当前位置:文档之家› 手动三位四通换向阀设计(图纸)

手动三位四通换向阀设计(图纸)

手动三位四通换向阀设计(图纸)
手动三位四通换向阀设计(图纸)

换向阀图形符号

换向阀图形符号(摘自GB/T786.1-1993)

追朔电磁阀的发展史,到目前为止,国内外的电磁阀从原理上分为三大类(即:直动式、分步直动式、先导式),而从阀瓣结构和材料上的不同与原理上的区别又分为六个分支小类(直动膜片结构、分步膜片结构、先导式膜片结构、直动活塞结构、分步活塞结构、先导活塞结构) 。 (一)、直动式电磁阀 原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧力把关闭件压在阀座上,阀门关闭。 特点:在真空、负压、零压时能正常工作,但一般通径不超过25mm。 (二)、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口压差≤0.05Mpa,通电时,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。 当入口与出口压差>0.05Mpa,通电时,电磁力先打开先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀和主阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可靠工作,但功率较大,要求竖直安装。 (三)、先导式电磁阀 原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速进入上腔室在关阀件周围形成下低上高的压差,推动关闭件向下移动,关闭阀门。

特点:流体压力范围上限很高,但必须满足流体压差条件 电磁阀包括(线圈、磁铁、顶杆)。 当线圈接通电流,便产生了磁性,跟磁铁相互吸引,磁铁就会拉动顶杆。关闭电源,磁铁和顶杆就复位了,这样电磁阀就完成了作功过程。这就是电磁阀的工作原理。 电磁阀一般用于液压系统,来关闭和开通油路。 实际上,根据流过介质的温度,压力等情况,比如管道有压力和自流状态无压力。电磁阀的工作原理是不同的。 比如在自流状态下需要零压启动的,就是通电后,线圈整个把闸体吸起来。 而有压力状态的电磁阀,则是线圈通电后吸出插在闸体上的一个销子,用流体自身的压力把闸体顶起来。 这两种方式的不同之处是,自流状态的电磁阀,因为线圈要吸起整个闸体,所以体积较大 而带压状态的电磁阀,只需要吸起销子,所以体积可以做的比较小。

四通阀设计指导书

四通阀设计指导书 一、总述 1、用途 这份四通阀设计指导书,涉及到所有四通阀的分类、四通阀的选型、设计标准、安装规范,曾出现的社会问题,保证四通阀和系统的稳定可靠性。 2、参考资料及标准 2.1参考资料 四通阀厂家华鹭、三花相关技术资料 2.2参考标准 1、海尔标准: Q/HR 0503 044-2003空调器用四通电磁换向阀 2、性能标准: GB/T 7725-2004房间空气调节器 GB/T 17758-1999单元式空气调节机 GB 4706.1-1998 家用和类似用途电器的安全第一部分 通用要求 GB 4706.32-2004 家用和类似用途电器的安全热泵、空调 器和除湿机的特殊要求

二、设计步骤 1、四通阀基本原理及性能指标

高压气体进入毛细管①后进入活塞腔⑤,另一方面,活塞腔④的气体排出,由于活塞两端存在压差,活塞及主滑阀⑥右移,使E、S接管相通,D、C接管相通,于是形成制冷循环如图三。 当电磁线圈处于通电状态,如图二,先导滑阀②在电磁线圈产生的磁力作用下克服压缩弹簧③的张力而左移,高压气体进入毛细管①后进入活塞腔④,另一方面,活塞腔⑤的气体排出,由于活塞两端存在压差,活塞及主滑阀⑥左移,使S、C接管相通,D、E接管相通,于是形成制热循环。如图四。 1.2四通阀性能指标

2、 产 品选型 2.1 规格选型 2.2 产品主要结构及材料选择要求 2.3 四通阀在系统中使用 2. 3.1安装位置要求 2.3.1.1安装时四通阀主体处于水平状态,见图1;

2.3.2配管设计要求 2.3.2.1配管时不要使四通阀主体、接管与压缩机发生共振 2.3.2.2对于5匹以上空调机使用的四通阀,如果配管设计不当,可能会使系统产生液压冲击而造成系统或四通阀损坏,设计时请特别注意(四通阀D管应高于 C、E管或者储液罐三者之一,参考图7)。 2.3.2.3压缩机的排气口到四通阀D接管之间应安装消音器。 定压差,如果先换向再启动压缩机则可能会造成换向在中间卡住现象)

