当前位置:文档之家› 明胶作分散剂制备球形超细银粉

明胶作分散剂制备球形超细银粉

明胶作分散剂制备球形超细银粉
明胶作分散剂制备球形超细银粉

高浓度硝酸银还原制备超细银粉的试验

2017年10月 贵 金 属 Oct. 2017 第38卷第S1期 Precious Metals V ol.38, No.S1 收稿日期:2017-08-10 第一作者:孟晗琪,女,硕士,工程师,研究方向:稀贵金属材料。E-mail :hanqim@https://www.doczj.com/doc/206822732.html, 高浓度硝酸银还原制备超细银粉的试验 孟晗琪,吴永谦,陈昆昆,张卜升 (西北有色金属研究院,西安 710016) 摘 要:采用高浓度硝酸银溶液为银源,以抗坏血酸为还原剂,聚乙烯吡咯烷酮为分散剂,制备超 细银粉,用扫描电子显微镜和振实密度测试仪对银粉进行表征。结果表明,提高硝酸银溶液浓度的 同时,调整抗坏血酸和分散剂PVP 的加入量,能够获得类球形、粒径分布窄的银粉颗粒,分散剂的 种类和用量仍需进一步优化。 关键词:超细银粉;硝酸银;高浓度;分散性 中图分类号:TG146.3 文献标识码:A 文章编号:1004-0676(2017)S1-0112-04 The Preparation Research of Ultra-Fine Silver Powder by High Concentration of Silver Nitrate Reduction MENG Hanqi, WU Yongqian, CHEN Kunkun, ZHANG Bosheng (Northwest Institute of Nonferrous Metal Research, Xi'an 710016, China) Abstract: The ultra-fine silver powder was prepared with high concentration of silver nitrate as silver source, with ascorbic acid as reductant and polyvinylpyrrolidone as dispersing agent and was characterized by scanning electron microscope and tap density tester. The results show that the ultra-fine silver powder with spherical and narrow particle size distribution can be observed by increasing the concentration of silver nitrate solution and adjusting the amount of ascorbic acid and PVP at the same time. But the type and amount of dispersant needs further optimization. Key words: ultra-fine silver powder; silver nitrate; high concentration; dispersivity 近年来,光伏能源、电子信息等行业迅猛发展,使得高性能电子银浆的年需求量迅速提升。电子银浆通常由银粉、有机载体、玻璃粉和添加剂等组成,其中金属银粉是电子银浆的最主要成分。为了满足光伏、电子信息等行业对电子银浆品质和用量的需求,对金属银粉的性能参数以及产量提出了更高的要求:银粉颗粒表面形貌不能过于复杂,要以类球形和不规则颗粒为主,银粉颗粒尺寸适中,振实密度理论上越高越好[1],从而实现高产量生产高品质金属银粉。因此,提高银粉的质量是获得高性能电子银浆的重要方向,而提高银粉的产量是应对年需求量迅速提升的直接办法。 目前所报道的文献研究以银粉粒径和分散性为目标的研究报道较为常见。纳米银粉[2-3]由于其小尺 寸效应的作用,表面活性高、易团聚,不适用于电子银浆,反而是粒径为微米或亚微米级别的银粉应用较为广泛。各研究者选用不同的还原剂和分散剂,通过控制实验参数得到粒径各异的银粉颗粒,能够实现银粉粒径的可控制备[4-5]。李明利[5]、郭学益[6]、郭桂全[7]等研究了不同分散剂对银粉分散性能的影响机理,制备出分散性良好的金属银粉。但所用的硝酸银溶液的浓度都非常低,均在0.6 mol/L 以下,部分甚至低至0.1 mol/L 。过低浓度的硝酸银溶液虽然有利于制备分散性好、形貌和粒径均一的高性能超细银粉,但银粉的批次产量小,生产效率低。若 要提高批次产量,则需增大单批次反应物的体积, 万方数据

银粉漆种类介绍

银粉漆 银粉磁漆厂家执行标准:【技术要求Q/ZLNQ009-2003-】,特点:防腐、防锈、耐水、耐温、反光、干燥快、附着力强。银粉漆(分为底漆面漆)的用途:适用于采暖设备、车辆、油罐、铁塔、金属管道、金属表面的防腐、及种类物件的银色装饰。(注意我们平时说的树脂是俗称光油或清漆)贵州银粉漆光泽:有光;理论用量:97 g / m2 (以25微米干膜计,不含损耗)涂装方法:喷涂、刷涂、辊涂;涂装间隔:25℃,最短24h 最长不限。(温馨提示:如何去除银粉漆方法一:可以用酚醛稀料或汽油沾在软布上轻轻地擦银粉,多擦几遍就行。方法二:如果银粉漆已经干了,就要用香蕉水或者氯仿(一种化学试剂)来清除。) 银粉漆的常见种类说明: @1、(冠- 牌)醇酸银粉漆100℃以下即常用暖气片、暖气 管道涂装的银色面漆,也叫做醇酸银浆漆,银浆磁漆。该漆是 一种单组份油漆,干燥较慢。 @2、丙烯酸聚氨酯银粉漆200℃以下双组份银色面漆,具有优 良的耐候、防腐、耐磨等特性,表面效果也比醇酸银浆漆好很 多。既可以作为防腐、重防腐的面漆使用,又可以作为高档工 业品银色装饰效果面漆使用,亦可作为汽车修补漆使用。 @3、氟碳银粉漆300℃双组份银色面漆,具有超长的耐候性,以及优良的防腐、耐酸碱、耐盐雾特性,具有氟碳漆特有的自 清洁特性。可作为海边、重要钢结构设施、城市地标建筑物外

