当前位置:文档之家› 感应电机笼型转子断条的检测

感应电机笼型转子断条的检测

感应电机笼型转子断条的检测
感应电机笼型转子断条的检测

脉冲注入法的无刷直流电机转子位置

基于脉冲注入法实现的无刷直流电机转子位置检测 摘要:本文提出了一种采用脉冲注入来检测无刷直流电机在静止状态时转子位置的方法。基于方法依次向定子绕组注入一系列的脉冲,通过脉冲电流的变化对转子位置进行估算。实验结果表明:该方法不但具有较高的位置检测准确性,同时对电机的参数依赖性低,可以省去电机内部的检测元件,又可以应用到其它电机。 关键词:无刷直流电机转子位置脉冲注入识别 Abstract This paper presents a method to detect the rotor position of Permanent Magnet motors at standstill by using a suitable sequence of voltage pulses. Based on this method, a suitable sequence of voltage pulses is applied to the stator windings. We can estimate the magnets position by the current variation of the pulses. The obtained results show that this method is not only efficient but also need bit of motor parameters,it can omit motor internal examination parts and may be used on other type of motors. Key words: BLDCM Rotor position Pulses injection Recognition 引言 近年来,由于无位置传感器无刷直流电机(BLDCM)具有调速特性好、无换向火花、无无线电干扰、效率高、寿命长、运行可靠、维护简便等优点,其应用越来越广泛。检测电机转子位置是无刷直流电机研究的一个重要课题。转子位置的不确定,将直接导致电机起动失败或短暂反转。目前,无刷直流电机的起动方法有硬件起动和软件起动。但是硬件起动方式的最大缺点就是附加的起动电路加大了电机的尺寸,而且对电机的可靠性也有所降低。软件起动方式中的预定位起动,需要先把转子驱动到某一特定位置,停止摆动后再对转子驱动【1】。由于转子的惯性,会使驱动时间变长。本文提出了一种在转子静止时检测电机的方法。 永磁电机中转子的位置不同,电机的磁场分布不同,对定子中各相电流的影响也不同【2】,作者就是利用定子中电流的变化,通过向定子中发送一系列的电流脉冲,根据测量得到的电流峰值来判断转子的位置。本文简要介绍了其工作原理,对在静止状态下检测转子位置进行了实验,验证了方法的可靠性和可行性。该方法不仅适用于无刷直流电机,对永磁同步电机以及其它永磁电机也有效,并且对电机的参数没有特殊要求。 1. 基本原理 永磁电机的示意图如图1所示: 图1 基本原理 以A相为例,其内部磁场( A ?)由永磁 体PM的磁场( AM ?)和定子电流磁场( A i ?) 两个效果叠加的。 A AM Ai ??? =+(1) 如果相电流再高一些,磁路将饱和,并且绕组的自感应系数变小。如果改变电流的方向,则总磁通就变为: A AM Ai ??? =-(2) 这样,磁通将退出饱和,绕组的自感应系数将变高。正电压脉冲作用,数字控制器通过电流传感器不断对电流进行A/D 变换,当检测脉冲结束时,得到一个峰值电流【3】。然后再发出一个负电压脉冲,检测得到负的相电流峰值。比较两个被放大后的电流值可以得到一个电流差 12 A A A i i i =- △(3) 图1状态下各相的测试电流示意图如下所示,由于B,C两相的位置相对与磁铁中心轴对称,所以它们的电流差应该大小相等。由于A相此时所产生的磁场与磁铁刚好一致正反电流所受到磁场的影响也是最大的,产生的电流差理论上也是最大的。