两位四通换向阀

两位四通换向阀 国建材行业利润增幅超过4%,经济运行质量继续提高,产业结构逐渐优化,支撑条件继续改善。 结构优化带来产销两旺 国家发改委在新闻发布会上公布:前几个月,我国2个主要工业行业的规模产业全部实现盈利,建材、冶金、机械等六个行业的利润增幅都超过了4%。27年一季度,我国建材行业开局良好,产销两旺,显示出淡季不淡的良好势头。进入四五月份后,随着天气转暖,建材行业产值继续攀升。根据国家统计局日前公布的数据,27年月~4月我国共生产水泥3599.3万吨,比去年同期增长了4.4%;生产平板玻璃5776.69万重量箱,比去年同期增长了5.6%。有关人士分析,水泥产值总量稳步提高呈现出来的新特点,反映出建材行业结构进一步趋于科学合理。从产品来看,行业结构不断优化。今年5月下旬,由发改委牵头的清理高耗能、高排放行业专项大检查的初步结果显示:水泥行业高耗能的湿法窑工艺大部分已经拆除或停产。新型干法水泥比重占到水泥产品比重的53%,比去年 液压阀门>>电磁换向阀>>电磁换向阀 产品名称:电磁换向阀 产品型号:D4-02-2B-AC-A01 产品口径:DN6 产品压力:31.5MPa 产品材质:铸铁、铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、不锈钢、304、304L、316、316L、铬钼钢、低温钢、钛合金钢等。工作压力1.0Mpa-50.0Mpa。工作温度:-196℃-650℃。连接方式:内螺纹、外螺纹、法兰、焊接、对焊、承插焊、卡套、卡箍。驱动方式:手动、气动、液动、电动。 产品详细信息 电磁换向阀D4-02-2B-AC-A01特点 1、电磁换向阀D4-02-2B-AC-A01安装面符合ISO4401、CETOP、DIN24340、NFPA规格,互通性强。 2、电磁换向阀D4-02-2B-AC-A01浸油式设计,具有缓冲、降低噪音、消除阀心与油封间磨擦及其所引起的漏油问题,增加使用寿命。 3、电磁换向阀D4-02-2B-AC-A01同规格的阀心、线圈、白铁管可更换,安装容易,降低成本。 4、电磁换向阀D4-02-2B-AC-A01高压可测试至1500V/min,线圈绝缘H级,绝缘电阻超过100M欧,耐温180度,通过欧洲CE认证。 5、电磁换向阀D4-02-2B-AC-A01阀体采用树脂砂模锻造,并经过超音波清洗机清洗,杜绝异物残留,可靠性高。 6、电磁换向阀D4-02-2B-AC-A01白铁管采用特殊设备分三段焊接而成,防止剩磁影响,强度大,可耐高压。 电磁换向阀D4-02-2B-AC-A01型号说明 D4-02-2B2L-A15- 型号说明口径尺寸阀心机能 线圈型式频率指示灯阀位数弹簧配置阀心型式电磁铁位置 D4:接线盒型02(6通径) 2 B:单头二位 (弹簧复位) 2,3,4,5, 6,7,8,9, 无:标准型交流AC A1:AC110V 5:50HZ无:标准带灯

四通换向阀的结构和工作原理

四通换向阀的结构与工作原理: 1、四通换向阀的构成 四通换向阀主要由四通气动换向阀(主阀)、电磁换向阀(控制阀)及毛细管组成。主阀内由滑块、活塞组成活动阀芯,主阀阀体两端有通孔可使两端的毛细管与阀体内空间相连通,滑块两端分别固定有活塞,活塞两边的空间可通过活塞上的排气孔相通。控制阀由阀体和电磁线圈组成。阀体内有针型阀芯。主阀与控制阀之间有三根(或四根)毛细管相连,形成四通换向阀的整体。 四通换向阀的工作原理, 主阀的管口(4)连接于压缩机高压排气口,管口(2)连接于压缩机低压吸气口。(1)、(3)两个管口分别连接蒸发器的出气口和冷凝器的进气口。按图所示,(3)接冷凝器进气口,(1)接蒸发器出气口。 当电磁阀不通电时,系统工作于制冷状态,控制阀因弹簧1的作用,阀心移至左端,处于释放状态,此时毛细管E与C连通。因为E接在低压吸气管上,所以毛细管C及主阀内左端空间均为低压,高压气体由主阀管口4进入主阀,经活塞I的排气孔使主阀内的右端空间成为高压,推动主阀阀芯移至左端,管口2与管口1连通而管口4与管口3连通,系统形成制冷循环状态。(如图所示) 当电磁阀通电时,电磁力吸动控制阀阀芯向右移动,毛细管E与D相连。主阀内右端空间成为低压,高压气体经活塞II的排气孔进入主阀内左端空间,推动阀芯移向右端,管口2与管口3连通而管口4与管口1连通,蒸发器、冷凝器的功能对换,系统转换成制热循环状态。

3、四通换向阀应用中的注意事项! a)四通换向阀的各接口焊接应严密、可靠,避免出现假焊、虚焊等不良现象; b)四通换向阀不应出现与其它管路、部件碰撞、摩擦现象,以避免造成噪音及部件损坏等后果 c)四通换向阀线圈应固定牢固,避免出现松动现象,影响四通阀吸合的可靠性 d)四通换向阀在焊接时必须采取有效的降温措施,以防置在焊接过程中因高温引起阀芯变形,造成部件报废; e)使用中四通换向阀的四根管路应为2热2凉,如出现温差过小或无温差,说明四通换向阀高、低压已经串气,应及时更换四通换向阀。 四根毛细管连接主阀与控制阀的四通换向阀原理介绍 主阀与控制阀有四根毛细管连接的四通换向阀,与三根毛细管连接的四通换向阀相比较,控制阀下边的三根毛细管连接方法相同,但在控制阀上增加了一根毛细管连接至主阀的高压进气管4,多了一条高压通道。这种四通换向阀的控制阀与主阀在结构和动作原理上基本一致,即:控制阀本身也是一个四通换相阀。 当系统处于制冷状态时,电磁线圈不通电,控制阀释放,阀芯因弹簧力作用移至左端,毛细管E与C连通,B与D连通,主阀管口4 内的高压通过毛细管B、D进入主阀内右端空间,主阀内左端空间经毛细管C、E连至低压出气口2,主阀内部压力为右高左低,活塞带动滑块移向左端,管口2与1连通,4与3连通;

插装阀原理图

1插装阀概述二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。 1.1二通插装阀的特点 二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。 1.2二通插装阀的组成 二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。图1是二通插装阀的典型结构。 图1二通插装阀的典型结构 控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。控制盖板内有控制油通道,配有一个或多个阻尼螺塞。通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a(见图2)。由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不