墙、钢结构的表面装饰及防腐漆。 @4、有机硅耐高温银粉漆200℃-600℃单组份油漆,分为底漆和面漆,在200℃以上环境中使用,适用于经过表面处理。 认识银粉漆银粉也就是铝粉,把它作为一种特殊颜料加入到油漆里,就得到了银粉漆。有时候我们提到的金属漆指的也就是银粉漆。由于其特殊的闪光效果,它在汽车漆家族中的地位越来越重要,占的比例越来越大。银粉漆的变幻效果明暗变化效果(为何看上去正侧面不一样呢?)光线在银粉漆中的传播,其特效是靠铝粒子与透明颜料的配合而达到的。银粉是片状的,象许多小镜子一样平躺着反射外来的光线,从直角看去,反射效果最大,色调显得闪亮,从侧面看去,光线反射量会降低,使得色调看起来较暗。变幻效果也与铝粉的颗粒大小有关,相对而言,铝粒子越大,反射的光线越多,从正面(直角)看,色调明亮闪耀,而从侧面看时,就显得深暗。铝粒子越小,变幻效果就越不显著,色调大多显得灰暗。彩色变幻效果其色调主要是靠透明颜料来达成的,不透明的颜料会阻碍铝粒子反射光线。把一定色相的透明颜料加入到配方中,就会显示出该色的彩色变幻效果。如香槟色的银粉,从正面看去显得金黄色,而从侧面看时则显得较黄较红。银粉的排列影响变幻效果影响银粉排列的因素有涂料自身的原因,也与施工的有数有关。银粉漆的用途适用于采暖设备,车辆,油罐,铁塔,金属管道,金属表面的防腐,及种类物件的银色装饰。产品特点本品具有防腐,防锈,耐水,耐温,反光,干燥快,附着力强等特点。使用方法本漆可直接用于物件的表面涂刷或喷涂。如

微米级干雾抑系统简介

微米级干雾抑尘系统简介 其原理就是微米级干雾抑尘机产生不通颗粒的水和雾状水,与空 气中的不同力度的颗粒进行吸附和包裹,后自动结合受重力影响落到 运输皮带机上。 1.微米级干雾抑尘装置组成 微米级干雾抑尘装置采用模块化设计技术。由微米级干雾抑尘机、螺杆式空气压缩机、万向节喷雾器总成、水气连接管线、电伴热系统和自动控制系统组成。 1.1微米级干雾抑尘机 是将气、水过滤后,以设定的气压、水压、气流量、水流量按开关程序控制电磁阀打开或关闭,经管道输送到喷雾器总成中去,实现喷雾抑尘。它由电控系统、多功能控制系统、流量控制系统组成。安装在IP55标准的箱体内,有进气管接口1个,进水管接口1个,出气管接口2个,出水管接口2个。面板上有文本显示器、气、水压力表和电控系统按钮。 1.2电控系统 电控系统是干雾抑尘系统的控制中心,集合了可编程控制器、保护电路、继电器以及与它们相关的元器件。为用户提供自动和手动两种操作模式。在自动操作模式时,可自动接收皮带机工作信号,通过西门子PLC控制继电器,启动或停止喷雾箱喷雾。在手动模式,操作人员可以按压操作按钮启动或停止喷雾箱喷雾。用户还可以通过西门子PLC设置接口修改喷雾周期及管道吹扫时间等。 电控系统将干雾抑尘机与现场设备的控制信号连接起来,以便实现自动控制。 1.3螺杆式空气压缩机 螺杆式空气压缩机的作用是为微米级干雾抑尘系统提供标准气源。 1.4喷雾箱/万向节喷雾器总成 接收由干雾抑尘机输送来的气、水并将其转化成颗粒直径为1~10μm的干、烟雾喷射出去,按干雾抑尘机的控制指令喷向抑尘点。当干雾与粉尘颗粒相互接触、碰撞时,使粉尘颗粒相互粘结、凝聚变大,并在自身的重力作用下沉降,从而达到抑尘的作用。

超细银粉编制说明

超细银粉编制说明(预审稿) 二OO七年四月

超细银粉 编制说明 一、计划来源及计划要求 贵研铂业股份有限公司于2006年2月向上级主管部门提出修订GB/T1774-1995国家标准的计划, 2006年4月全国有色金属标准化技术委员会以有色标委(2006)第13号文下达该国家标准的修订任务,国家标准计划号为20060596-T-610,技术归口单位为中国有色金属工业标准计量质量研究所,起草单位为贵研铂业股份有限公司。 本标准主要起草人:赵玲、刘继松、黄富春、陈伏生、马晓峰。 二、编制过程 国家标准GB/T1774-1995从发布至今已有十多年,在这十多年的应用过程中随着科学技术的进步,不断开发研究出各类新型超细银粉,导致了原标准中所列出的平均粒径、松装密度等技术参数已不能满足现有生产和使用的要求。 原国家标准GB/T1774-1995《超细银粉》表2中表明超细银粉的平均粒径越大,其松装密度和振实密度就越大,这恰恰与多年的应用结果不符合。由于超细银粉的制备主要与还原温度和还原溶液的浓度有关,所制备出的超细银粉的形貌大不相同,长期应用结果表明超细银粉的粒径与其松装密度和振实密度之间没有任何的线性关系。 现将几种超细银粉主要技术参数列表如下: 超细银粉比表面积的测定方法还按原国标GB/T1774-1995附录A中的方法进行,并在本标准中再次列出。 由于所制备的超细银粉无法做到全部单分散,所以原国家标准GB/T1774-1995