电动机转子笼条断裂的原因分析及预防措施

电动机转子笼条断裂的原因分析及预防措施Analyse and Prevent about B reakdow n of E lectric Mober R otor C age 廖松涛 L IAO Song2tao (江西新余发电有限责任公司,江西 新余 338002) 摘要:分析了新电公司200MW汽轮发电机组多年来高压异步电动机转子鼠笼断条原因,提出了一些预防措施。 关键词:电动机;转子;断条;预防措施 中图分类号:TM343.307.1 文献标识码:B 文章编号:1671-8380(2004)04-0022-02 1 引言 厂用电动机是火力发电厂重要的厂用电气设备之一。江西新余发电有限责任公司(以下简称新电公司)两台200MW火力发电机组自1995年、1996年相继投产以来,其厂用高、低压电动机先后发生各种故障100多台次,造成了较大的经济损失,其中一个主要的故障原因就是电动机鼠笼转子断条。本文主要分析高压异步感应电动机转子鼠笼断条故障发生的原因,进而提出了一些相应的预防措施。 2 鼠笼断条的基本特征 ①鼠笼型电机断条多发生在具有频繁,重载启动的鼠笼型电机单、双鼠笼型电机。双鼠笼电机外笼条断条最多,约占断条电机的95%以上,内笼和端环断裂的不到5%。 ②圆形笼条断条的几率大大高于矩形笼条断条的几率,约占断条总数的80%。 ③外笼条断裂时有明显的位移现象。这说明笼条在槽内松动。断条上有明显被槽壁突出的硅钢片磨损的沟槽,在伸出铁芯端笼条有明显的向上变形现象,短路环也有扭曲变形现象。 ④笼条断口多发生在与端环的焊口里侧部位,槽内断条的很少,笼条开焊多发生在笼条与端环的焊接部位。开焊后笼条在离心力作用下向外侧甩出刮伤定子造成定子线圈短路。笼条槽内断口处有明显电弧烧伤痕迹,断口两断面吻合严密,呈脆性疲劳断列性质。 ⑤断条槽的铁芯多有局部过热变色烧损现象,开焊处的端环孔周围也有过热变色及电弧烧伤痕迹。 3 转子断条原因分析 电动机转子频繁发生断条,均是转子受各种应力作用的结果,而且应力超过了笼条所能承受的极限,或是交变应力的长期作用使笼条产生疲劳。主要有以下几方面的原因。 3.1 制造工艺产生的应力和启动时交变应力 由于焊接质量不一致,引起笼条热膨胀有差异,造成笼条之间产生的较大温差。笼条上下的不均匀温升会使笼条产生向转子中心弯曲的应力,端环中强大的启动电流使之发热产生径向位移,造成笼条产生背离转子中心的弯曲应力。笼条铁芯冲孔工艺会使笼条嵌装的松紧程度不一致。当电流的相位不同,传递给端环的振动力会使端环产生扭曲,受力最大的部位仍是笼条的焊接处,而此处恰恰是鼠笼结构最薄弱点。由于热传导性能差异会使各笼条间产生不均匀的温升,因而各笼条之间将产生不同的轴向位移而使笼条产生轴向的拉应力。且使笼条产生电磁振动应力,特别是在电动机刚启动的瞬间,振动幅值达到最大值,是正常运行时50~60倍;频率为100Hz,随着转速的升高和启动电流的增加而增大。由于各应力作用点大都集中于笼条与端环的焊口附近,且每启动一次便交变一次,这样各应力的破坏作用随启动的次数的增加和温升积累而增大。 3.2 负载变化使鼠笼条产生切向交变应力 由于笼条在槽内有一定的间隙,转子铁芯和与 收稿日期:2004-03-13;修订日期:2004-07-19 22广西电力 2004年第4期