用。为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。 图2盖板控制油孔 先导控制元件称作先导阀,是小通径的电磁换向阀。块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。 插装元件由阀芯、阀套、弹簧以及密封件组成(图3)。每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B 口。阀芯开启,A口和B口沟通;阀芯闭合,A口和B口之间中断。因而插装阀的功能等同于2位2通阀。故称二通插装阀,简称插装阀。 图3插装元件 根据用途不同分为方向阀组件、压力阀组件和流量阀组件。同一通径的三种组件安装尺寸相同,但阀芯的结构形式和阀套座直径不同。三种组件均有两个主油口A和B、一个控制口x,如图4所示。 a)方向阀组件b)压力阀组件c)流量阀组件 1-阀套2-密封件3-阀芯4-弹簧5-盖板6-阻尼孔7-阀芯行程调节杆 图3-89插装阀基本组件 2插装阀主要组合与功能 2.1插装方向控制阀 插装阀可以组合成各式方向控制阀。 1作单向阀

换向阀中位机能详解

换向阀中位机能 B P T 一、O型符号为: 结构特点:其中P表示进油口,T表示回油口,A、B表示工作油口。结构特点:在中位时,各油口全封闭,油不 流通。机能特点:1、工作装置的进、回油口都封闭,工作机构可以固定在任何位置静止不动,即使有外力作用也不能使工作机构移动或转动,因而不能用于带手摇的机构。2、从停止到启动比较平稳,因为工作机构回油腔中充满油液,可以起缓冲作用,当压力油推动工作机构开始运动时,因油阻力的影响而使其速度不会太快,制动时运动惯性引起液压冲击较大。3、油泵不能卸载。4、换向位置精度高。 AB 二、H型符号为 结构特点:在中位时,各油口全开,系统没有油压。机能特点:1、进油口P、回油口T与工作油口A、B全部连通,使工作机构成浮动状态,可在外力作用下运动,能用于带手摇的机构。2、液压泵可以卸荷。3、从停止到启动有冲击。因为工作机构停止时回油腔的油液已流回油箱,没有油液起缓冲作用。制动时油口互通,故制动较O型平稳。4、对于单杆双作用油缸,由于活塞两边有效作用面积不等,因而用这种机能的滑阀不能完全保证活塞处于停止状态。 AB PT 三、M型符号为 结构特点:在中位时,工作油口A、B关闭,进油口P、回油口T直接相连。机能特点:1、由于工作油口A、B封闭,工作机构可以保持静止。2、液压泵可以卸荷。3、不能用于带手摇装置的机构。4、从停止到启动比较平稳。5、制动时运动惯性引起液压冲击较大。6、可用于油泵卸荷而液压缸锁紧的液压回路中。

AB PT 四、Y型符号为 结构特点:在中位时,进油口P关闭,工作油口A、B与回油口T相通。机能特点:1、因为工作油口A、B与回油口T相通,工作机构处于浮动状态,可随外力的作用而运动,能用于带手摇的机构。2、从停止到启动有些冲击,从静止到启动时的冲击、制动性能0型与H型之间。3、油泵不能卸荷。 AB PT 五、P型符号为 结构特点:在中位时,回油口T关闭,进油口P与工作油口A、B相通。机能特点:1、对于直径相等的双杆双作用油缸,活塞两端所受的液压力彼此平衡,工作机构可以停止不动。也可以用于带手摇装置的机构。但是对于单杆或直径不等的双杆双作用油缸,工作机构不能处于静止状态而组成差动回路。2、从停止到启动比较平稳,制动时缸两腔均通压力油故制动平稳。3、油泵不能卸荷。4、换向位置变动比H型的小,应用广泛。 AB PT 六、N型符号为 结构特点:在中位时,进油口P和工作油口B关闭,工作油口A和回油口T相通。机能特点:1、油泵不能卸荷。2、在外力作用下能单方向移动。

实验3:三位四通电磁换向顺序回路

实验三:顺序动作回路实验 一、实验目的 1.了解电路控制液压回路工作原理; 2.掌握接近开关的使用方法与职能符号及其运用; 3.以换向回路、三位四通电磁换向阀卸荷回路、平衡 回路为基础,合并为一个液压传动系统顺序动作回路组装 二、实验仪器 1.液压传动综合教学实验台1台 2.换向阀(阀芯机能“O”)2只 3.液压缸2只 4.接近开关及其支架4只 5.溢流阀1只 6.四通油路过渡板3只 7.压力表(量程10MPa)1只 8.油泵1台 9.油管若干

三、实验台结构与实验原理 2 Y4 制图:吴德旺 四、实验步骤: 1.根据实验内容,设计实验所需的回路,所设计的回 路必须经过认真的检查,确保正确无误。 2.按照检查无误后的回路要求,选择所需的液压元 件,并且检查其性能的完好性。 3.将检查好的液压元件安装在插件板适当的位置,通 过快速接头和软管按照回路要求,把各个元件连接起来(包括压力表),(注:并联油路可用多孔油路板); 4.确认安装连接正确后,旋松泵出口溢流阀,然后启 动油泵,按要求调压(3-5MPa); 5.将电磁阀及行程开关与控制线连接; 6.根据回路要求,调节液压缸的速度,必要时可以加 装流量阀进行调节。使液压缸活塞杆的速度适中。