附录中超细银粉平均粒径的测定及其说法本身就不准确,其估算方法复杂,误差较大,而且实用性差。粒径的测定方法将采用现行国家标准GB/T10977.1-2003,即采用激光粒度分析仪进行测定,这种方法操作简单、方便快捷、直观明了,可将粉末的粒径分布及粒度特征参数表示出来。 三、修订技术内容的说明 修订本标准的原则是以国家标准GB/T1774-1995《超细银粉》为基础,既考虑到本标准的先进性,又注重其适应性和可操作性,并根据我国超细银粉的制备能力,分析水平等情况,力求使本标准与国外先进标准接轨。 本标准与原标准相比,主要有如下变动: 1、将原国家标准表1、表2中超细银粉的产品牌号删除,把超细银粉分为三 大类,即把产品牌号FAgH-1、FAgH-2、FAgH-3、FAgH-4改为编号1、2、3。 2、增加了粒径特征参数D 10、D 50 、D 90 ,微粒尺寸分布中D 90 表示90%的微粒, D 50表示50%的微粒,D 10 表示10%的微粒。 3、删除了原国家标准表2中的平均粒径尺寸。 4、对超细银粉的松装密度和振实密度进行了合理调整,见本标准表2。 5、采用国家标准GB/T10977.1《粒度分析激光衍射法》对超细银粉的粒度进 行测量,并标明粒径特征参数。 6、另外根据电子产品无铅、无镉化的国际趋势,增加Cd为化学成份必测元 素,并在本标准表1中列出。 四、与现行法规、标准的关系 本标准完全满足现行国家法规的要求,与现行标准相比,技术参数要求更合理,格式更规范,建议用修订后的标准代替GB/T1774-1995。 五、参考标准 1、GB/T1773 超细银粉化学成份分析方法。 2、GB/T1774 超细银粉比表面积的测定方法。 3、GB/T10977.1 粒度分析激光衍射法。 4、GB/T5060 金属粉末松装密度的测定方法。 5、GB/T5162 金属粉末振实密度的测定方法。

两步热还原法制备太阳能级硅

SiC还原SiO2制备纯硅试验研究 摘要:通过SiC还原SiO2制备纯硅实验研究,采用X 射线衍射分析、荧光分析和化学分析方法及拉曼分析,得到在电流为200A左右温度约为2200℃时采用SiC:SiO2=1:3.5时,SiO2能被彻底还原。这为两步法制备纯硅提供了依据,为由碳热直接还原SiO2制备高纯硅提供了新的思路。 关键词:二氧化硅碳化硅热还原制备纯硅 硅材料既是人类进步的基石,又是社会现代化的物质基础与先导。硅是最重要的半导体材料,其用量占全部半导体材料的90%以上,硅有许多得天独厚的特点:如硅资源丰富,无匮乏之虞;硅中杂质的分凝系数对物理提纯非常有利,可以获得接近本征的纯度;硅工艺非常成熟,已形成一个颇具规模的大工业等特点。硅的物理化学性质及以上特点决定硅有着丰富的用途例如整流器、晶体三极管、集成电路、探测器、传感器、太阳能电池等光敏元件;金属陶瓷;光导纤维等。 以二氧化硅制备纯硅的方法很多,主要包括热还原法和熔盐电解法等,而热还原法多用碳作为还原剂,而在本研究中以碳化硅为还原剂制备纯硅;该方法是一种新的制备纯硅的工艺。有其独特的优势,可以为制备二氧化硅还原制备太阳能级纯硅 实验设备实验原料及研究方法 实验原料 利用PW2040X射线荧光光谱仪对原料硅和二氧化硅进行定性半定量分析,分析结果如下表所示: 二氧化硅矿石主要化学成分(wt%) Si O Gr 由上表数据经过计算得可能有少量的单质硅单质硅(1.3042)SiO2纯度达到98.6296% ,没有一般硅石里含有的Fe、Al、Ga等杂质,而杂质Gr的含量相对较高。

使用BT-2001型激光粒度仪对试验原料二氧化硅进行粒度分析,检测结果如下图所示,由图可得二氧化硅的粒度分布区间时2um~342um,中位径为92.23um。 实验设备及过程 本实验在钨极电弧真空熔炼炉中进行,该设备如图所示该装置由杭州大华仪器公司和中国科学院材料物理重点实验室联合研制,由真空机组、真空室、电弧枪、熔炼电源、铜坩埚、水冷设备及测量系统等组成。主要技术指标1、电极直径: 5mm;电极长度: 80mm;2、样品:ISSP-AMF1型:一次熔炼7个样品,每孔熔炼总量:5~20g;ISSP-AMF2型、ISSP-AMF3型:一次熔炼6个样品,每孔熔炼总量:30~50g;3、极限真空度:ISSP-AMF1、ISSP-AMF2型:2×10-3Pa;4、ISSP-AMF2、ISSP-AMF3型含一个吸铸工位及两个孔径的浇铸模具;5、供电电源:ISSP-AMF1型:单相AC220V,50Hz;额定工作电流: 160A;ISSP-AMF2、ISSP-AMF3型:三相AC380V,50Hz;最大熔炼电流:500A。