笼型异步电动机转子断条故障诊断技术

2006年第21卷第3期 电 力 学 报 Vol.21No.32006 (总第76期) JOURNAL OF ELECT RIC POWER (Sum.76) 文章编号: 1005-6548(2006)03-0310-04 笼型异步电动机转子断条故障诊断技术 安永红, 夏昌浩 (三峡大学,宜昌湖北 443002) Techniques of Broken Rotor Bar Fault Diagnosis For Squirrel Cage Induction Motor AN Yong hong, XIA Chang hao (Three Gorge University,Yichang 443002,China) 摘 要: 对笼型异步电动机转子断条故障诊断进行了研究,归纳和总结出几种方法。这些方法均由研究人员进行了仿真或实验验证,对检测笼型异步电动机的转子故障是有效的。并对各种方法进行了分析比较,指出了各自的优缺点。 关键词: 异步电动机;转子断条;故障检测 中图分类号: TM343+.3 文献标识码: A Abstract: This paper focuses on the study of bro ken rotor bar fault diagnosis for squirrel cage induc tion motor,and concludes several effective methods. All of the methods have been tested by reseachers to simulate or identify their validity in motor rotor fault analysis.This paper compares these methods and points out their advantages and disadvantages. Key Words: induction motor;broken rotor bar; fault detection 鼠笼式异步电动机的转子绕组比较坚固,但如果转子温度过高或作用在端环的离心负荷过大,可能会导致转子故障。另外,在制造过程中的某些缺陷(如铸导条或焊端环时的质量不良)也会导致电阻过高,从而引起过热。而在高温条件下,鼠笼的强度降低,鼠笼条可能出现裂纹,导致笼条伸出转子槽外而得不到转子铁芯的支撑。导条与转子槽的相对位移,连续的高温运行可引起端环和导条变形,并最终导致端环与鼠笼条的断裂[1]。 笼型异步电动机转子断条故障将导致电机出力下降,运行性能恶化,一旦发生,不仅会损坏电动机本身,而且会影响整个生产系统,甚至会危及人身安全,造成巨大的经济损失和恶劣的社会影响[2]。因此必须对其进行检测,特别是进行早期检测,早期检测系统可以在故障发生初期及时告警,有助于现场组织,安排维修,避免事故停机,具有显著经济效益。 1 转子断条故障诊断方法 笼型异步电动机转子故障的检测与诊断方法有许多种,如:磁通检测法,定子电流检测法,机械信号检测法,傅立叶变换法等。但这些方法有时很难提取转子故障特征,因此,必须寻求其它的检测与诊断方法。 1 1 基于小波变换的方法 笼型异步电动机正常运行时,定子绕组中只含 收稿日期: 2006-04-27 修回日期: 2006-09-10 作者简介: 安永红(1967-),男,湖北钟祥人,硕士研究生,小波理论及应用; 夏昌浩(1965-),男,湖北江陵人,副教授,硕士生导师,检测与自控,智能信号处理。

无刷直流电机的工作原理精选文档

无刷直流电机的工作原 理精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

无刷直流电机原理 无刷直流电动机的工作原理 普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 ●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示:

主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。

电动机断条故障理论分析

利用连续细化的傅里叶变换方法,通过对异步电动机稳态运行时定子电流进行分析,提出了用傅里叶变换的结果作为参考信号以抵消基波1f 分量的方法,解决了傅里叶变换时1f 分量的泄漏淹没()121f s -分量这以问题。该方法可用于电动机转子故障的在线检测,并可成功应用于嵌入式在线监测仪的研制。 三相异步电动机由于结构简单、价格低廉、运行可靠,在电力、冶金、石油、化工、机械等领域得到广泛应用。由于工作环境恶劣或者电动机频繁启动等原因,转子导条或者端环经常会发生开焊和断裂等故障。这种故障通常先有1~2根,而后发展成多根,以至出力下降,最后带不动负荷而停机。对电动机进行在线检测,提前发现电动机的故障隐患及早采取相应措施,以减少或者避免恶性故障的发生。 目前常用的转子断条在线检测方法是对稳态的定子电流信号直接进行频谱分析,根据频谱中是否存在()121f s -的附加分量来判断转子有无断条。但由于()121f s -分量的绝对幅值很小,并且异步电动机运行时转差率s 很小,频率()121f s -与1f 非常接近,用快速傅里叶变换直接作频谱分析时,基波1f 频率分量的泄漏会淹没()121f s -频率分量,因而使检测()121f s -频率分量是否存在变得非常困难。 本文采用快速傅里叶变换的方法,通过快速傅里叶变换得到电动机断条时信号的频谱,为了抵消基频50Hz 频谱图由于频谱泄漏对故障信号频谱的淹没,将电动机断条故障时的信号经自适应陷波器处理,以滤除工频50Hz 对特征分量的影响。

第一章绪论 1 引言 2 电动机转子断条故障的现状与课题意义 3 本文的主要研究方法法与研究内容 第二章电动机的结构与工作原理 2.1 电动机结构及原理分析 2.1.1 组成结构 2.1.2 转子的结构、定子的结构 2.1.3 电动机工作原理分析 2.2 电动机断条故障的原理 2.2.1转子断条原因 2.2.2转子断条常见现象 2.2.3断条原因分析 第三章快速傅里叶变换与MATLAB实现 3.1 MATLAB简介 3.2 快速傅里叶变换的数字实验 3.3 本章小结 第四章自适应陷波器原理 4.1 原理分析 4.2 基于LMS算法的MATLAB实现 4.3 用MATLAB程序实现LMS算法 4.4 本章小结 第五章电动机断条故障理论分析 5.1 电动机断条故障理论分析 5.1.1异步电动机转子断条故障时定子电流的特点 5.1.2电动机断条故障理论分析程序流程图 5.1.3理论仿真波形及其分析 5.2 理论仿真波形与分析 5.3 本章小结 参考文献 附录 致谢

