万元,占总投 资的20.56%。 根据规划,xxx投资公司正常经营年份可实现营业收入19125.00 万元,总成本费用14935.50万元,税金及附加181.85万元,利润总 额4189.50万元,利税总额4949.21万元,税后净利润3142.13万元,纳税总额1807.09万元,投资利润率43.12%,投资利税率50.94%,投 资回报率32.34%,全部投资回收期4.59年,提供就业职位374个。

近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计可达1.5亿千瓦。

太阳能光伏组件工作原理及主要封装材料介绍

太阳能光伏组件 1)、组件的工作原理: 太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流. 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。 光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术 2)太阳能光伏组件由八大材料组成, 1、钢化白玻璃 2、EVA 3、背板 4、硅电池片 5、涂锡带 6、罗曼胶带(硅胶) 7、铝边框 8、接线盒 太阳能电池组件部分主要材料介绍 (1)钢化玻璃 低铁钢化玻璃(又称白玻璃),厚度3.2毫米,在太阳电池光谱响应的波长范围内(320-1100NM)透光率达90%以上,对于1200NM的红外光有较高的反射率。 此玻璃同时耐紫外光线的辐照,透光率不下降。 钢化性能符合国标GB9963-88或者封装后的组件抗冲击性能达到国标GB9535-88地面用硅太阳能电池环境试验方法中规定的性能指标。 (2)EVA EV A是一种热融胶粘剂,厚度在0.4毫米-0.6毫米之间,表面平整,厚度均匀,内含交联剂。常温下无黏性且具抗黏性,经过一定调价热压便

光伏组件封装材料综述

光伏组件封装材料综述 摘要 光伏市场在过去五到七年间的快速增长带动了封装材料市场的强劲爆发,并导致供应链的暂时性短缺。与此同时,组件价格也出现显著下降,给生产成本和光伏组件原料成本带来巨大压力,促使封装材料市场朝着新型材料和创新供应商转变。由于封装材料对组件效率、稳定性和可靠性方面有着显著的影响,加之上述市场压力的推动,对封装技术和材料的选择便成为了组件设计过程中的一个关键步骤。本文对目前市场上的不同材料、光伏组件封装材料的整体需求以及这些材料与其它组件部件间的相互作用进行了综合介绍。 前言 光伏组件结构 晶体硅(c-Si)光伏组件通常由太阳能玻璃前盖、聚合物封装层、前后表面印刷有金属电极的单晶或多晶硅电池、连接单个电池的焊带以及聚合物(少数采用玻璃)背板组成。而薄膜光伏组件既可以通过在组件背面沉积半导体层的底衬工艺(substrateprocess)制造,也可以使用在组件前表面沉积半导体层的顶衬工艺(superstrateprocess)制造而成(如图一中(b)和(c)所示)。 为了确保组件的力学稳定性和对整个太阳能电池吸收光谱范围内的高透光率,并保护电池和金属电极不受外界环境侵蚀,必须在电池前表面使用太阳能玻璃。对于柔性太阳能电池技术,则选择聚合物作为前板,这层结构对材料阻挡特性要求非常高。背面材料同样要确保力学稳定性、电气安全性,使电池和组件其它部件不受外界影响。 生产工艺 一套标准的组件生产工艺由以下几个步骤组成:玻璃清洗和干燥;电池片串焊;组件层压,包括十字接头的焊接;固化;边缘密封和装框;安装接线盒;最后是功率测试。 有三种工艺可以将电池矩阵固定在这些材料中。其中最常用的是真空层压工艺,该工艺

