当前位置:文档之家› PSO算法应用于图像处理研究综述论文

PSO算法应用于图像处理研究综述论文

PSO算法应用于图像处理研究综述论文
PSO算法应用于图像处理研究综述论文

基于PSO算法的图像处理应用研究现状

综述

摘要:粒子群优化(PSO)算法是一种源于人工生命和鸟群捕食行为的优化技术,PSO算法通过粒子搜寻自身的个体最好解和整个粒子群的全局最好解来更新完成优化。该算法原理简单、所需参数较少、易于实现,目前已经应用到很多领域,其中就包括应用于图像处理问题。本文在此基础上,总结概括了PSO算法应用于图像处理问题上的研究现状,具体地分为应用于图像分割问题、图像识别问题、图像压缩问题、图像融合问题和其他图像处理领域的一些问题。并简要的展望了关于PSO算法应用于图像处理问题上的若干发展方向,以期可以为以后的学者提供一个值得深入研究探讨的指导。

关键词:PSO算法;图像处理;图像分割;图像识别;图像融合

1 引言

Eberhart和Kennedy[1]通过对Heppner鸟类模型进行研究,认为鸟类寻找栖息地与对一个特定问题寻找解很类似,并通过修正该模型,使其具有社会性和智能性,以使微粒能够降落在最优解处而不降落在其它解处,提出了粒子群算法。粒子群算法的基本思想是模拟鸟类的群体行为构建的群体模型。

粒子群算法作为一种进化计算,同样沿用进化计算中“群体”和“进化”的概念,同样是依据微粒的个体适应值进行计算。在PSO算法中,粒子群中的微粒表示问题的一个候选解,是由速度和位置两部分组成的个体,在n维搜索空间中飞行。微粒一方面具有自我性,可以根据自我的经验去判断飞行的速度和位置;另一方面具有社会性,可以根据周围微粒的飞行情况去调整自己的飞行速度和位置,不断地寻找个性和社会性之间的平衡。

设Xi=(xi1,xi2…xin)为微粒i当前位置,Vi=(vi1,vi2…vin)为微粒i的当前速度。在进化过程中,记录微粒到当前为止的历史最好位置为Pi=(pi1,pi2…pin),所有微粒的全局最好位置为Pg=(pg1,pg2…pgn)。最初始的PSO算法的进化方程可描述为:

(1),(2)

为了改善(1)式的收敛性能,Y.Shi与R.C.Eberhart[2]于1998年首次在速度进化方程中引入惯性权重,(1)式变为:

(3)

其中,w称为惯性权重,用来实现全局搜索和局部开发能力之间的平衡。Y.Shi 和R.C.Eberhart通过试验表明,w随代数增加线性减少取值可得较好的试验结果。现在,基本粒子群算法通常是指(2)式和(3)式。

基本粒子群算法的流程如下:(1)依照初始化过程,对粒子群算法的随机位置和速度进行初始化;(2)根据定义的适应值,计算每个微粒的适应值;(3)对于每个微粒,根据微粒的适应值与该微粒历史最好位置的适应值相比较,求微粒的历史最好位置;(4)将全局最好位置的适应值与每个微粒的历史最好位置的适应值相比较,求粒子群的全局最好值;(5)根据方程进化每个微粒的速度和位置;(6)判断终止条件是否满足,如果不满足,返回第二步,否则算法结束。

PSO算法一提出就吸引了广泛的注意,各种关于PSO算法应用研究的成果不断涌现,有力地推动了PSO的研究,其中PSO应用于图像处理领域的研究逐渐成为热门。在此基础上,本文将对现有的关于PSO算法的应用于图像处理领域的研究现状给予一定的总结和归纳,以期可以给后来的研究者一个可以值得深入研究和探讨的方向。