超细银粉的国内标准04

超细银粉的国内标准 前 言 本标准代替GB/T1774-1995《超细银粉》。 本标准与GB/T1774-1995相比,主要有如下变化: ——将原国家标准表1、表2中超细银粉的产品牌号删除,即把产品牌号FAgH-1、FAgH-2、FAgH-3、FAgH-4改为编号1、2、3。 ——增加了粒径特征参数D10、D50、D90,微粒尺寸分布中D90表示90%的微粒,D50表示50%的微粒,D10表示10%的微粒。 ——删除了原国家标准表2中的平均粒径尺寸。 ——对超细银粉的松装密度和振实密度进行了合理调整,见本标准表2。 ——采用国家标准GB/T10977.1-2003 《粒度分析激光衍射法》对超细银粉的粒度进行测量,并标明粒径特征参数。 ——另外根据电子产品无铅、无镉化的国际趋势,增加有害杂质元素Cd的最高允许量为0.001%。 ——本标准中增加了烧损率、比表面积、微粒尺寸分布等要求。 本标准的附录A为规范性附录。 本标准由中国有色金属工业协会提出。 本标准由全国有色金属标准化技术委员会归口。 本标准有贵研铂业股份有限公司负责起草。 本标准起草人:赵玲、刘继松、黄富春、陈伏生、马晓峰。 本标准由全国有色金属标准化技术委员会负责解释。 本标准所代替标准的历次版本发布情况为: ——GB/T1774-1988、GB/T1774-1995。 超细银粉 1 范围 本标准规定了超细银粉的产品分类、技术要求、试验方法、检验规则及标志、包装、运输、贮存和合同或订货单。

本标准适用于电子工业用超细银粉。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1773 片状银粉 GB/T 5060 金属粉末松装密度的测定 第二部分 斯柯特容量计法 GB/T 5162 金属粉末—振实密度的测定 GB/T 19077.1 粒度分析 激光衍射法 GB/T 15555.2 固体废物 铜、锌、铅、镉的测定 3 产品分类 根据超细银粉粒径(D10、D50、D90)尺寸不同及比表面积不同,产品分成三类,其编号分别表示为:1、2、3。 4 要求 4.1 超细银粉的化学成分应符合表1的规定。 表1 超细银粉的化学成分 单位为质量百分比 编号 Ag 含量 不小 于 杂质含量,不大于 Pt Pd Au Rh Ir Cu Ni Fe Pb Al Sb Bi Cd 杂质总量 1 2 99.95 0.002 0.002 0.002 0.001 0.001 0.01 0.005 0.01 0.001 0.005 0.001 0.002 0.001 0.05

纳米银粉的制备工艺研究

第21卷第3期河南教育学院学报(自然科学版)V01.21No.32012年9月JournalofHenanInstituteofEducation(NaturalScienceEdition)Sep.2012 doi:lO.3969/j.issn.1007—0834.2012.03.007 纳米银粉的制备工艺研究 张永强1’2,杨长春1 (1.郑州大学化学系。河南郑州450001;2.河南教育学院化学系,河南郑州450046) 摘要:以抗坏血酸(Vc)为还原剂,以聚乙烯吡咯烷酮(PVP)为分散剂,将硝酸银溶液通过化学还原来制备纳米银粉.讨论了加料方式、分散荆用量、温度以及硝酸银浓度对银粉粒径的影响.通过优化反应条件。制得了平均粒径 最小为50nm左右的银粉. 关键词:抗坏血酸;硝酸银;纳米银;制备 中图分类号:0646.5文献标识码:A文章编号:1007—0834(2012)03—0019—03 银粉是一种重要的贵金属粉末,广泛应用于催化剂、抗菌材料、医药材料、电子浆料等领域.银粉是乙烯环氧化催化剂的主要成分H3;把银纳米微粒加入到织物中可以消除异味;医用纱布中渗入纳米银粒子具有消毒杀菌作用心1;由于金属银具有良好的导电性,银粉还是制作电子浆料、导电涂层等的主要原料.超细银粉的制备方法有很多种,大体分为物理法和化学法.物理法b3主要有气相蒸发凝聚法、研磨法和雾化法等.化学法¨3是制备银粉的最重要的方法,现在工业上所用超细银粉大多采用此法制备,该法就是用还原剂把银离子从它的盐或配合物水溶液中以粉末的形式沉积出来. 本文以抗坏血酸为还原剂,以聚乙烯吡咯烷酮为分散剂,将硝酸银溶液通过化学还原来制备纳米银粉.通过优化反应条件,制得了平均粒径最小为50nm左右的银粉,比文献[5]制得的平均粒径0.3—1¨m、文献[6]制得的0.8—1.2斗m的银粉都要小. 1实验 1.1试剂及仪器 试剂:硝酸银、抗坏血酸、水合肼、聚乙二醇(PEG)、聚乙烯醇(PVA)和聚乙烯吡咯烷酮。仪器:烧杯、磁力搅拌器、球形滴液漏斗、DZF一6050型干燥箱、ALC一110型电子天平、SIZION200型场发射扫描电子显微镜、XD一3AX射线衍射仪. 1.2实验原理 实验表明,用还原性较强的水合肼做还原剂时,反应速度快,生成的银粉团聚成较大的颗粒.因此本实验采用还原性相对较弱的抗坏血酸为还原剂.我们分别比较了分散剂PEG、PVA和PVP的分散效果.在用量相同的情况下,用PEG时,银粉发生了团聚;PVA分散效果虽好,但在室温下不易溶于水;PVP分散效果好,且室温时在水溶液中的溶解度较高,因此本实验选PVP为分散剂.硝酸银被还原成银颗粒后,自然沉降一段时间,银粉与上清液分离后,先后经水洗、乙醇洗至无杂质,烘干,即得纳米银粉.抗坏血酸与硝酸银反应原理如下 2AgN03+C6H806=2Ag+C6H606+2HN03. 2结果与讨论 2.1银粉的形貌 图1和图2是在一定条件下制得的银粉的XRD图和SEM图.图1的衍射峰与银的标准图谱中的一致,没有其他物质的峰,表明我们制得的是纯银.衍射峰窄而尖锐,说明银的结晶性良好.由银粉的SEM图可见,银粉分散均匀,设有团聚,平均粒径在50Ill左右. 收稿日期:2012—06—07 基金项目:河南省自然科学基金资助项目(112300410023);河南省教育厅自然科学项目(2011A150011) 作者简介:张永强(1977一),男,河南焦作人,郑州大学化学系在读博士研究生、河南教育学院化学系讲师 万方数据