年产xx套光伏封装材料项目立项报告

年产xx套光伏封装材料项目 立项报告 规划设计/投资分析/实施方案

年产xx套光伏封装材料项目立项报告 近年来,太阳能光伏行业向人们展示出越来越美好的前景,封装材料 市场也随之进入大发展时代。 该光伏封装材料项目计划总投资7089.31万元,其中:固定资产投资5042.82万元,占项目总投资的71.13%;流动资金2046.49万元,占项目 总投资的28.87%。 达产年营业收入15216.00万元,总成本费用11971.03万元,税金及 附加122.36万元,利润总额3244.97万元,利税总额3814.91万元,税后 净利润2433.73万元,达产年纳税总额1381.18万元;达产年投资利润率45.77%,投资利税率53.81%,投资回报率34.33%,全部投资回收期4.41年,提供就业职位290个。 报告根据项目工程量及投资估算指标,按照国家和xx省及当地的有关 规定,对拟建工程投资进行初步估算,编制项目总投资表,按工程建设费用、工程建设其他费用、预备费、建设期固定资产借款利息等列出投资总 额的构成情况,并提出各单项工程投资估算值以及与之相关的测算值。 ...... 我国先伏产业规模持续扩大,行业景气度有望上行。截止到2015年底,我国太阳能先伏发电累计并网容量达到41.58GW,同比增长67.3%,成为全

球先伏发电装机容量最大的国家。其中,先伏电站37.12GW,分布式 6.06GW。2015年新增装机容量15.13GW,创历史新高。2016年前3季度,我国太阳能新增装机容量达22.54GW,预计2016年中国先伏新增装机容量有望超过25GW,按照国家能源局的太阳能“十三五“发展规划,预测到2020年底,太阳能发电装机容量达到1.6亿千瓦,则“十三五”期间中国每年年均新增装机容量超过20GW。光伏行业景气度有望持续上行。

关于成立光伏封装材料公司可行性报告

关于成立光伏封装材料公司 可行性报告 投资分析/实施方案

报告摘要说明 近年来,太阳能光伏行业向人们展示出越来越美好的前景,封装材料 市场也随之进入大发展时代。 xxx公司由xxx实业发展公司(以下简称“A公司”)与xxx(集团)有限公司(以下简称“B公司”)共同出资成立,其中:A公司出 资500.0万元,占公司股份62%;B公司出资310.0万元,占公司股份38%。 xxx公司以光伏封装材料产业为核心,依托A公司的渠道资源和B 公司的行业经验,xxx公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx公司计划总投资3176.84万元,其中:固定资产投资2568.07 万元,占总投资的80.84%;流动资金608.77万元,占总投资的 19.16%。 根据规划,xxx公司正常经营年份可实现营业收入4694.00万元, 总成本费用3635.27万元,税金及附加53.25万元,利润总额1058.73万元,利税总额1258.01万元,税后净利润794.05万元,纳税总额463.96万元,投资利润率33.33%,投资利税率39.60%,投资回报率24.99%,全部投资回收期5.50年,提供就业职位86个。

近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计可达1.5亿千瓦。

第一章总论 一、拟筹建公司基本信息 (一)公司名称 xxx公司(待定,以工商登记信息为准) (二)注册资金 公司注册资金:810.0万元人民币。 (三)股权结构 xxx公司由xxx实业发展公司(以下简称“A公司”)与xxx(集团)有限公司(以下简称“B公司”)共同出资成立,其中:A公司出资500.0万元,占公司股份62%;B公司出资310.0万元,占公司股份38%。 (四)法人代表 梁xx (五)注册地址 某某工业园(以工商登记信息为准) (六)主要经营范围 以光伏封装材料行业为核心,及其配套产业。

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

太阳能光伏组件的几种主要封装材料的特性

几种主要材料的特性 一、钢化玻璃 1. 加工原理钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能光伏组件对钢化玻璃的透光率要求很高,要大于91.6%,对大于1200nm的红外光有较高的反射率。厚度在3.2mm。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃 2. 钢化玻璃的主要优点: 第一是强度较之普通玻璃提高数倍,抗弯强度是普通玻璃的3~5倍,抗冲击强度是普通玻璃5~10倍,提高强度的同时亦提高了安全性。 第二是使用安全,其承载能力增大改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,对人体的伤害极大地降低了. 钢化玻璃的耐急冷急热性质较之普通玻璃有2~3倍的提高,一般可承受150LC以上的温差变化,对防止热炸裂有明显的效果。钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 第一钢化后的玻璃不能再进行切割,和加工,只能在钢化前就对玻璃进行加工至需要