7.配合继电开关,用接近开关自动实现左缸先置、右 缸后置回路。 8.实验完毕后,应先旋松溢流阀手柄,然后停止油泵 工作。确认回路中的压力为零后,取下连接油管和元件,归类放入规定的抽屉或规定地方。 五、实验操作注意事项: 1.因实验元器件结构和用材的特殊性,在实验的过程 中务必注意稳拿轻放防止碰撞;在回路实验过程中确认安装稳妥无误才能进行加压实验。 2.做实验之前必须熟悉元器件的工作原理和动作条 件,掌握快速组合的方法,绝对禁止强行拆卸,不要强行旋转各种元器件的手柄,以免造成人为损坏。 3.系统溢流阀做安全阀使用,不得随意调整。 4.实验中的行程开关为感应式,开关头部距离感应金 属约4mm之内即可感应信号。 5.严禁带负载启动(要将溢流阀逆时针旋松动),以 免造成安全事故。 6.学生做实验时,系统压力不得超过额定压力 6.3MPa。 7.实验之前一定要了解本实验系统的操作规程,在老

三位四通阀

安徽理工大学课程设计 QY-20B型汽车起重机液压系统及三位题目 四通换向阀的设计 学院机械工程学院 专业机械设计制造及其自动化 班级机设09级6班 姓名 指导教师赵连春 2013 年 1 月日

课程设计任务书 学生姓名:专业班级:机设09级6班 指导教师:赵连春学号: 2009302277 题目: QY20B汽车起重机液压系统及齿轮泵的设计 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)进行工况分析 (2)确定液压系统的主要参数 (3)制定基本方案和绘制液压系统图 (4)液压元件的选择和齿轮泵的设计 (5)液压系统性能验算 (6)参考文献(不少于5篇) 指导教师签名: 2013 年 1 月日 系主任(或责任教师)签名: 2013 年 1 月日

摘要 液压系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推动压力油。通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、不同方向的动作。完成各种设备不同的动作需要。液压系统已经在各个工业部门及农林牧渔等许多部门得到愈来愈广泛的应用,从而愈新进的设备,其应用的液压系统的部分就愈多,所以进行一个液压系统的设计是很有必要,设计的过程能复习以前学过的专业知识,且能发现以前未发现的问题。

目录 1.概论......................................... 错误!未定义书签。 2.QY-20B液压系统分析与设计..................... 错误!未定义书签。 2.1 QY-20B的工况分析 ........................ 错误!未定义书签。 2.2 QY20B汽车起重机液压系统各分支回路拟定... 错误!未定义书签。 2.2.1液压控制部分结构及功能分析............ 错误!未定义书签。 2.2.2液压系统各回路功能要求分析及拟定....... 错误!未定义书签。 2.3 QY20B汽车起重机液压系统原理总成......... 错误!未定义书签。3液压系统设计及计算............................ 错误!未定义书签。 3.1工作机构参数和液压系统参数............... 错误!未定义书签。 3.2液压元件的设计计算与选择................. 错误!未定义书签。 3.2.1液压执行元件的选择计算................ 错误!未定义书签。 3.2.2液压泵的选择计算...................... 错误!未定义书签。 3.2.2泵1.1的型号计算与选择................ 错误!未定义书签。 3.2.2泵1.2的型号计算与选择................. 错误!未定义书签。 3.2.2泵1.3的型号计算与选择................ 错误!未定义书签。 3.2.3液压控制阀的选择...................... 错误!未定义书签。 3.2.4液压辅助元件的选择.................... 错误!未定义书签。 3.2.5系统主要性能验算...................... 错误!未定义书签。4变幅液压缸设计及计算......................... 错误!未定义书签。 4.1变幅缸的选型及其主要尺寸参数的确定...... 错误!未定义书签。 4.2活塞和活塞杆组件........................ 错误!未定义书签。5泵站设计及计算 .............................. 错误!未定义书签。 5.1液压泵站的组成及类型选择................. 错误!未定义书签。 5.2液压油箱设计............................. 错误!未定义书签。6齿轮泵1.3的设计............................. 错误!未定义书签。

两位四通电磁换向阀实训

4/2电磁换向阀控制的单、连续循环 一、 实训目的: 通过本实训,使学生能读懂本次实训的液压原理图;熟悉液压实训台使用。了解两位四通电磁换向阀用于控制油缸换向时的特点,实现单循环、连续循环的不同方法(压力继电器、接近开关等),调节油缸伸出速度的不同方法等,构造电气液压回路的简单过程等。掌握电气液压初步知识。 二、 预习要点: 1、认真复习液压传动基础知识 2、认真复习控制电路的有关知识。 3、认真复习方向控制阀技术的基础知识。 4、认真复习传感器的有关知识。 三、 实训器材: 力士乐公司生产液压实训台 四、 实训要求: 利用一个两位四通电磁换向阀,在30bar 工作压力下,控制一个伸出速度可调的液压缸,并选择其它必须的液压元件,构成液压回路和相关的电气控制回路,分别实现: 单循环:按下按钮油缸伸出,到位后自动退回; 连续循环:按下按钮,油缸自动完成多循环伸出和退回,直至按下停止按钮。 五、 液压原理图和电气原理图:(参考) +

连续循环 六、实训步骤: 1、根据液压原理图正确可靠连接各元件; 2、根据电气原理图正确可靠连接各元件; 3、接近开关位置安装正确,该有信号时应有信号,不该有信号时应无信号, 并注意不要与油缸活塞杆发生干涉。 4、再次检查管路是否被可靠连接; 5、把溢流阀、单向节流阀调节致全开位置; 6、开泵后调整溢流阀至工作压力30bar; 7、调整节流阀至合适位置; 8、如果使用压力开关,将其调整至正确发讯压力。 9、按动循环开始开关完成实训要求; 10、连续循环实训时完成实训要求后按循环停止按钮。 七、注意事项: 1、安全:元件小心搬运、安装应可靠,管路连接应可靠到位;选择的液压 元件一定与实训台固定。油缸动作时不能接触活塞杆。 2、元件一定要选择正确。 3、换向阀P口接压力油,T口接回油,不能互换。 4、单向节流阀方向要接对。 5、注意实训压力的调节。 6、一定要在压力表没有指示并关泵后再插拔管路。 7、实训结束后,油缸活塞杆应返回原始位置。 8、复原实训台,并保持实训室卫生、整洁。 八、思考题: 1、两位四通电磁换向阀用于控制油缸换向时的特点? 2、实现单循环、连续循环的不同方法?