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验 一、试剂和材料 1) 柠檬酸钠(Na3C6H507?2H2O,AR) 天津市化学试剂三厂 2) 氯金酸溶液(HAu Cl4?4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。 3) 所用水均为超纯水(电阻值大于15 MΩ) 4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。 5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等. 实验方法 (一)小粒径金纳米粒子(约15 nm)的制备 1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。 注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。 注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通

风橱中清洗。王水用后回收作为最后清洗器具使用。 2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。 3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。 4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。 注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。冷凝管充满水后,将冷却水水量调小,以节省用水。 5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

微米级

微米级“耙子”让太阳能电池转换率倍增 利用一个微小的耙子,可能提高塑料太阳能电池的转换效率。 混合供体(donor)聚合物与受体(acceptor)的许多聚合物组合可用于形成一个完整的塑料太阳能电池。遗憾的是,有些最佳组合往往因为聚集在一起而减少了电子转移时的表面积——从供体(转移电子)到受体(让太阳能电池中的电子通过,传送至到太阳供电的装置)。然而,透过一个微米级的“耙子”即可排解这些聚集,并形成纳米级晶体,使得表面积倍增,从而提高2倍的输出功率。 美国斯坦福大学(Stanford University)材料与能源科学研究所(SIMES)将这一过程称为“流体强化晶体工程”(FLUENCE)。 “我们分别使用了供体和受体聚合物材料——即全聚合物太阳能电池,在涂布期间利用微米级耙子爬梳,可使所用的模型系统效率倍增,”SIMES成员之一的华裔教授鲍哲南表示。 现在一般都会为全塑料太阳能电池选择使用聚合物,因为聚合物较不会聚集,即使产生的激子也很少会是易于聚集的聚合物。然而,利用这种FLUENCE技术,可让太阳能电池利用聚合物实现聚光功能——每个光单位所产生的激子(电子/电洞对),从而优化转换效率,使其输出功率较传统的涂布方式增加一倍。 柱状竖立的1微米间距“流体强化晶体工程”或FLUENCE“耙子”的扫描电子显微镜(SEM)图 Source:斯坦福大学 “这种微米级的耙子可加以调谐而与现存的聚合物配方共同作业。然而,根据所使用的聚合物系统,耙子的效应也有所差异,但在聚合物倾向于聚集成一大块的情况下最有效。它可利用显微级的耙子使其分散成小块,实现更有效率的激子解离,”鲍哲南说。

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

化学还原法制备银纳米颗粒

Vol.25No.2安徽工业大学学报第25卷第2期April2008J.ofAnhuiUniversityofTechnology2008年4月 文章编号:1671-7872(2008)02-0120-03 化学还原法制备银纳米颗粒 晋传贵1a,姜山1a,陈刚1b,2 (1.安徽工业大学a.材料科学与工程学院;b.冶金与资源学院,安徽马鞍山243002;2.马鞍山钢铁股份有限公司技术中心,安徽马鞍山243000) 摘要:在70℃时采用聚乙烯吡咯烷酮(PVP)和氢氧化钠的混合水溶液,利用葡萄糖还原硝酸银制备了银纳米颗粒。采用X射线衍射(XRD)、能量分散谱(EDS)和扫描电子显微镜(SEM)对所制备的银纳米颗粒进行了表征。结果表明该法制备的银颗粒为纯的银纳米颗粒,呈球形,粒径分布集中在20~50nm之间。 关键词:银;纳米颗粒;化学还原法 中图分类号:O614.122文献标识码:A PreparationofSilverNanoparticlesbyChemicalReductionMethod JINChuan-gui1a,JIANGShan1a,CHENGang1b,2 (1.AnhuiUniversityofTechnologya.SchoolofMaterialsScienceandEngineering;b.SchoolofMetallurgyandResources,Maanshan243002,China;2.TechnologyCenter,Ma'anshanIron&SteelCo.Ltd.,Ma'anshan243000,China) Abstract:SilvernanoparticlesarepreparedbyreductionofaqueoussolutionofAgNO3inthepresenceofpolyvinylpyrrolidone(PVP)andNaOHatthetemperatureof70℃,glucosewasusedforthereductionagent.ThesilvernanoparticleswerecharacterizedbyusingX-raydiffraction(XRD),energydispersivespectrometer(EDS)andscanningelectronmicroscope(SEM).Theresultsshowedthatthesilvernanoparticlesproducedbythismethodarepureandsphericalwithnarrow-dispersedsizedistributionrangingfrom20nmto40nm. Keywords:silver;nanoparticles;chemicalreductionmethod 银纳米颗粒由于其优良的传热导电性、表面活性、表面能和催化性能,在电子、催化、光学等领域具有很大的潜在应用价值[1-2],越来越受到广泛的关注。近年来,银纳米颗粒制备技术迅速发展,制备方法多种多样。按反应条件,主要包括还原剂还原[3]、光照、电极电解、超声电化学法[4]、辐射化学还原法、微乳液法[5]等。这些方法有的工艺控制难度大、产物不稳定;有的设备较为复杂,难以批量化生产。化学还原法因其设备简单、操作方便,成为制备超细银粉的主要方法。本研究采用聚乙烯吡咯烷酮(PVP)作保护剂和价格低廉、还原能力温和的葡萄糖作还原剂,用简单工艺制备银纳米颗粒。 1实验 称取15g葡萄糖和5gPVP,配制成300mL混合水溶液,利用氢氧化钠溶液调节其pH值至11;称取6g硝酸银配制成100mL水溶液。在恒温水浴锅中将上述溶液加热至70℃,将硝酸银溶液以30滴/min的速度均匀地滴加到葡萄糖混合溶液中,搅拌15min得到黑色悬浊液。将此悬浊液离心分离,所得固体沉淀用去离子水和无水醇各洗涤3遍,于50℃下真空干燥,得黑色粉末试样。采用日本理学Rigaku公司的D/Max-2500型X射线衍射仪表征样品的晶型和粒度;采用扫描电子显微镜(philips-xl-30)附属能谱仪测定样品成收稿日期:2007-09-18 基金项目:863项目资助(2006AA03Z466) 作者简介:晋传贵(1966-),男,安徽无为人,教授,博士。