形状,再进行钢化处理。 第二钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆 4.自爆现象: ①玻璃质量缺陷的影响 A.玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。特别 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数。玻璃钢化后结石周围裂纹区域的应力集中成倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态。伴随结石而存在的裂纹扩展极易发生。 B.玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS,其中X=0-0.07。只有NI1-XS相是造成钢化玻璃自发炸碎的主要原因。 已知理论上的NIS在379。C时有一相变过程,从高温状态的a-NIS六方晶系转变为低温状态B-NI三方晶系过程中,伴随出现2.38%的体积膨胀。这一结构在室温时保存下来。如果以后玻璃受热就可能迅速出现a-B态转变。如果这些杂物在钢化玻璃受张应力的内部,则体积膨胀会引起自发炸裂。如果室温时存在a-NIS,经过数年、数月也会慢慢转变到B态,在这一相变过程中体积缓慢增大未必造成内部破裂。 C.玻璃表面因加工过程或操作不当造成有划痕、炸口、深爆边等缺陷,易造成应力集中或导致钢化玻璃自爆。

关于成立光伏封装材料生产制造公司可行性报告

关于成立光伏封装材料生产制造公司 可行性报告 规划设计/投资方案/产业运营

报告摘要说明 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本 等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光 伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计 可达1.5亿千瓦。 xxx有限责任公司由xxx公司(以下简称“A公司”)与xxx科技 发展公司(以下简称“B公司”)共同出资成立,其中:A公司出资650.0万元,占公司股份63%;B公司出资380.0万元,占公司股份37%。 xxx有限责任公司以光伏封装材料产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx有限责任公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx有限责任公司计划总投资2450.74万元,其中:固定资产投资1723.81万元,占总投资的70.34%;流动资金726.93万元,占总投资 的29.66%。 根据规划,xxx有限责任公司正常经营年份可实现营业收入 6053.00万元,总成本费用4775.88万元,税金及附加48.81万元,利润总额1277.12万元,利税总额1502.08万元,税后净利润957.84万

元,纳税总额544.24万元,投资利润率52.11%,投资利税率61.29%,投资回报率39.08%,全部投资回收期4.06年,提供就业职位115个。 “平价上网”有两种,一种是“用户侧平价上网”,一种是“发电侧 平价上网”。目前,行业一致预计的到2020年实现平价上网指的是“用户 侧平价上网”,能源局提出的十三五实现光伏平价上网也是“用户侧平价 上网”。国内用户侧平均上网电价是0.66元/kw?h。

太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性 一、钢化玻璃 1. 加工原理 钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能电池组件对钢化玻璃的透光率要求很高,须大于91.6%,对大于1200nm 的红外光有较高的反射率。另外,厚度要求在3.2mm 。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃。 2. 钢化玻璃的主要优点: 1)强度比普通玻璃提高数倍,抗弯强度是普通玻璃的3-5倍,抗冲击强度是普通玻璃5-10倍,提高强度的同时亦提高了安全性。 2)使用安全,其承载能力增大,改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,极大地降低了对人体的伤害。钢化玻璃的耐急冷急热性比普通玻璃提高2-3倍,一般可承受150LC 以上的温差变化,对防止热炸裂有明显的效果。

钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 1)钢化后的玻璃不能再进行切割或加工,只能在钢化前就对玻璃进行加工至需要形状,再进行钢化处理。 2)钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。(钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。) 4. 自爆现象: 1)玻璃质量缺陷的影响 A .玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数, 玻璃钢化后结石周围裂纹区域的应力集中成 倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态,伴随结石而存在的裂纹扩展极易发生。 B .玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS ,其中X=0-0.07。只有NI1-XS 相是造成钢化玻璃自发炸碎的主要原因。