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理 导读:无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。它的应用非常广泛,在很多机电一体化设备上都有它的身影。 什么是无刷电机? 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。中小容量的无刷直流电动机的永磁体,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)材料。因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。

无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。 无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。位置传感按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。 位置传感器有磁敏式、光电式和电磁式三种类型。 采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。 采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。 采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。 看看这个工程师怎么说?

无刷直流电机结构

无刷直流电机结构

————————————————————————————————作者:————————————————————————————————日期:

1. 磁回路分析法 图1-4 (摘自Freescale PZ104文档) 在图1-4中,当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁力线方向与外磁力线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 “当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大”。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,见图1-5所示: 图1-5 (摘自Freescale PZ104文档) 如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相(commutation)。注意:何时换相只与转子的位置有关,而与转速无关。 以上是两相两级无刷电机的工作原理,,下面我们来看三相两极无刷电机的构造。 2. 三相二极内转子电机结构 定子三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最常用。

图1-6 (修改自Freescale PZ104文档) 图1-6显示了定子绕组的联结方式(转子未画出),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB, AC, BC, BA, CA, CB,图1-7(a)~(f)分别描述了这6种情况下每个通电线圈产生的磁感应强度的方向(红、兰色表示)和两个线圈的合成磁感应强度方向(绿色表示)。 在图(a)中,AB相通电,中间的转子(图中未画出)会尽量往绿色箭头方向对齐,当转子到达图(a)中绿色箭头位置时,外线圈换相,改成AC相通电,这时转子会继续运动,并尽量往图(b)中的绿色箭头处对齐,当转子到达图(b)中箭头位置时,外线圈再次换相,改成BC相通电,再往后以此类推。当外线圈完成6次换相后,内转子正好旋转一周(即360°)。再次重申一下:何时换相只与转子位置有关,而与转速无关。 图1-8中画出了换相前和换相后合成磁场方向的比较与转子位置的变化。一般来说,换相时,转子应该处于,比与新的合成磁力线方向垂直的位置不到一点的钝角位置,这样可以使产生最大的转矩的垂直位置正好处于本次通电的中间时刻。 (a) AB相通电情形(b) AC相通电情形

笼型异步电动机转子断条故障检测方法

笼型异步电动机转子断条故障检测方法 笼型异步电动机在运行过程中,转子导条受到径向电磁力、旋转电磁力、离心力、热弯曲挠度力等交变应力的作用,加之转子制造缺陷,导致断条故障,其发生概率约为15%[1~3]。 转子断条是典型的渐进性故障,初期通常1、2根导条断裂,而后逐渐发展以至电机出力下降甚至停机。因此,必须实施转子断条故障在线检测,特别是初发性转子断条故障在线检测,这具有重要意义。 笼型异步电动机发生转子断条故障之后,在其定子电流中将出现1)21(f s ±频率的附加电流分量(s 为转差率,1f 为供电频率)[4,5],该电流分量称为边频分量。以此作为故障特征,对定子电流信号做傅立叶频谱分析即可进行转子断条故障检测。 在转子断条故障发展初期,其特征——定子电流1)21(f s ±频率分量是细小、微弱的。因此,进行转子断条故障检测,特别是早期检测必须保证高灵敏度。 另一方面,由于本身所固有的非对称、气隙偏心、转子不对中及其它因素,异步电动机即使处于正常运行状态,其定子电流中亦可能包含1)21(f s ±及其它频率分量。并且对于不同的异步电动机,情况复杂。这极易与转子断条故障初期特征相混淆,导致误判,影响故障检测可靠性。 为了解决这一问题,姜建国、汪庆生 等采用自适应滤波方法抵消定子电流1f 频率分量,以凸现转子断条故障特征——定子电流1)21(f s -频率分量,从而显著提高故障检测灵敏度 [6]。K. Abbaszadeh, J. Milimonfared, et al 应用小波分析技术处理定子电流信号,提取小波分解系数反映转子断条故障特征,据此改善故障检测灵敏度[7]。 华北电力大学业已提出卓有成效的初发性转子断条故障检测方法[8,9]:采用定子电流1)21(f s ±频率分量作为故障特征,将连续细化傅里叶变换、自适应滤波、转子齿槽谐波转差率估计、检测阈值自整定技术有机结合,高灵敏度/高可靠性地在线检测异步电动机转子断条故障。 文献[8,9]表明:应用连续细化傅里叶变换与自适应滤波技术可以保证高灵敏度地提取电机定子电流边频分量;应用转子齿槽谐波转差率估计技术可以正确判断该分量是否真正由转子断条故障所导致;应用基于样本学习的检测阈值自整定策略则可以适当设臵检测阈值,避免故障漏检与误判。 异步电动机低转差率运行(如轻载甚至空载)时,频率1)21(f s -与频率1f 非常接近,而定子电流1)21(f s -频率分量幅值远远小于1f 频率分量,因此断条特征----1)21(f s -频率分量可能被1f 频率分量的泄漏所淹没。在这种情况下,检测结果可信度欠佳。