三位四通阀的原理

三位四通阀的原理、分类(附图) 液压传动中用来控制液体压力﹑流量和方向的元件。其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通﹑断和流向的称为方向控制阀。压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。 (1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。(2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。 流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。(5)分流集流阀:兼具分流阀和集流阀两种功能。 方向控制阀按用途分为单向阀和换向阀。单向阀:只允许流体在管道中单向接通,反向即切断。换向阀:改变不同管路间的通﹑断关係﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。图为三位四通换向阀的工作原理。P 为供油口,O 为回油口,A ﹑B 是通向执行元件的输出口。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 换向阀是借助于滑阀和阀体之间的相对运动,使与阀体相连的各油路实现液压油流的接通、切断和换向。换向阀的中位机能是指换向阀里的滑阀处在中间位置或原始位置时阀中各油口的连通形式,体现了换向阀的控制机能。采用不同形式的滑阀会直接影响执行元件的工作状况。因此,在进行工程机械液压系统设计时,必须根据该机械的工作特点选取合适的中位机能的换向阀。中位机能有O型、H型、X型、M型、Y 型、P型、J型、C型、K型,等多种形式。 一、O型符号为 其中P表示进油口,T表示回油口,A、B表示工作油口。结构特点:在中位时,各油口全封闭,油不流通。机能特点:1、工作装置的进、回油口都封闭,工作机构可以固定在任何位置静止不动,即使有外力作用也不能使工作机构移动或转动,因而不能用于带手摇的机构。2、从停止到启动比较平稳,因为工作机构回油腔中充满油液,可以起缓冲作用,当压力油推动工作机构开始运动时,因油阻力的影响而使其速度不会太快,制动时运动惯性引起液压冲击较大。3、油泵不能卸载。4、换向位置精度高。 二、H型符号为 结构特点:在中位时,各油口全开,系统没有油压。机能特点:1、进油口P、回油口T与工作油口A、B

四通换向阀的工作原理

四通换向阀的结构与工作原理 1、四通换向阀的构成 四通换向阀主要由四通气动换向阀(主阀)、电磁换向阀(控制阀)及毛细管组成。主阀内由滑块、活塞组成活动阀芯,主阀阀体两端有通孔可使两端的毛细管与阀体内空间相连通,滑块两端分别固定有活塞,活塞两边的空间可通过活塞上的排气孔相通。控制阀由阀体和电磁线圈组成。阀体内有针型阀芯。主阀与控制阀之间有三根(或四根)毛细管相连,形成四通换向阀的整体。 2、四通换向阀的工作原理, 主阀的管口(4)连接于压缩机高压排气口,管口(2)连接于压缩机低压吸气口。(1)、(3)两个管口分别连接蒸发器的出气口和冷凝器的进气口。按图所示,(3)接冷凝器进气口,(1)接蒸发器出气口。 当电磁阀不通电时,系统工作于制冷状态,控制阀因弹簧1的作用,阀心移至左端,处于释放状态,此时毛细管E与C连通。因为E接在低压吸气管上,所以毛细管C及主阀内左端空间均为低压,高压气体由主阀管口4进入主阀,经活塞I的排气孔使主阀内的右端空间成为高压,推动主阀阀芯移至左端,管口2与管口1连通而管口4与管口3连通,系统形成制冷循环状态。(如图所示) 当电磁阀通电时,电磁力吸动控制阀阀芯向右移动,毛细管E与D相连。主阀内右端空间成为低压,高压气体经活塞II的排气孔进入主阀内左端空间,推动阀芯移向右端,管口2与管口3连通而管口4与管口1连通,蒸发器、冷凝器的功能对换,系统转换成制热循环状态。 3、四通换向阀应用中的注意事项! a)四通换向阀的各接口焊接应严密、可靠,避免出现假焊、虚焊等不良现象; b)四通换向阀不应出现与其它管路、部件碰撞、摩擦现象,以避免造成噪音及部件损坏等后果 c)四通换向阀线圈应固定牢固,避免出现松动现象,影响四通阀吸合的可靠性 d)四通换向阀在焊接时必须采取有效的降温措施,以防置在焊接过程中因高温引起阀芯变形,造成部件报废; e)使用中四通换向阀的四根管路应为2热2凉,如出现温差过小或无温差,说明四通换向阀高、低压已经串气,应及时更换四通换向阀。 四根毛细管连接主阀与控制阀的四通换向阀原理介绍 主阀与控制阀有四根毛细管连接的四通换向阀,与三根毛细管连接的四通换向阀相比较,控制阀下边的三根毛细管连接方法相同,但在控制阀上增加了一根毛细管连接至主阀的高压进气管4,多了一条高压通道。这种四通换向阀的控制阀与主阀在结构和动作原理上基本一致,即:控制阀本身也是一个四通换相阀。 当系统处于制冷状态时,电磁线圈不通电,控制阀释放,阀芯因弹簧力作用移至左端,毛细管E与C连通,B与D连通,主阀管口4 内的高压通过毛细管B、D进入主阀内右端空间,主阀内左端空间经毛细管C、E连至低压出气口2,主阀内部压力为右高左低,活塞带动滑块移向左端,管口2与1连通,4与3连通; 当系统处于制热状态时,电磁线圈通电,电磁力的作用使控制阀阀芯移向右端,毛细管E 与D连通,B与C连通,主阀内左端成为高压而右端变成低压,阀芯被推向右端,管口2与3连通,4与1连通。