光伏封装材料生产项目投资计划书

光伏封装材料生产项目投资计划书 规划设计/投资方案/产业运营

光伏封装材料生产项目投资计划书 我国先伏产业规模持续扩大,行业景气度有望上行。截止到2015年底,我国太阳能先伏发电累计并网容量达到41.58GW,同比增长67.3%,成为全 球先伏发电装机容量最大的国家。其中,先伏电站37.12GW,分布式 6.06GW。2015年新增装机容量15.13GW,创历史新高。2016年前3季度, 我国太阳能新增装机容量达22.54GW,预计2016年中国先伏新增装机容量 有望超过25GW,按照国家能源局的太阳能“十三五“发展规划,预测到2020年底,太阳能发电装机容量达到1.6亿千瓦,则“十三五”期间中国 每年年均新增装机容量超过20GW。光伏行业景气度有望持续上行。 该光伏封装材料项目计划总投资6788.76万元,其中:固定资产投资5627.57万元,占项目总投资的82.90%;流动资金1161.19万元,占项目 总投资的17.10%。 达产年营业收入9307.00万元,总成本费用7351.40万元,税金及附 加120.63万元,利润总额1955.60万元,利税总额2345.97万元,税后净 利润1466.70万元,达产年纳税总额879.27万元;达产年投资利润率 28.81%,投资利税率34.56%,投资回报率21.60%,全部投资回收期6.13年,提供就业职位173个。

本报告是基于可信的公开资料或报告编制人员实地调查获取的素材撰写,根据《产业结构调整指导目录(2011年本)》(2013年修正)的要求,依照“科学、客观”的原则,以国内外项目产品的市场需求为前提,大量 收集相关行业准入条件和前沿技术等重要信息,全面预测其发展趋势;按 照《建设项目经济评价方法与参数(第三版)》的具体要求,主要从技术、经济、工程方案、环境保护、安全卫生和节能及清洁生产等方面进行充分 的论证和可行性分析,对项目建成后可能取得的经济效益、社会效益进行 科学预测,从而提出投资项目是否值得投资和如何进行建设的咨询意见, 因此,该报告是一份较为完整的为项目决策及审批提供科学依据的综合性 分析报告。 ...... 封装对于光伏电池性能尤为重要。由于太阳能电池对氧气、水极为敏感,容易产生化学反应而导致老化失灵,因此太阳能电池在进行实际应用前,需要对其进行保护性封装,最终形成电池组件。目前太阳能电池的封 装技术主要分为玻璃封装(刚性封装)和非玻璃封装(柔性封装)。

双面玻璃晶体硅太阳电池组件封装工艺

双面玻璃晶体硅太阳电池组件封装工艺 双面玻璃晶体硅太阳电池组件有着美观、透光的优点,应用非常广泛,如:太阳能智能窗、太阳能凉亭和光伏建筑顶棚,以及光伏玻璃幕墙等等。随着国内外光伏建筑一体化(buildingintegratedphotovoltaic,BIPV)的推广,其商业市场将进一步扩大。但目前由于双面玻璃晶体硅太阳电池组件封装工艺的技术瓶颈,市场价格相对较高。因此寻求一种优异的封装方法与工艺迫在眉睫。与普通组件结构相比,双面玻璃组件利用玻璃代替TPE或TPT(Tedlar复合薄膜)作为组件背板材料。本文阐述了不同封装工艺与封装材料对组件封装效果的影响,并根据实验现象和结果提出了改进方案和途径。 1、双面玻璃晶体硅太阳电池组件的结构 双面玻璃太阳电池组件的结构有多种,本文主要讨论的是层压封装的双面玻璃晶体硅太阳电池组件(简称双面玻璃组件)。图1是双面玻璃太阳电池组件结构。这种组件由玻璃-EVA 胶膜-太阳电池-EVA胶膜-玻璃共5层组成。与普通太阳电池组件结构相比,双面玻璃组件利用背板玻璃代替TPE(或TPT)。TPE为柔性材料,玻璃是硬度高的刚性材料,双面玻璃层压封装过程中由于两层刚性玻璃的挤压,很容易出现气泡、移位、太阳电池裂片、玻璃碎裂现象。 2、实验中出现的问题 气泡现象是双面玻璃组件封装最易出现的问题,组件中常见的气泡有两类:一是由于空气从组件边缘渗入产生的气泡,外观如图2所示;二是由于组件内部空气未及时排出产生的气泡,外观如图3所示。存在气泡的组件在使用时,EVA与玻璃、电池易脱层,严重影响组件外观、电性能和寿命。电池片移位现象在双面玻璃组件封装中也比较常见,如:

光伏封装材料生产制造项目商业计划书

光伏封装材料生产制造项目 商业计划书 投资分析/实施方案

报告摘要 近年来,太阳能光伏行业向人们展示出越来越美好的前景,封装材料市场也随之进入大发展时代。 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计可达1.5亿千瓦。 该光伏封装材料项目计划总投资3409.91万元,其中:固定资产投资2797.84万元,占项目总投资的82.05%;流动资金612.07万元,占项目总投资的17.95%。 达产年营业收入4667.00万元,净利润848.87万元,达产年纳税总额498.92万元;达产年投资利润率33.19%,投资利税率39.53%,投资回报率24.89%,全部投资回收期5.52年,提供就业职位95个。

光伏封装材料生产制造项目商业计划书目录 第一章总论 第二章项目背景及必要性 第三章项目市场分析 第四章建设规划分析 第五章土建工程设计 第六章运营管理模式 第七章项目风险评价分析 第八章 SWOT分析 第九章实施安排方案 第十章投资情况说明 第十一章项目经营收益分析 第十二章项目综合结论

第一章总论 一、项目名称及建设性质 (一)项目名称 光伏封装材料生产制造项目 (二)项目建设性质 该项目属于新建项目,依托某某科技园良好的产业基础和创新氛围,充分发挥区位优势,全力打造以光伏封装材料为核心的综合性产 业基地,年产值可达5000.00万元。 二、项目承办单位 xxx实业发展公司 三、战略合作单位 xxx科技公司 四、项目建设背景 我国先伏产业规模持续扩大,行业景气度有望上行。截止到2015年底,我国太阳能先伏发电累计并网容量达到41.58GW,同比增长67.3%,成为全 球先伏发电装机容量最大的国家。其中,先伏电站37.12GW,分布式 6.06GW。2015年新增装机容量15.13GW,创历史新高。2016年前3季度, 我国太阳能新增装机容量达22.54GW,预计2016年中国先伏新增装机容量

光伏封装材料生产制造项目可行性方案

光伏封装材料生产制造项目 可行性方案 规划设计/投资方案/产业运营

报告说明— 近年来,太阳能光伏行业向人们展示出越来越美好的前景,封装材料市场也随之进入大发展时代。 该光伏封装材料项目计划总投资19230.16万元,其中:固定资产投资15360.58万元,占项目总投资的79.88%;流动资金3869.58万元,占项目总投资的20.12%。 达产年营业收入34497.00万元,总成本费用26968.01万元,税金及附加340.78万元,利润总额7528.99万元,利税总额8908.25万元,税后净利润5646.74万元,达产年纳税总额3261.51万元;达产年投资利润率39.15%,投资利税率46.32%,投资回报率29.36%,全部投资回收期4.91年,提供就业职位713个。 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计可达1.5亿千瓦。

目录 第一章项目概况 第二章项目建设单位 第三章投资背景及必要性分析第四章市场调研 第五章建设规模 第六章项目选址科学性分析第七章土建工程设计 第八章项目工艺先进性 第九章环境保护、清洁生产第十章项目职业保护 第十一章项目风险评估 第十二章节能概况 第十三章项目进度计划 第十四章投资估算 第十五章经济效益 第十六章项目评价结论 第十七章项目招投标方案