【CN110061107A】一种微米级二极管芯片及制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910336922.2 (22)申请日 2019.04.24 (71)申请人 深圳第三代半导体研究院 地址 518000 广东省深圳市龙华区观湖街 道虎地排121号锦绣大地11号楼 (72)发明人 田朋飞 闫春辉 周顾帆 方志来  张国旗  (74)专利代理机构 北京中知法苑知识产权代理 事务所(普通合伙) 11226 代理人 李明 (51)Int.Cl. H01L 33/00(2010.01) H01L 33/06(2010.01) H01L 33/32(2010.01) (54)发明名称 一种微米级二极管芯片及制备方法 (57)摘要 本发明提供一种微米级二极管芯片,包括: 第一台面,第二台面,氮化镓层,n -GaN层,应力释 放层,多量子阱发光层,p -GaN层,第一电极,第二 电极,绝缘层,所述第一台面与第二台面尺寸不 同。本发明避免原有LED输出光功率小,热膨胀率 和晶格常数同GaN失配大的技术问题,实现了在 同一块芯片上集成了通信,照明,探测等多种功 能的同时, 光提取效率高的技术效果。权利要求书2页 说明书6页 附图4页CN 110061107 A 2019.07.26 C N 110061107 A

权 利 要 求 书1/2页CN 110061107 A 1.一种微米级二极管芯片,其特征在于,包括: 第一台面,第二台面,氮化镓层,n-GaN层,应力释放层,多量子阱发光层,p-GaN层,电流扩展层,第一电极,第二电极,绝缘层,所述第一台面与第二台面尺寸不同。 2.一种如权利要求1所述的微米级二极管芯片,其特征在于,所述第一台面与第二台面中较大尺寸台面尺寸为100微米*100微米~1毫米*1毫米;所述第一台面与第二台面中较小尺寸台面尺寸为3微米*3微米~250微米*250微米。 3.一种如权利要求1所述的微米级二极管芯片,其特征在于,采用沉积微米尺寸的电流扩展层限制二极管发光面积的方法制备第二台面。 4.一种如权利要求1所述的微米级二极管芯片,其特征在于,所述第一台面为照片光源,所述第二台面为通信系统发射端,芯片背面为通信系统接收端。 5.一种微米级二极管芯片制备方法,其特征在于,包括: 步骤1:在衬底上通过曝光获得台面区域,所述台面区域包括第一台面; 步骤2:在所述台面区域采用沉积微米尺寸的电流扩展层限制二极管发光面积的方法获得第二台面; 步骤3:曝光定义隔离区域及电极区域。 6.一种如权利要求5所述微米级二极管芯片制备方法,其特征在于,所述步骤1包括:在蓝宝石衬底GaN基外延片的基础上均匀旋涂光刻胶,通过曝光定义台面区域,所述蓝宝衬底打磨抛光。 7.一种如权利要求5所述微米级二极管芯片制备方法,其特征在于,所述步骤2包括: 步骤1.1:采用湿法腐蚀的方法将无光刻胶区域的电流扩展层腐蚀至p-GaN表面; 步骤1.2:采用干法刻蚀的方法将无光刻胶区域刻蚀至n-GaN区域; 步骤1.3:去除残余光刻胶,重新均匀旋涂光刻胶并曝光获得所述台面区域,所述台面区域包括第一台面。 8.一种如权利要求5所述微米级二极管芯片制备方法,其特征在于,所述步骤2采用沉积微米尺寸的电流扩展层限制二极管发光面积的方法为:沉积减小ITO尺寸;或,采用CHF3等离子钝化p-GaN层;或,采用低能电子束辐照激活p-GaN参杂。 9.一种如权利要求5所述微米级二极管芯片制备方法,其特征在于,所述采用CHF3等离子钝化p-GaN层包括: 步骤2.1:采用湿法腐蚀的方法将无光刻胶区域的电流扩展层腐蚀至p-GaN表面; 步骤2.2:去除残余光刻胶,热退火令ITO与p-GaN形成欧姆接触; 步骤2.3:采用化学气相沉积的方法沉积SiO2绝缘层; 步骤2.4:定义第二台面。 10.一种如权利要求6所述微米级二极管芯片制备方法,其特征在于,所述步骤3包括: 步骤3.1:生长绝缘层; 步骤3.2:曝光定义绝缘层腐蚀区域; 步骤3.3:采用干法刻蚀或湿法腐蚀在腐蚀区域刻蚀隔离区域; 步骤3.4:去除残余光刻胶,重新均匀旋涂光刻胶并曝光,定义出电极区域; 步骤3.5:蒸镀Ni/Au金属层,去除残余光刻胶。 11.一种如权利要求6-10所述微米级二极管芯片制备方法,其特征在于,所述光刻胶为 2