鼠笼型异步电动机转子断条是一种常见故障

鼠笼型异步电动机转子断条是一种常见故障,断条后的异常表现: (1)接上三相电源后,机身振动且伴有噪声;电机转速降低,且随负载增加而迅速下降。(2)空载电流增加,电流表指针周期性摆动;电机转矩降低,带负荷无力,严重时无法起动。上述现象随着转子断条的增多而加剧。笼型转子断条的原因:(1)浇铸质量不佳, (2)结构设计不合理(3)起动频繁的冲击负荷(4)操作不当和违章操作,使用过程负载过大,或者转子上的感应电流分布不均匀,造成转子槽内导条烧断,铸铝多发生在槽内,而铜条多发生在与端环的联接处。(5)使用场所对电机的腐蚀。 有的电机就是这样,如果烧了从绕就必须加多线圈。槽满率太高的话就减细线径。 看电流大小而定加线圏的多少,加线圈一般是电流增加10%,线圈增加1%。 只是经验。一般也很准的。 短路环用来短路转子线圈使其线圈中的感应电动势闭合产生电流,电流形成磁场与定子旋转磁场相互作用并转起来; 若转子不短路电机就是个二次侧开路的空载变压器。 电机通电后产生一个旋转磁场,这个磁场的励磁是由电流的无功产生。旋转磁场切割转子导体产生感应电势,通过转子的短路环形成感生电流,这个电流在磁场中受力,使电动机转动。所以说三相异步电动机转子末端短路环的作用是形成感生电流的。 三相异步电动机转子铁芯开槽是为了嵌入转子绕组,定子上通常也开槽,作用也是嵌入定子绕组。而且这些槽都是斜槽,斜槽的作用如下: 电机内部有各种频率的谐波,因定子采用分布短距绕组,所以除齿谐波之外的其它频率的谐波磁势幅值均被极大程度地削弱。由于齿谐波绕组系数等于基波绕组系数,所以齿谐波磁势几乎不受影响。因为三相异步电动机的定、转子开槽,造成整个气隙圆周范围磁阻不均匀,电机运转时电磁转矩和感应电动势相应波动。转子斜槽后,形成的电磁转矩和感应电动势近似于同一根转子导条均匀分布在一段圆周范围内的平均值,能有效地削弱齿谐波磁场所产生的谐波电动势,从而削弱由这些谐波磁场引起的附加转矩,降低电磁振动和噪声。转子斜槽后虽然也会使转子感应的基波电动势减少,但一般选择的斜槽度相对于极距来说小得多,因而对电机基本性能影响很小,故中小型铸铝转子异步电动机普遍采用转子斜槽