第一章项目概况 一、项目提出的理由 我国先伏产业规模持续扩大,行业景气度有望上行。截止到2015年底,我国太阳能先伏发电累计并网容量达到41.58GW,同比增长67.3%,成为全 球先伏发电装机容量最大的国家。其中,先伏电站37.12GW,分布式 6.06GW。2015年新增装机容量15.13GW,创历史新高。2016年前3季度, 我国太阳能新增装机容量达22.54GW,预计2016年中国先伏新增装机容量 有望超过25GW,按照国家能源局的太阳能“十三五“发展规划,预测到2020年底,太阳能发电装机容量达到1.6亿千瓦,则“十三五”期间中国 每年年均新增装机容量超过20GW。光伏行业景气度有望持续上行。 封装对于光伏电池性能尤为重要。由于太阳能电池对氧气、水极为敏感,容易产生化学反应而导致老化失灵,因此太阳能电池在进行实际应用前,需要对其进行保护性封装,最终形成电池组件。目前太阳能电池的封 装技术主要分为玻璃封装(刚性封装)和非玻璃封装(柔性封装)。 二、项目概况 (一)项目名称 光伏封装材料生产制造项目 (二)项目选址 xx经济示范中心

光伏组件质保书

光伏组件质保书 1.产品有限质量保证—两年包修,包换 江苏晶迪光伏科技有限公司保证其光伏太阳能组件(包括工厂组装的接线盒与电缆),在正常的应用、安装、使用和运行条件下,不会出现材料与工艺上缺陷,保证期限为自发票所示销售之日起24个月之内。如果在该保证期内组件达不到上述质保标准,江苏晶迪光伏科技公司可以选择提供维修或更换产品。该条款所提出的维修与更换均为唯一的补偿方法,时限不能超过这里提及的24个月。2.峰值功率有限质量保证—有限补偿 如在发票所示销售之日起10年内,在标准测试条件下任何组件的输出功率出现低于在发票所示日期列入江苏晶迪光伏科技有限公司的产品说明单中的90%的情况,江苏晶迪光伏科技有限公司可以选择通过提供额外的组件给客户来补偿功率的损失或更换有缺陷的组件。 如在发票所示销售之日起25年内,在标准测试条件下任何组件的输出功率出现低于在发票所示日期列入江苏晶迪光伏科技有限公司的产品说明单中的80%的情况,江苏晶迪光伏科技有限公司可以选择通过提供额外的组件给客户来补偿功率的损失或更换有缺陷的组件。 3.排除和限制 (1) 所有质保要求必须在有效质保期内提出。 (2) “产品有限质量保证”和“峰值功率有限质量保证”描述到 组件出现以下情况,第一条款和第二条款不再适用,江苏晶迪光伏科技有限公司对此也不承担责任: —错用,滥用,疏忽或者意外事故; --更改,安装和应用不当; --停电电涌,雷电,洪水,火灾,意外破损或其他乐叶光伏不可控制的意外(3) 自给终端客户的发票所示销售之时起24个月之后,不论在第一条款一还是第二条款中的“产品有限质量保证”和“峰值功率有限质量保证”都不负担任何运输费用、清关费用、以及由组件返修和修好或更换的组件的重新装运所引起的任

光伏封装材料生产项目策划方案

光伏封装材料生产项目 策划方案 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “光伏封装材料生产项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx投资公司(盖章) xxx年xx月xx日

项目概要 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本 等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光 伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计 可达1.5亿千瓦。 封装对于光伏电池性能尤为重要。由于太阳能电池对氧气、水极为敏感,容易产生化学反应而导致老化失灵,因此太阳能电池在进行实际应用前,需要对其进行保护性封装,最终形成电池组件。目前太阳能电池的封 装技术主要分为玻璃封装(刚性封装)和非玻璃封装(柔性封装)。 该光伏封装材料项目计划总投资18515.80万元,其中:固定资产 投资15768.21万元,占项目总投资的85.16%;流动资金2747.59万元,占项目总投资的14.84%。 达产年营业收入27350.00万元,总成本费用21127.82万元,税 金及附加332.46万元,利润总额6222.18万元,利税总额7412.87万元,税后净利润4666.64万元,达产年纳税总额2746.24万元;达产 年投资利润率33.60%,投资利税率40.04%,投资回报率25.20%,全部投资回收期5.47年,提供就业职位539个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯

光伏组件封装技术研究

光伏组件封装技术研究 光伏组件作为光伏系统中核心组成部件,其质量的优劣将严重影响到光伏系统的发电量和寿命。只有原材料选择正确,原材料匹配最佳,封装技术良好,才能使晶硅电池片安全稳定,保证光伏组件良好的长期发电性能。 标签:玻璃;背板;EV A;边框 本文主要从玻璃、EV A、背板、边框四种关键原材料入手,对其选材、特点、作用、工艺、检测、发展趋势几方面进行阐述,以其对光伏组件的技术研究提供一定的参考。 1 玻璃 玻璃位于光伏组件正面的最外层,在户外环境下,直接接受阳光照射,并隔离水气、杂质等。一般的光伏组件使用的玻璃为镀膜钢化玻璃。 钢化玻璃是将玻璃加热到接近融化的温度,一般在600℃-650℃时处于粘性流动状态,保温一定时间,然后经过快速冷却即淬火,使玻璃内部产生很大的张应力,尤其是玻璃表面。张应力存在于玻璃内部,当玻璃破碎时,能使玻璃保持一体而不会碎裂,通常钢化玻璃很难被外力正面击碎,而由于张应力的原理,使得钢化玻璃在接触尖锐物理撞击或者磕碰边角时很容易碎裂。这在生产和使用过程中要尤其注意。 1.1 钢化玻璃的优点 钢化玻璃的强度比普通玻璃高,抗冲击强度是普通玻璃8倍左右,抗弯的强度是普通玻璃的4倍左右;安全性能很好,即使破碎也无尖锐的小碎片,很大的降低了造成人身伤害的风险;耐急冷急热的性质有所提高,可承受上百摄氏度的温差变化,这对防止因为高热引起的炸裂有很好的效果。 1.2 钢化玻璃的缺点 不能再进行切割和加工。钢化在生产前就需要对玻璃进行加工至需要的形状,再进行钢化处理。这就造成一旦钢化玻璃成型就很难再加工,因此钢化玻璃对生产合格率的要求很高,否则将极大的增加这一重要原材料的生产成本,进而影响组件的售价。 钢化玻璃在温差变化大时会自爆,同时由于外界环境的因素,钢化玻璃自身存在一定的自爆概率。自爆由两种基本类型,一种是“蝴蝶斑”式自爆,即沿碎裂纹路找到碎裂中心处有类似蝴蝶翅膀一样的结构;另一种就是结石自爆,形成内部向外爆裂开来的圆孔装中心结构。给予以上两点外观特征,就可以判定钢化玻璃是自爆还是外力引起的。

光伏封装材料项目可行性研究报告

光伏封装材料项目可行性研究报告 投资分析/实施方案

报告摘要说明 “平价上网”有两种,一种是“用户侧平价上网”,一种是“发电侧 平价上网”。目前,行业一致预计的到2020年实现平价上网指的是“用户 侧平价上网”,能源局提出的十三五实现光伏平价上网也是“用户侧平价 上网”。国内用户侧平均上网电价是0.66元/kw?h。 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本 等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光 伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计 可达1.5亿千瓦。 该光伏封装材料项目计划总投资18703.03万元,其中:固定资产 投资16017.56万元,占项目总投资的85.64%;流动资金2685.47万元,占项目总投资的14.36%。 本期项目达产年营业收入18639.00万元,总成本费用14702.80 万元,税金及附加299.48万元,利润总额3936.20万元,利税总额4778.60万元,税后净利润2952.15万元,达产年纳税总额1826.45万元;达产年投资利润率21.05%,投资利税率25.55%,投资回报率 15.78%,全部投资回收期7.84年,提供就业职位353个。 光伏组件封装材料主要包括光伏玻璃、封装胶膜和背板。封装材料保 护光伏组件内的太阳电池等元器件免受外界环境的影响,确保光伏系统长