三位四通电磁阀

三位四通电磁阀 提高人们的节约意识,刺激更多的节约措施和节能产品进入市场,建立节约型社会指日可待。 跨区输电价格调研开始长江电力建言献策三峡电站电能销售合同的主体是华中、华东和南方电网公司,存在跨区域电能交易6月19日,由国家电监会价格与财务监管部主任邹逸桥率领的跨区域输电价格调 研组一行11人与长江电力公司负责电力市场营销的有关领导及工作人员进行了交流,并参观了三峡-葛洲坝梯级枢纽电站。按照国家电监会跨区域交易输电价格监管调研提纲的要求,长江电力提前对

一、技术参数: 型号2W160-10 2W160-15 2W200-20 2W250-25 2W350-35 2W400-40 2W500-50 符号 使用液体空气、水、油、瓦斯 动作方式直动式 型式常闭式 流量孔径mm 16 20 25 35 40 50 CV值 4.8 7.6 12 24 29 48 接管口径3/8″1/2″3/4″1″ 1 1/4″ 1 1/2″2″ 使用流体粘滞度20CST以下 使用压力**kg/cm2 水0.5 空气0~7 油0~7 最大耐压力kg/cm2 10 工作温度-5~80 使用电压范围±10% 本体材质黄铜 油封材质NBR,EPDM或VITON

二、技术参数: 型号2L170-10 2L170-15 2L170-20 2L200-25 2L300-35 2L300-40 符号 使用流体蒸汽、水、空气 动作方式引导体(先导式) 型式常闭式 流量孔径mm 17 25 30 50 CV值 4.8 12 20 接管口径3/8″1/2″3/4″1″ 1 1/4″ 1 1/2″2″使用流体粘滞度20CST以下 使用压力**kg/cm2 蒸汽、热空气、油0.5~15 蒸汽、热空气、油1~15 最大耐压力kg/cm2 20 工作温度-5~150℃ 使用电压范围±10% 本体材质黄铜 油封材质EPDM 聚四氟乙烯

REXROTH二位四通换向阀产品样本

二位四通换向阀产品样本 公司专业经销德国原装力士乐,在力士乐液压泵、液压阀、伺服及比例阀、放大板等产品具有很强的竞争优势,优势产品型号有、、、、、系列阀,、、系列柱塞泵,、液压马达,系列压力继电器伺服驱动器。 力士乐电磁换向阀是利用电磁铁推动阀芯来控制液流方向的。采用电磁换向阀可以使操作轻便,容易实现自动化操作,因此应用极广。电磁换向阀只是采用电磁铁来操纵滑阀阀芯运动,而阀芯的结构及型式可以是各种各样的,所以电磁滑阀可以是二位二通、二位三通、二位四通、三位四通和三位五通等多种型式。一般二位阀用一个电磁铁,三位阀需用两个电磁铁。 国际液压市埸一直处于世界领先的位置。力士乐换向阀 力士乐换向阀 换向座阀:,,,, 换向滑阀:,,,,,,,,,,,,,,, 力士乐压力阀 溢流阀:,,,,,,, 减压阀:,,,,,, 力士乐流量阀 节流阀: ,通径,流量约,。,通径,流量约,。 流量控制阀: ,通流量控制阀,(插装阀),通径。,通流量控制阀。, 流量控制阀(叠加板阀)。