银粉分类及用途

银粉分类及用途 以下资料根据中科院贵金属实验器材供应商“希雨科技”提供。有需更详细资料请搜索“希雨科技”咨询索取索取。 一,银粉背景信息 银粉是电子工业中应用最为广泛的一种金属粉末。近几十年来 ,随着科学技术的进步 ,特别是电子工业的高速发展 ,银粉的制备无论在技术还是设备上都取得了长足的进展 ,已经相当成熟。 二,银粉的分类 银粉按粒度可分为以下几种。细银粉 : 平均粒径为 10 ~ 40 μ m ; 极细银粉: 平均粒径为0. 5 ~ 10 μ m ;超细银粉: 平均粒径小于 0. 5 μ m[1 ] 。一般把粒径小于 0. 1μm的称为纳米银粉。 三,用途 银粉是电气和电子工业的重要材料 ,是电子工业中应用最广泛的一种贵金属粉末 ,为厚膜、电阻、陶瓷、介质等电子浆料的基本功能材料。 近年来 ,纳米微粒和纳米材料已成为材料科学领域的研究的热点之一。纳米级银粉 ,除了具有常规银粉的一些性能外 ,还具有特殊的性能 ,可用作导电银浆 ,在化纤织物中添加纳米银 ,可改变其导电性能,并使化纤织物有很强的杀菌能力; 纳米银晶体 , 作为稀释致冷机的热交换器 , 效率比传统材料高30 % ,纳米银粉还是有机合成中非常好的催化剂[2 ,3 ] 。由此可见 ,银粉具有广阔的应用前景。 四,国内生产现状 银粉是组成导电银浆最关键的材料 ,其质量直接或间接影响浆及最终形成导体的性能。近几十年来,随着

微电子工业突飞猛进的发展 ,对贵金属粉尤其是在微电子中应用最广的银粉的制备和工艺学研究取得了很大进展。 我国银粉的研究和开发起于 60 年代初 ,八、九十年代进入快速发展阶段 ,在这段时期政府投入大 , 有许多单位参与了银粉制备技术的研究 ,并生产出许多系列的银粉 ,填补了国内空白。目前 ,我国基本上能生产出各种品种和性能的银粉。

一种超细银粉和丙酮酸钙的联合生产方法

一种硅太阳能电池正面电极银浆及其制备方法 技术领域 [0001] 本发明涉及一种硅太阳能电池正面电极银浆及其制备方法,适用于高光电转化效率、高印刷精度要求的硅太阳能电池系统,属于新材料和太阳能电池领域。背景技术 [0002] 太阳能电池是一种能将太阳能转换成电能的半导体器件,在光照的条件下太阳能电池会产生电流,通过栅线和电极将电收集起来并传输出去。工业化生产晶体硅电池由将p型晶硅材料切片,经清洗、化学腐蚀制绒;在受光面磷扩散制成p-n结;涂氮化硅减反射层;用丝网印刷法将铝浆印在硅片背面,将银浆印在硅片正反面;干燥、烧结成为电池片等几个环节组成。正面电极分栅极线和主电极线,栅极主要是接受光转换产生的多数载流子;而主电极主要是使电池片与外部线路连接。正面电极的性能影响太阳能电池的电性能,如开路电压、短路电流、并联电阻、串联电阻、转换效率等技术指标。 [0003] 太阳能电池正面电极银浆比背面极银浆技术要求高和消耗量大二倍,要求具备以下几个条件:1)能够穿透减反射膜,使浆料与硅基板形成有效接触;2)具有较高的导电性能,实现低串联电阻;3)较高的线分辨率,以尽量减少重影;4)有良好的焊接性能,以连接外部线路。 [0004] 太阳能电池导电银浆主要由银粉、玻璃粉粘合剂、有机载体和添加剂四部分组成。银粉作为导电介质;玻璃粘合剂在高温烧结时熔化,在银粉和硅基底之间形成欧姆接触;有机载体主要起分散和包裹银粉颗粒的作用,使导电银浆中的银粉不容易沉淀和氧化。添加剂作用是提升银粉浆料的工艺性能与综合性能,进一步改进导电银浆导电性能。 [0005] 太阳能电池导电银浆的关键技术指标主要由银粉的性能决定,而银粉性能主要取决于其形貌结构特征、粒度及粒度分布。银粉在太阳能电池导电银浆中占其质量的70%-90%,是决定银浆和形成银电极性能的关键因素。银粉结构形貌可以是球形、类球形、棒状、片状、树枝状等,片状银粉微粒之间是面接触,理论上导电性会更好一些,但太阳能电池正面电极要求高宽比尽量大,以减少银电极线对硅片的光遮挡,所以太阳能电池导电银浆一般采用球形或类球形银粉。若银粉粒度过大,银浆印刷时就不能完全通过丝网,短时间内也无法烧结致密,烧结膜容易出现孔洞,从而影响导电性。若银粉粒度过小,银粉浆料不易被有机载体完全润湿,导致印刷效果不好,烧结后银膜收缩率大、孔洞多和连接不致密。实验证明采用粒径在1-3μm的球形银粉能够取得良好的电性能,而颗粒均匀性较好的银粉会降低电池的反向漏电流,从而提高开路电压与短路电流,并有效提升并联电阻与转换效率等电性能参数。 [0006] 正面电极导电银浆中的玻璃粉在高温时熔融,蚀刻减反射膜,并在硅基片和银电极间形成连接。为了取得更好的欧姆接触,正面电极银浆中玻璃粉必须对氮化硅减反射膜具有很好的蚀穿性。传统的正面电极导电银浆中,一般采用含有氧化铅的玻璃粉,因为含铅玻璃粉具有较低的熔点,对氮化硅减反射膜有很好的蚀穿性,同时使银电极具有良好的附着力和较好的电池性能。但是传统的正面电极银浆中铅玻璃在电极烧结过程中容易引起氮化硅减反射膜过度蚀穿。此外,含铅太阳能电池导电银浆存在环境和安全隐患,其使用己受到限制,将逐渐淘汰,无铅环保型导电银浆才能满足大规模太阳能电池生产需求。