期运行的发电效率与可靠性。光伏行业近几年的快速发展为封装材料带来了巨大的市场机会,为了实现平价上网的终极目标,光伏行业要求封装材料持续提高性能并降低成本。 封装对于光伏电池性能尤为重要。由于太阳能电池对氧气、水极为敏感,容易产生化学反应而导致老化失灵,因此太阳能电池在进行实际应用前,需要对其进行保护性封装,最终形成电池组件。目前太阳能电池的封装技术主要分为玻璃封装(刚性封装)和非玻璃封装(柔性封装)。

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

光伏封装材料生产项目投资分析报告

光伏封装材料生产项目投资分析报告 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “光伏封装材料生产项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx公司(盖章) xxx年xx月xx日

项目概要 近年来,我国光伏产业加快发展,充分利用自身产业配套及技术成本 等优势,不断获得国际竞争先机。在“十三五”期间,使用光伏材料的光 伏发电年平均新增装机容量有望达到2000万千瓦,累计新增装机容量预计 可达1.5亿千瓦。 我国先伏产业规模持续扩大,行业景气度有望上行。截止到2015年底,我国太阳能先伏发电累计并网容量达到41.58GW,同比增长67.3%,成为全 球先伏发电装机容量最大的国家。其中,先伏电站37.12GW,分布式 6.06GW。2015年新增装机容量15.13GW,创历史新高。2016年前3季度, 我国太阳能新增装机容量达22.54GW,预计2016年中国先伏新增装机容量 有望超过25GW,按照国家能源局的太阳能“十三五“发展规划,预测到 2020年底,太阳能发电装机容量达到1.6亿千瓦,则“十三五”期间中国 每年年均新增装机容量超过20GW。光伏行业景气度有望持续上行。 该光伏封装材料项目计划总投资8836.13万元,其中:固定资产 投资6058.64万元,占项目总投资的68.57%;流动资金2777.49万元,占项目总投资的31.43%。 达产年营业收入20792.00万元,总成本费用16273.75万元,税 金及附加156.45万元,利润总额4518.25万元,利税总额5297.91万元,税后净利润3388.69万元,达产年纳税总额1909.22万元;达产

光伏组件材料清单

https://www.doczj.com/doc/237600048.html, 光伏组件材料清单 I hereby affirm that the information provided on this form is true and accurate. Manufacturer Signature _________________ Date __________________ Inspector remark ________________________________________________ Inspector Signature_____________________ Date __________________ OEM 组件工厂名称 组件数量 504pcs 组件型号 230P 序号 材料名称及规格型号 ZG-CELLS 要求材料 实际材料 1 电池片生产厂家 合格供应商 2 电池片型号 多晶156*156(整柜外观一致) 3 EVA 厂家及型号 福斯特 F806 / 尚美 / 德斯泰 / 飞宇 4 组件固定胶带厂家及规格型号 众诚 5 背板厂家及型号 韩国LG / 东洋铝业 W250 6 钢化玻璃厂家及规格尺寸 tolerance 合格供应商 / 1644*986 *3.2 mm 7 汇流涂锡带厂家及规格型号 With lead or lead free 泰州大为/昆明三利特 8 互联涂锡带厂家及规格型号 泰州大为/昆明三利特 9 密封硅胶厂家及规格型号 可赛新1527/东辰 8258 / 道康宁7091 10 接线盒厂家及规格型号 慈溪天佑 PV-TY709 11 接线盒电缆线厂家及规格型号 PV1-F 1*4.0mm 2 (TUV) 12 接线盒电缆线长度 900mm 13 接线盒二极管厂家及规格型号 10SQ050 14 连接器厂家及规格型号 天佑 701-2 15 助焊剂厂家及规格型号 无锡朝日 16 铝框厂家及规格型号 合格供应商 符合设计要求 17 铝框尺寸 1650*992*50*35mm 18 标贴厂家及材质 ZG-CELLS/白色PET 材质 19 电池片清洗液厂家及规格型号 含量≥99.7%

相关主题
文本预览
相关文档 最新文档