2 PSO算法在图像处理问题上的应用

随着计算机信息技术的高速发展,人们越来越多的利用计算机来获取和处理视觉图像信息,因此对图像的处理得到了越来越广泛的应用。人类从外界获取的信息中有80%是来自视觉或者说图像信息,这包括图像、图形、视频、文本、数据等,图像是人类最有效的信息获取和交流方式,因此在日常生活中占据重要的地位。目前,计算机图像处理在生物医学、遥感航天、工业、军事等方面都有着广泛的应用。

数字图像处理(Digital Image Processing)又称为计算机图像处理,是指将图像信号转换为数字信号并利用计算机对其进行处理的过程。在图像处理领域,图像

信息呈现出复杂性和多样性特征,普遍存在着图像信息处理的不完整性、不确定性以及建模困难等问题。因此,智能优化算法在图像处理领域得到广泛应用,并在某些方面取得了比传统方法更好的效果。其中就包括应用PSO算法于图像处理领域。

数字图像处理技术涉及数学、计算机科学、模式识别、人工智能、信息论、生物医学等多门学科,是一门多学科交叉应用的技术。其内容十分丰富,主要包括图像分割、图像识别、图像压缩、图像融合、图像增强、图像恢复和图像理解等内容。结合本文的主要内容,下面对应用PSO算法于图像分割、图像识别、图像压缩和图像融合的研究现状作一个综述。

2.1 应用于图像分割问题

图像分割是指根据图像的灰度、彩色、几何形状、空间纹理等特征把图像划分成各具特性的若干个互不相交的区域,使得这些特性在同一区域内表现出相似性,在不同区域表现出明显的不同性,以至提取出人们感兴趣目标的技术和过程,就是在一副图像中,把目标从背景中分离出来,以便于后续处理。图像分割是图像处理与模式识别中一项重要而基础的技术手段,其目的是把图像分割成一些有意义的或者应用中感兴趣的区域,这些区域与现实中的各类目标相对应。为了辨识和分析目标,必须将有关区域分离提取出来,在此基础上才有可能对目标的特征进行提取和测量。可以说,图像分割是成功地进行图像分析、理解和描述的前提条件。

图像分割一直是计算机图像理解中一个十分活跃的研究领域,同时图像分割也是一个十分困难的问题。优化算法应用于图像分割领域一般有两种情况:一是帮助现有的图像分割算法在参数空间内搜索参数;二是在侯选的分隔空间内搜索最优的分隔方案。目前,粒子群算法主要应用于第一种情况,利用PSO算法的全局搜索性能加速或优化现有的闽值分割算法,常用来确定分割闭值。

Li Jian-ming[3]等将粒子群算法应用于Otsu法,采用Otsu法进行图像分割时的质量测试公式作为适应度函数,提出了基于粒子群算法的最大类间方差图像分割方法,其收敛速度和分割效果胜过传统的Otsu法;为分割信噪比较低的图像,唐英干[4]等将各粒子群算法和二维Otsu法结合,提出了基于粒子群和二维Otsu 法的快速图像分割算法,其计算量远低于二维Otsu法,且能得到理想的分割结

果;zhangRub[5]等将粒子群算法和最大嫡法结合,采用图像的嫡计算公式来计算适应度,提出了基于粒子群的最大嫡水下图像分割,能以较低的计算量有效分割对比度很低的水下图像;DuFeng[6]等将粒子群算法和最大二维嫡法结合应用于红外图像分割,能大大减少计算量,并得到理想的分割结果;YinPeng-yeng[7]将粒子群算法和最小交叉嫡结合,提出了基于粒子群的多级最小交叉嫡闭值选择方法,采用递归设计技术减少计算量,通过粒子群算法搜索最佳闭值,能满足实时应用的需要;杜峰,施文康[8]等提出了基于粒子群算法的二维最大熵图像分割方法,该方法运用粒子群算法对图像的二维阈值空间进行全局搜索,并将搜索得到的二维熵最大值所对应的点灰度-区域灰度均值对作为阈值进行图像分割。实验结果表明,由于该方法考虑了点灰度和区域灰度均值,且采用了离散的全局搜索算法,所以不仅得到了令人满意的分割效果,而且大大的提高了计算速度。

