当前位置:文档之家› 复变函数第六章

复变函数第六章

复变函数第二章标准答案

复变函数第二章答案

————————————————————————————————作者:————————————————————————————————日期:

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数习题解答(第6章)

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ] 7.从 Ceiz /√zdz出发,其中C是如图所示之周线(√z沿正实轴取正值),证明:(0, +)cosx/√xdx= (0, +)sinx/√xdx=√(/2). 【解】| C(R)eiz /√zdz| C(R)| eiz |/R1/2 ds = [0,/2]| ei(cos+isin) |/R1/2 ·R d Ri = [0,/2]| e Rsin |R1/2 d

R R1/2 [0,/2]e Rsin d. 由sin2/([0,/2] ),故R1/2 [0,/2]e Rsin d R1/2 [0,/2]e(2R/) d C r ri = (/(2R1/2 ))(1–e R )/(2R1/2

所以,| C(R)eiz /√zdz|0 (asR+).rR而由| C(r)eiz /√zdz|(/(2r1/2 ))(1–e r ) 知| C(r)eiz /√zdz|0 (asr0+ ). 当r0+ ,R+时, [r,R]eiz /√zdz= [r,R]eix /√xdx= [r,R](cosx+isinx)/√xdx

(0, +)cosx/√xdx+i (0, +)sinx/√xdx. [ri,Ri]eiz /√zdz= [r,R]ei(iy) /√(iy)idy= [r,R]e y ei/4 /√ydy. = (1 +i)/√2 · [r,R]e y /√ydy= 2(1 +i)/√2 · [√r,√R]e u^2 du (1 +i)√2 · (0, +)e u^2 du= (1 +i)√2 ·√/2 = (1 +i)√(/2).由Cauchy积分定理, Ceiz

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数第五章留数学习方法指导

第五章 留数 留数(Residue )理论是复积分理论和复级数理论相结合的产物,它既是复积分问题的延续,又是复级数应用的一种体现,它对复变函数论本身以及实际应用都有着重要的作用.例如,它能给复积分的计算提供一种有效的方法,能为解析函数的零点和极点的分布状况的研究提供一种有效的工具.另外,它还能为数学分析中一些复杂实积分的计算提供有效地帮助. 本章,我们首先引进孤立奇点处留数的定义,利用洛朗展式建立留数计算的一般方法——洛朗展式法,以及各类孤立奇点处留数计算的更细致的方法.在此基础上,再建立反映复变函数沿封闭曲线积分与留数之间密切关系的留数定理,从而有效地解决“大范围”积分计算的问题.其次,介绍留数定理的两个方面的应用.一方面建立利用留数定理计算数学分析中某些定积分和反常积分的计算方法,另一方面建立讨论区域内解析函数的零点和极点分布状况的有效方法,即幅角原理与儒歇定理. 一.学习的基本要求 1.掌握函数在其孤立奇点处的留数的概念以及函数在孤立奇点处的留数计算的一般方法,即洛朗展式法.注意函数在有限孤立奇点处的留数和孤立奇点∞处的留数在定义方面的差异以及罗郎展式法方面的差异.并能熟练地运用洛朗展式法求函数在其孤立奇点处的留数. 2.熟练掌握函数在各类有限孤立奇点处的留数的具体计算方法以及孤立奇点∞处留数的的两种具体计算方法: 洛朗展式法: 1Res ()z f z β-=∞ =-,其中1β-为()f z 在∞处的洛朗展式中1z 的系数. 化为有限点处的留数:2011Res ()Res ()z z f z f z z =∞==-. 3.了解有限可去奇点处的留数与可去奇点∞处的留数的差异,理解为什么函数在可去奇点∞处的留数一般不一定为零? 4.掌握留数定理以及含∞的留数定理(即留数定理的推广),并能熟练地运用它们计算函

(完整版)复变函数习题答案第5章习题详解

第五章习题详解 1. 下列函数有些什么奇点?如果是极点,指出它的级: 1) ()2211 +z z 解: 2) 31z z sin 3) 1123+--z z z 4) ()z z lz 1+ 5) ()()z e z z π++112 6) 11-z e 7) () 112+z e z 8) n n z z +12,n 为正整数 9) 21z sin 2. 求证:如果0z 是()z f 的()1>m m 级零点,那么0z 是()z f '的1-m 级零点。 3. 验证:2i z π= 是chz 的一级零点。 4. 0=z 是函数()22--+z shz z sin 的几级极点?

5. 如果()z f 和()z g 是以0z 为零点的两个不恒等于零的解析函数,那么()()()() z g z f z g z f z z z z ''lim lim 00→→=(或两端均为∞) 6. 设函数()z ?与()z ψ分别以a z =为m 级与n 级极点(或零点),那么下列三个函数在a z =处各有什 么性质: 1) () ()z z ψ?; 2) ()()z z ψ?; 3) ()()z z ψ?+; 7. 函数()() 211-=z z z f 在1=z 处有一个二级极点;这个函数又有下列洛朗展开式:() ()()()345211111111-+---+=-z z z z z Λ,11>-z ,所以“1=z 又是()z f 的本性奇点”;又其中不含()1 1--z 幂,因此()[]01=,Re z f s 。这些说法对吗? 8. 求下列各函数()z f 在有限奇点处的留数: 1) z z z 212-+ 2) 4 21z e z - 3) ()32411++z z 4) z z cos