(完整版)无刷直流电机经典换相方式

1、引言 你希望在你的新产品中使用无刷伺服电机吗?平时,我们可能也常碰到一些关键词,例如“梯形波式”,“正弦波式”和“矢量控制”。只有当你了解了他们的真正含义,才能在你的新设计中选择正确的产品。 在过去的十年甚至二十年中,伺服电机市场已经从有刷伺服转变成无刷伺服的市场,这主要是由无刷伺服的低维修率和高稳定性所决定的。在这十几年中,驱动部分在电路和系统方面的技术已发展的非常完善。控制方式也已经完全可以实现那些关键词所描述的功能。 大部分的高性能的伺服系统都采用一个内部控制环来控制力矩。这个内部的力矩环通过和外部的速度环和位置环的配合以达到不同的控制效果。外部控制环的设计是与匹配的电机没有关系的,而内部的力矩环的设计则与所匹配的电机的性能息息相关。 有刷电机的力矩控制是非常简单的,因为有刷电机自身可完成换相工作。所输出的力矩是和有刷电机两极输入的直流电压成正比的。力矩也可通过P-I控制回路轻松地得到控制。P-I控制回路的主要功能就是通过检测电机实际电流和控制电流之间的偏差,实时地调整电机的输入电压。 图1 由于无刷电机自身没有换相功能,所以相对应的控制方式就比较复杂。无刷电机有三组线圈,有别于有刷电机的两组线圈。为了获得有效的力矩,无刷电机的三组线圈必须根据转子的实际位置进行相互独立的控制。这种驱动方式就充分地说明了对无刷电机控制的复杂性。 2、无刷电机基础 简单来说,无刷电机主要由旋转的永磁体(转子)和三组均匀分布的线圈(定子)组成,线圈包围着定子被固定在外部。电流流经线圈产生磁场,三组磁场相互叠加形成一个矢量磁场。通过分别控制三组线圈上的电流大小,我们可以使定子产生任意方向和大小的磁场。同时,通过定子和转子磁场之间的相互吸引和排斥,力矩便可自由地得到控制。

无刷直流电机转子位置检测的新方法

无刷直流电机转子位置检测的新方法 作者:山东大学陈瑜黄玉王兴华 要 摘要:介绍了无刷直流电机无位置传感器转子位置检测的一种新方法。该方法利用非导通相反电势逻辑电平经逻辑处理后得到一脉冲列,采用PLL锁相技术将脉冲列倍频,通过倍频电路计数器的计数值可以精确检测转子位置。利用数字比较技术将计数值与锁存器中的预置数值比较,可以精确控制绕组电流的最佳换向时刻。通过调节锁存器中的预置值可以方便地调节换向角,非常适用于无刷直流电机的各种控制算法。同时该方法克服了外同步起动过程中易产生的振荡和失步现象。通过实验证明该方法是正确的、有效的。 关键词:无刷电机;无位置传感器;检测 1引言 无刷直流电机运行时需要采用位置传感器检测转子磁场位置信号,以控制逆变器功率管的换流,实现电机的自同步运行。传统的位置传感器是采用电子式或机电式传感器件直接测量,如霍尔效应器件(HED)、光学编码器、旋转变压器等。然而,这些传感器有以下缺点: ①分辨率低或运行特性不好,有的对环境条件很敏感,如振动、潮湿和温度变化都会使性能下降。 ②增加了电气连接数目,给抗干扰设计带来一定困难。 ③占用电机结构空间,限制了电机的小型化。 因此,无刷直流电机的无位置传感器化技术近年来日益受到人们的关注,国内外研究人员在这方面进行了积极的研究,提出了诸多方法,主要可分为反电势法、电感法、磁链法、旋转坐标系法、观测器法、卡尔曼滤波器法等[1~4]。反电势法简单、可靠,得到了广泛应用,其它方法由于计算复杂、对参数的鲁棒性差等原因应用较少。但反电势法的缺点是: ①低速时反电势小,难以得到有效转子位置信号,系统低速性能差。 ②需用低通滤波器去掉端电压中高频噪声并移相30°以满足换流要求,对滤波器要求较高,同时滤波器容易产生移相误差,而且移相误差大小与速度有关,难以补偿[5]。 ③对换相角调节困难,无法控制换相角γ(超前或滞后)的大小。 ④若采用外同步脉冲起动,当驱动信号由外同步脉冲驱动向内同步脉冲驱动切换时,由于切换点的相位误差易产生振荡甚至失步[6]。 针对以上问题,本文提出了一种新型转子位置检测的方法,以三相6拍运行的无刷直