力士乐比例阀 比例换向阀:,,,,,,,。 比例压力阀:比例溢流阀:,,,,,。比例减压阀:,,,。 比例流量阀:,,, 二位四通换向阀是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,并在阀体内或阀后喷入冷却水,将介质的温度降低,这种阀门称为减压减温阀。该阀的特点,是在进口压力不断变化的情况下,保持出口听压力和温度值在一定的范围内。减压阀按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。先导式减压阀当减压阀的输出压力较高或通径较大时,用调压弹簧直接调压,则弹簧刚度必然过大,流量变化时,输出压力波动较大,阀的结构尺寸也将增大。为了克服这些缺点,可采用先导式减压阀。先导式减压阀的工作原理与直动式的基本相同。 二位四通换向阀用在受压设备、容器或管路上,作为超压保护装置。当设备、容器或管路内的压力升高超过允许值时,阀门自动开启,继而全量排放,以防止设备、容器或管路内的压力继续升高;当压力降低到规定值时,阀门应自动及时关闭,从而保护设备、容器或管路的安全运行。安全阀可以由阀门进口的系统压力直接驱动,在这种情况下是由弹簧或重锤提供的机械载荷来克服作用在阀瓣下方的介质压力。它们还可以由一个机构来先导驱动,该机构通过释放或施加一个关闭力来使安全阀开启或关闭。因此,按照上述驱动模式将安全阀分为直接作用式和先导式。安全阀可以在整个开启高度范围或在相当大的开启高度范围内比例开启,也可能仅在一个微小的开启高度范围内比例开启,然后突然开启到全开位置。 二位四通换向阀是简易的流量控制阀,在定量泵液压系统中,节流阀和溢流阀配合,可组成三种节流调速系统,即进油路节流调速系统、回油路节流调速系统和旁路节流调速系统。节流阀没有流量负反馈功能,不能补偿由负载变化所造成的速度不稳定,一般仅用于负载变化不大或对速度稳定性要求不高的场合。对节流阀的性能要求是:流量调节范围大,流量一压差变化平滑;内泄漏量小,若有外泄漏油口,外泄漏量也要小;调节力矩小,动作灵敏。节流阀()的外形结构与截止阀并无区别,只是它们启闭件的形状有所不同。节流阀的启闭件大多为圆锥流线型,通过它改变通道截面积而达到调节流量和压力。 二位四通换向阀的主要参数是排量,这个排量决定于阀座的口径和阀瓣的开启高度,由开启高度不同,又分为微启式和全启式两种。微启式是指阀瓣的开启高度为阀座喉径的/~/。全启式是指阀瓣的开启高度为阀座喉径的/。目前大量生产的安全阀有弹簧式和杆式两大类。另外还有冲量式安全阀、先导式安全阀、安全切换阀、安全解压阀、静重式安全阀等。弹簧式安全阀主要依靠弹簧的作用力而工作,弹簧式安全阀中又有封闭和不封闭的,一般易燃、易爆或有毒的介质应选用封闭式,蒸汽或惰性气体等可以选用不封闭式,在弹簧式安全阀中还有带扳手和不带扳手的。 二位四通换向阀二位四通换向阀座有的和阀体是一个整体,有的是和阀体组装在一起的,它与设备连

三位四通换向阀中位机能

:广州市滨江中路362号 共1页,第1页三位四通换向阀中位机能 滑阀机能符号中位油口状况、特点 O 型 P、A、B、T 4口全封闭,液压泵不卸荷,液压缸 闭锁。工作机构回油腔中充满油液,可以缓冲, 从停止至启动比较平稳,制动时液压冲击较大。 可用于多个换向阀的并联工作 H 型4口全串通,活塞处于浮动状态,在外力作用下可移动(如手摇机构),泵卸荷。从停止到启动 有冲击。不能保证单杆双作用油缸的活塞停止。 Y 型P 口封闭,A、B、T 3口相通,活塞浮动在外力 作用下可移动,泵不卸荷。从停止至启动有冲击、 制动性能在O 与H 型之间。 K 型P、A、T 相通,B 口封闭,活塞处于闭锁状态, 泵卸荷。两个方向换向时性能不同。 M 型P、T 相通,A 与B 均封闭,活塞闭锁不动,泵卸 荷。不可用手摇装置,停止至启动较平衡,制动 时液压冲击较大,可多个并联工作 X 型4个油口因节流口而处于半开启状态,泵基本上 卸荷,但仍保持一定压力。避免换向冲击,换向 性能介于O 型与H 型之间 P 型P、A、B 相通,T 封闭;泵与缸两腔相通,可组 成差动回路。从停止至起动比较平稳。 J 型P 与A 封闭,B 与T 相通,活塞停止,但在外力 作用下可向一边移动,泵不卸荷 C 型P 与A 相通,B 与T 皆封闭,活塞处于停止位置。 油泵不卸荷。从停止至启动比较平稳,制动时有 较大冲击。 N 型P 和B 皆封闭,A 与T 相通,与J 型机能相似, 只是A 与B 互换了,功能也类似 U 型P 和T 都封闭,A 与B 相通,活塞浮动,在外力 作用下可移动,泵不卸荷。从停止至启动、制动 比较平衡 OP 型 中位时为O 型机能,右位时为Y 型机能 2013年6月28日

四通阀的结构及工作原理与维修

结构:四通阀不同于普通直动式电磁阀,它必须在一定压力下才能正常工作,四通阀由三个部分组成:先导阀,主阀和电磁线圈,电磁线圈可以拆卸,先导阀与主阀焊接成一体。当电磁阀线圈处于断电状态,如图一,先导滑阀在右侧压缩弹簧驱动下左移,高压气体进入毛细管①后进入右端活塞腔,另一方面,左端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀左移,使排气管(S管)与室外机接管(C管)相通,另两根接管相通,形成制冷循环。当电磁阀线圈处于通电状态,如图二,先导滑阀在电磁线圈产生的磁力作用下克服压缩弹簧的张力而右移,高压气体进入毛细管①后进入左端活塞腔,另一方面,右端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀右移,使排气管(S管)与室内机接管(E管)相通,另两根接管相通,形成制热循环。 中间位置,由四通阀结构不难发现,当主滑阀处于中间位置状态时,如上图所示,E、S、C三条接管相互通气,产生中间流量,此时,压缩机高压管内的冷媒可以直接流回低压管。设计中间流量的目的是当主滑阀处在中间位置时,能起到卸压的作用,使系统免受高压破坏。 四通换向的基本条件是活塞两端的压力差(F1—F2)必须大于摩擦阻力f,否则,四通阀将不会换向。换向所需的最低动作压力差是靠系统流量来保证的(图三所示)。当左右活塞腔的压力差大于摩擦阻力f时,四通阀换向开始,当主滑阀运动到中间位置时,四通阀的E、S、C三条接管相互导通,压缩机排出的冷媒从四通阀D接管直接经E、C接管流向S接管(压缩机回气口),使压力差快速降低,形成瞬时串气状态(中间流量状态)。此时,若压缩机的排气流量远大于四通阀的中间流量,便可以建立足够大的换向压力差而使四通阀换向到位;反过来,若压缩机的排气量小于四通阀的中间流量,则四通阀换向所需的最低动作压力差便不能建立,即F1-F2<f,四通阀不能继续换向而停在中间位置,形成串气。