还原法制备超细 Pd

文章编号:025329837(2005)1020855204 研究论文:855~858 收稿日期:2005201204. 第一作者:王 寰,女,1978年生,博士研究生.联系人:李 伟.Tel :(022)23508662;E 2mail :weili @https://www.doczj.com/doc/206822732.html,.基金项目:国家自然科学基金(20273035)、天津市自然科学基金(033802511)和南开大学创新课题基金资助项目. KBH 4还原法制备超细Pd/γ 2Al 2O 3催化剂及其在蒽醌加氢反应中的应用 王 寰, 李 伟, 张明慧, 陶克毅 (南开大学化学学院材料化学系新催化材料科学研究所,天津300071) 摘要:通过K BH 4还原浸渍到载体上的Pd 物种制备了超细Pd/γ2Al 2O 3催化剂,并采用X 射线衍射、高倍透射电镜、能谱、能 量损失谱和电感耦合等离子体发射光谱等对其进行了表征.结果表明,催化剂中活性组分Pd 以纳米尺度的微晶形式存在,而不是Pd 2B 非晶态合金.蒽醌加氢制双氧水反应证明,与浸渍焙烧法制备的PdO/γ2Al 2O 3催化剂相比,经K BH 4还原制得的Pd/γ2Al 2O 3催化剂中钯的晶体颗粒更小,分散度更高,从而催化剂的活性更高,其氢化效率比PdO/γ2Al 2O 3提高了35%.关键词:钯,氧化铝,硼氢化钾,蒽醌,加氢中图分类号:O643 文献标识码:A Preparation of U ltraf ine Pd/γ2Al 2O 3C atalyst by KBH 4R eduction and Its Application to Anthraquinone H ydrogenation WANG Huan ,L I Wei 3 ,ZHANG Minghui ,TAO Ke yi (Institute of New Catalytic M aterials Science ,College of Chemist ry ,N ankai U niversity ,Tianjin 300071,China ) Abstract :The ultrafine Pd/γ2Al 2O 3catalyst was prepared by impregnation of alumina support with PdCl 2solu 2tion followed by K BH 4reduction.The microstructure of Pd/γ2Al 2O 3was investigated by X 2ray diffraction ,high resolution electron microscopy ,energy dispersive spectroscopy and electron energy loss spectroscopy.The results show that the Pd species exists as Pd nanocrystals in the as 2prepared catalyst ,and no Pd 2B amorphous alloy was https://www.doczj.com/doc/206822732.html,pared with the PdO/γ2Al 2O 3catalyst prepared by impregnation and calcination ,the ultrafine Pd/γ2Al 2O 3exhibits higher activity in the hydrogenation of 22ethylanthraquinone.This can be attributed to the unique properties of the ultrafine Pd/γ2Al 2O 3,such as smaller Pd crystals and the higher dispersion of Pd on the support. K ey w ords :palladium ,alumina ,potassium borohydride ,anthraquinone ,hydrogenation 20世纪50年代,Schlesinger 等[1]将少量钴盐或镍盐加入硼氢化钠溶液制得了具有催化活性的黑色细小颗粒,60年代初Brown 等[2]研究了该催化剂对氢化反应的催化性能,随后Linderoth 等[3]证明这些细小黑色颗粒是长程无序而短程有序的Ni 2B 非晶态合金,由此这种新材料得到越来越广泛的重视与研究,其作为催化剂在加氢反应中所显示的高比活性和优良的选择性更是日益引起人们的关 注[4~7].近几年,随着研究的不断深入,国内外研究者用不同方法制备了贵金属2硼非晶态合金催化剂[8~13].Deshpande 等[9]用K BH 4还原法制备了非负载型及负载型Ru 2Sn 2B 非晶态合金,并通过X 射线衍射(XRD )、X 射线光电子能谱(XPS )和透射电镜(TEM )等表征方法考察了二者的性质;Xie 等[11]用K BH 4还原法制备了Ru 2B 非晶态合金催化剂,通过XRD ,XPS 和扫描电镜(SEM )等表征方法确认了 第26卷第10期 催 化 学 报 2005年10月Vol.26No.10 Chi nese Journal of Catalysis October 2005

相关主题
文本预览
相关文档 最新文档