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 Θx>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数论》第六章

第六章 留数理论及应用 第一节 留数 1、留数定理: 设函数f (z )在点0z 解析。作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分 ? C dz z f )( 等于零。 设函数f (z )在区域R z z <-<||00内解析。选取r ,使0

数。 注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f 定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有: ),,(Res 2)(1 k n k C z f i dz z f ∑? ==π 这里沿C 的积分按关于区域D 的正向取。 证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。从D 中除去以这些k γ为边界的闭圆盘的一个区域G ,其边界是C 以及k γ, 在G 及其边界所组成的闭区域G 上,f (z )解析。因此根据柯西定理, ,)()(1 ∑?? ==n k C k dz z f dz z f γ 这里沿C 的积分按关于区域D 的正向取的,沿k γ的积分按反时针方向取的。根据留数的定义,得定理的结论成立。 2、留数的计算: 本节讲述几种常见的情形下,如何计算留数。 首先考虑一阶极点的情形。设0z 是f (z )的一个一阶极点。因此在去掉中心0z 的某一圆盘内(0z z ≠), ),(1 )(0 z z z z f ?-= 其中)(z ?在这个圆盘内包括0z z =解析,其泰勒级数展式是:

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 § 1■留数 1.(定理6.1柯西留数定理): 2.(定理6.2):设a为f(z)的m阶极点, 其中在点a解析,,则 3. (推论6.3):设a为f(z)的一阶极点, 则 4. (推论6.4):设a为f(z)的二阶极点则 5. 本质奇点处的留数:可以利用洛朗展式 6. 无穷远点的留数: 即,等于f(z)在点的洛朗展式中这一项系数的反号 7. (定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 &计算留数的另一公式:

§ 2■用留数定理计算实积分 型积分一引入 注:注意偶函数 型积分 1.(引理6.1大弧引理):上 2.(定理6.7)设为有理分式,其中 为互质多项式,且符合条件: (1)n-m> 2; (2)Q(z)没有实零点 于是有 注: 可记为 型积分 3.(引理6.2若尔当引理):设函数g(z)沿半圆周充分大上连续,且 在上一致成立。则 4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:

(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成: ——及—— 四■计算积分路径上有奇点的积分 5.(引理 6.3小弧引理): 于上一致成立,则有 五■杂例 六■应用多值函数的积分 § 3■辐角原理及其应用 即为:求解析函数零点个数 1■对数留数: 2.(引理6.4):( 1)设a为f(z)的n阶零点,贝U a必为函数------ 的一阶极点,并且 (2)设b为f(z)的m阶极点,贝U b必为函数--- 的一阶极点,并且 3. (定理6.9对数留数定理):设C是一条周线,f(z)满足条件:

复变函数与积分变换第五章留数测验题与答案

第五章 留 数 一、选择题: 1.函数 3 2cot -πz z 在2=-i z 内的奇点个数为 ( ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( ) (A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数 z z e x sin 14 2 -的m 级极点,那么=m ( ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数1 1 sin )1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点 5.∞=z 是函数2 3 23z z z ++的( ) (A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞ == )(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,) ([ Re k z z f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 7.设a z =为解析函数)(z f 的m 级零点,那么='],) () ([ Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )

(A ) 2 1)(z e z f z -= (B )z z z z f 1 sin )(-= (C )z z z z f cos sin )(+= (D) z e z f z 1 11)(--= 9.下列命题中,正确的是( ) (A ) 设)() ()(0z z z z f m ?--=,)(z ?在0z 点解析,m 为自然数,则0z 为 )(z f 的m 级极点. (B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若 0)(=?c dz z f ,则)(z f 在c 内无奇点 10. =∞],2cos [Re 3 z i z s ( ) (A )3 2- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 1 2 i e z s i z ( ) (A )i +- 61 (B )i +-65 (C )i +61 (D )i +6 5 12.下列命题中,不正确的是( ) (A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则) ()(],)() ([Re 000z Q z P z z Q z P s '= (C )若 0z 为 )(z f 的m 级极点,m n ≥为自然数,则

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

复变函数与积分变换第六章测验题与答案

第六章 共形映射 一、选择题: 1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( ) (A )21< z (B )211<+z (C )21>z (D )2 11>+z 2.映射i z i z w +-= 3在i z 20=处的旋转角为( ) (A )0 (B ) 2 π (C )π (D )2 π - 3.映射2 iz e w =在点i z =0处的伸缩率为( ) (A )1 (B )2 (C)1-e (D )e 4.在映射i e iz w 4 π +=下,区域0)Im( w (B )22)Re(->w (C )22)Im(> z (D )2 2 )Im(->w 5.下列命题中,正确的是( ) (A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43 +=在0=z 处的伸缩率为零 (C ) 若)(1z f w =与)(2z f w =是同时把单位圆1w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(2 2 =-+-y x 的对称点是( )

(A )i +6 (B )i +4 (C )i +-2 (D )i 7.函数i z i z w +-=33将角形域3arg 0π<w (C ) 0)Im(>w (D )0)Im(z 映射为( ) (A )ππ <<- w arg 2 (B ) 0arg 2 <<- w π (C ) ππ <z 映射成圆域2