四通阀结构

关于四通阀的结构、工作原理及故障判别 以及排除方法等的通知 各销售公司售后管理中心、办事处: 近期公司总部技术部门例行对旧件进行检查分析时,发现各地销售公司退回的旧(坏)四通阀仍有大部分的好件,皆属网点维修人员误判引起!给当时的维修增加了难度而且造成浪费人/物力的不良后果。 为了提高维修人员对四通阀故障判断的准确性,减少维修时的误判行为,现特将四通阀的结构和工作原理向维修人员做详细介绍,希望能得到帮助。请各地销售公司组织本辖区维修人员认真学习,使之尽快掌握该知识以便提高判断水平,最终杜绝误判的现象。有关四通阀结构、工作原理及故障判别等内容详见下面的分析。 一、四通阀的结构及工作原理 结构:四通阀由三个部分组成:先导阀,主阀和电磁线圈,电磁线圈可以拆卸,先导阀与主阀焊接成一体。 当电磁阀线圈处于断电状态,如图(a),先导滑阀在右侧压缩弹簧驱动下左移,高压气体进入毛细管①后进入右端活塞腔,另一方面,左端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀左移,使排气管(S管)与室外机接管(C管)相通,另两根接管相通,形成制冷循环。 当电磁阀线圈处于通电状态,如图(b),先导滑阀在电磁线圈产生的磁力作用下克服压缩弹簧的张力而右移,高压气体进入毛细管①后进入左端活塞腔,另一方面,右端活塞腔的气体排出,由于活塞两端存在压差,活塞及

主滑阀右移,使排气管(S管)与室内机接管(E管)相通,另两根接管相通,形成制热循环。 ◆结构特点 1、中间位置 由四通阀结构不难发现,当主滑阀处于中间位置状态时,如下图所示,E、S、C三条接管相互通气,产生中间流量,此时,压缩机高压管内的冷媒可以直接流回低压管。设计中间流量的目的是当主滑阀处在中间位置时,能起到卸压的作用,使系统免受高压破坏。 2、串气的形成 四通换向的基本条件是活塞两端的压力差(F1—F2)必须大于摩擦阻力f,否则,四通阀将不会换向。换向所需的最低动作压力差是靠系统流量来保证的(如上图所示)。当左右活塞腔的压力差大于摩擦阻力f时,四通阀换向开始,当主滑阀运动到中间位置时,四通阀的E、S、C三条接管相互导通,压缩机排出的冷媒从四通阀D接管直接经E、C接管流向S接管(压缩机回气口),使压力差快速降低,形成瞬时串气状态(中间流量状态)。 此时,若压缩机的排气流量远大于四通阀的中间流量,便可以建立足够大的换向压力差而使四通阀换向到位;反过来,若压缩机的排气量小于四通阀的中间流量,则四通阀换向所需的最低动作压力差便不能建立,即F1-F2<f,四通阀不能继续换向而停在中间位置,形成串气。 二、四通阀故障判别及排除方法 四通阀常见故障有串气、换向不良、泄漏等几种。根据过去的故障事例,汇总如下表,供维修时参考:

手动三位四通换向阀设计

手动三位四通换向阀设计(完整一套设计,有说明书:论文,图纸)阀体1.dwg阀芯.dwg换向阀.dwg阀的说明书-终.doc目录.doc报告(完成).doc目录 1 前言1 1.1 本课题的来源及目的意义1 1.2 设计换向阀注意的几个问题2 2 换向阀的构造与工作原理及结构工艺性分析4 2.1 换向阀设计的构造与工作原理4 2.2 换向阀设计的基本要求5 2.3 换向阀的滑阀机能(图2.3)6 2.4 作用在滑阀阀芯上的力7 3 总体方案选择及设计13 3.1 换向阀的结构工艺性分析13 3.2 零件的材料选择14 4 换向阀的设计和校核15 4.1 确定进出油孔直径15 4.2 阀芯外径阀杆直径和中心直径15 4.3 密封与润滑16 5 结束语17 参考文献18 致谢19摘要 本文主要说明了用于控制各类型液(气)动阀门的启闭阀的设计过程,同时讲述了阀的设计背景、设计过程、装配调试。还阐述了,换向阀的工艺性分析、确定换向阀的设计方案、换向阀的设计和校核通过查阅相关的各种资料,最后完成了换向阀的设计。 关键词换向阀,工作腔,阀心,三位四通。参考文献 [1] 郑本修.机械制造工艺学.机械工业出版社,1999 [2] 白成轩.机床夹具设计新原理.北京:机械工业出版社,1997 [3] 齐世恩.机械制造工艺.哈工大出版社1989 [4] 任家隆.机械制造技术.北京:机械工业出版社,2000 [5] 张进生.机械制造工艺与夹具设计指导.机械工业出版社, 1995 [6] 荆长生.机械制造工艺学.西安:西北工业大学出版社,1996 [7] 徐发仁.机床夹具设计.重庆:重庆大学出版社,1996 [8] 刘朝儒, 彭福荫,高政.机械制图.北京:高等教育出版社,2001 [9] 庞怀玉.机械制造工程学.机械工业出版社,1998 [10] 刘守勇.机械制造工艺与机床夹具.机械工业出版社,1994

相关主题
文本预览
相关文档 最新文档