高压电动机转子笼条断条的原因及改进方法

高压电动机转子笼条断条的原因及改进方法 1 引言 大武口发电厂锅炉辅机设备高压异步电动机自投产以来 频繁出现电动机线圈烧毁、转子笼条断条、转子熔铝等故障。故 障多发生在频繁启动且负荷大的排粉机、磨煤机及渣浆泵。仅 1993年就发生了2起因磨煤机转子熔铝致使高压电动机报废的 事故,造成了很大的经济损失。1994年利用机组大小修将该设 备转子改为铜条笼,但转子断条故障又相继发生,仅1995年统计为11次,故障率为35%,严重影响了电力生产的正常运行和 安全。 2 转子笼条断条分析 2.1 转子笼条断条现象 笼条断裂与电机负载形式及起动情况有关,大武口发电厂转子笼条断裂90%发生在起动频繁的排粉机、磨煤机和渣浆泵。从 笼条断裂部位看,大多发生在笼条与端环焊接处,如图1所示。

图1 笼条断裂部位示意图 从端环结构图看,端部转子笼条断裂如外翘时,将磨损定子端部绝缘从而引起电机烧坏。 2.2 转子笼条断条原因分析 (1) 笼条端环结构不合理,端环为整体,笼条与端环采用刚性连接,对单根笼条而言,其不能自由伸缩,易在焊接处产生应力集中。 (2) 外笼条为保证其电阻率大,其材质机械强度低,不能承受大的拉力,如焊接工艺不良,其热应力将很容易造成在端环处断条。 (3) 笼条在铁芯槽内压接不紧,运行中在离心力作用下窜动较 大。 (4) 由于电机的频繁启动,笼条在启停中加热和冷却过程反复进行,使笼条交替受力,极易被拉断或胀鼓与定子磨擦断裂。

3 转子改进方法 3.1 改进方法 利用大小修机会对锅炉辅机及除灰的5台渣浆泵的转子进行了改进,参见图2和图3。 图2 改造前笼条端环结构图及端环平面图 (1) 将原刚性悬充端环改造为两部分:指型弹性环部分和防护环部分。 (2) 与笼条连接部分改为指型弹性环部分,保证每根笼条轴向自由伸缩,以消除和减少热应力,同时消除笼条由于焊接工艺不良而产生的热应力。 (3) 增改防护环以增加转子端部笼条整体紧固力,防止笼条断后翘起刮坏定子绝缘,防护环可用磁性钢环或环氧与玻璃丝布带固 定成型的环。 (4) 将笼条镀铬加粗使笼条槽孔的间隙小于0.2 mm,减少纵向和轴向移动。

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理 2009年10月14日 无刷直流电动机 一、概述 直流电动机的主要优点是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简单、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。

电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成的一对磁极。转子位置传感器也由定子、转子两部分组成。定子安装在主电动机壳内,转子和主转子同轴旋转。它的作用是把主转子的位置检测出来.变成电信号去控制电子开关电路,故也称转子位置检测器。电子开关电路中的功率开关元件分别与主定子上各相绕组相连接.通过位置传感器输出的信号,控制三极管的导通和截止.从而使主定子上各相绕组中的电流也随着转子位置的改变,按一定的顺序进行切换,实现无接触式的换向。 l.电机本体 元刷直流电动机是将普通直流电动机的定予与转子进行了互换。其转子为永久磁铁,产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。 无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本

如何检测异步电动机转子笼条断裂

如何检测异步电动机转子笼条断裂 许多电动机故障的发生都是由各种原因造成的,从机械角度来看,电动机周期间歇运行、频繁起动运行都会引起绕组松动、绝缘老化、轴承磨损、振动加剧等缺陷。从电气角度看,电动机都可能受到所在电力网的各种暂态过程的影响,这些暂态过程有缓慢扰动与快速扰动之分。缓慢扰动会引起电动机过热,电力系统的电压快速变化的暂态过程,可以引起电动机绕组电位分布不均匀,导致部分绕组上的电压超过其绝缘的承受能力而损坏绝缘。电动机遇到的最严重的瞬变过程发生在起动和重新起动之际。特别是在电力工业中高压电动机反复起动,常常由于转子温度过高以及作用在笼型转子端环上的离心力过大,使笼型转子的强度降低,使转子本身在制造过程中就已存在的焊接不良等事故隐患暴露出来,在笼型转子的端环处首先可能出现笼条断裂,导致笼条伸出转子槽外,而发生扫堂现象,严重者使电动机报废,造成一定的经济损失。大型高压电动机,绕组一旦出现故障,修理起来更感困难。从环境角度来看,电动机又会遇到高温、污染,从而使电动机绝缘材料劣化等等。所以应用于电动机上的在线检测系统必须灵敏、准确地探测出电动机存在的故障和潜在故障。但有时会因外界条件变化,人为操作方法不当,产生较大误差使判断出错。所以,在使用较为先进的测试仪器时,要注意现场的具体情况和人为操作的准确度等因素,以便得到满意而准确的结果,减少不必要的劳动。 笼型异步电动机转子断条在线检测的原理

笼型异步电动机转子绕组的故障检测是比较困难的,因此,若能在转子断条故障初期检测出来并及时维修,可避免意外停机及恶性事故的发生,这对保证安全生产具有重要意义。 我们采用监测定子电流的仪器,不干扰电动机运行。电流传感系统只要把钳形电流互感器卡在电动机的次级回路上即可,电流互感器直接和一高分辨率的频谱分析仪相连,再由一微机系统将电流信号存储起来做出频谱分析。正常的异步电动机定子电流中只有与电源频率相同的电流。负载的变化将调制电流幅度的大小,产生一单脉冲。若转子电路中有故障,会在比电源频率低两倍转差率的地方产生一单脉冲。如果忽略高次谐波,定子电流只含有基波分量,频率为工频f1(50Hz),转子电流的频率为sf1,其中s为转差率,s=(n1-nn)/n1,当转子发生断条时,转子绕组出现不对称,转子电流产生的合成磁动势不再只有正转,而是出现相对于转子既有正转的磁动势又有反转的磁动势,其转速分别为+n2和-n2,即n2=n1-nn=sn1。这两个转子磁动势相对于定子的转速分别为nn+n2和nn-n2,前者在定子绕组中感应的电动势频率为 p(nn+n2)/60=pn1/60=f1 后者在定子绕组中感应的电动势频率为 p(nn-n2)/60=p(nn-sn1)/60=p(n1-sn1-sn1)/60=p(1-2s)n1/60=(1-2s)f1 式中p——电动机的极对数 nn——电动机的实际转速 n1——同步转速

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁 硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

设大型异步电机转子断条早期故障下的定子电流由基频

设大型异步电机转子断条早期故障下的定子电流由基频、故障特征频率分量 (幅值为基频的1%一3%)和噪声构成 ()()()()()()100sin 2501sin 2120.0055060.5sin 2120.0055058i t t t t randn n t πππππ=??+?-???++???+???++? ? 将i(t)通过Hilbert 解调并经双Hilber 滤除直流后(乘以0.06以满足A<

由时域相图得到周期为一005和505,那么10.012/rad s ωπ?=?, 20.022/rad s ωπ?=? ()()11/2k k k k ωωωωω++=+?+-?????=(0.51+0.48-0.01+0.02)×2π/2=0.5×2πrad/s 。所以f=0.5HZ,而原()i t 中的故障特征分量的频率为0.5HZ ,与故障特征频率完全吻合。由此我们可以准确有效的检测出故障特征分量的频率。由此得出利用Duffing 间歇混沌运动很容易精确检测强噪声背景下微弱故障2拭频率分量,这对异步电机转子断条早期故障的精确检测有重要的意义。 为了体现Duffing 阵列精确检测的优势,下面给出电流信号解调并去直流后的信号图及其局部频谱分析图。

由图5一8可以得知,2拭分量在频谱分析中根本上没有体现,湮没在强噪声背景下的微弱的2试故障特征分量很难运用一般的频谱分析方法进行有效准确的检测,而杜芬振子对强噪声背景下微弱周期信号的检测有其独特的优越性。为了验证Duffing阵列检测微弱信号的有效性及可靠性,利用动模实验模 了鼠笼型异步电动机的断条故障。所用电机的铭牌数据如表5一1所示。 在动模实验室测量了不同断条情况、不同负载情况下的定子电流进行分析,

相关主题
文本预览
相关文档 最新文档