Fan[9]等提出了基于混合最优估计算法的多级阐值方法,将PSO和EM(Expeetion-maximization)算法结合应用于复杂图像的分割,能很快地得到多级闭值;Olnran[10, 11]将粒子群算法和图像聚类结合,提出了基于粒子群的图像聚类分割算法,其性能优于C均值图像聚类分割算法,随后提出的动态聚类图像分割算法,能自适应地确定图像的聚类数,实现自适应的聚类分割;胡萍萍[12]对粒子群算法的基本思想和基本原理进行深入分析,在此基础上提出了两种改进的PSO 优化算法,即PSO-KFCM 和PSO-DCT,并将两种算法分别用于医学图像的聚类分割和数字水印的嵌入及提取。通过仿真实验,并与现有算法进行比较分析,证明了新算法的准确性、有效性;Fang[13]等将粒子群算法和神经网络训练结合,并应用于白血细胞的图像分割,能提高算法的收敛性能,避免算法陷入局部最优。

周欣[14]以粒子群算法为核心,研究混沌粒子群算法在二维Fisher 图像分割中的应用,并比较粒子群算法和混沌粒子群算法在优化中的效率;陈允杰[15]等提出了基于高斯混合模型的活动轮廓模型脑MRI分割,利用粒子群的一种改进算法求解高斯混合模型的参数,能提高参数精度,应用于脑核磁共振图像(MRI)时分割效果良好;张颖[16]等将粒子群算法引入柔性形态学用来选取最佳图像边缘,取得了较好效果;徐小慧[17]等将粒子群优化算法应用于图像分割中,通过寻找使得总体熵最大的阈值作为图像的分割阈值;张新娟[18]对粒子群算法进行

了改进,将改进后算法用于图像的二位最大墒分割法中进行仿真实验。仿真实验结果显示了改进算法收敛性比原粒子群算法收敛性有明显的提高,并在图像分割中分割的效果很理想;孙越泓[19]提出一种以互信息和类距离测度为优化目标,用SdPSO算法为优化技术的图像聚类分割算法,使得聚类分割后图像的平均离散度、类内距离最小,类间距离最大,聚类分割后的图像与原图像之间的互信息量最大。

由于PSO算法需要预先设定的参数相对较少,且只要做细微调整就可以广泛应用于不同场合,且通过合理设计不易陷入局部收敛,所以将其应用于图像分割中较其它进化算法具有更大的优势和更好的效果。运用PSO算法解决了用其它加速算法优化图像分割过程中需要预先设置大量参数,并且受分割目标变化及参数变化影响大的缺点,使得图像分割的可操作性和实时性得到了很大的提高,是一种有效的方法,具有较好的应用前景。

2.2 应用于图像识别问题

图像识别是模式识别的重要内容,而模式识别又是人工智能的重要分支之一。图像识别的目的是对文字、图像、图片、景物等模式信息加以处理和识别,以解决计算机与外部坏境直接通信这一重要问题,主要包括数据获取、数据处理和判别分类三个环节。

Senaratne[20]将粒子群算法应用于人脸识别,提出了人脸识别的优化标志模型匹配方法,利用粒子群算法搜索代表人脸的最优模型,实现人脸的识别;Sugisaka[21]将粒子群算法和神经网络结合用于人脸的探测,提出了基于神经网络的人脸探测搜索方法,其性能胜过经典的穷举搜索方法;程国建[22]等把二进制粒子群优化算法(BPSO)应用到人脸识别中。对人脸图像进行二维离散余弦变换(DCT),获得人脸图像的特征向量,应用BPSO算法对得到的特征向量进行特征选择,得到最具代表性的人脸特征。与遗传算法(GA)相比,在选择的特征较少的情况下,BPSO算法比遗传算法有更好的识别率。实验结果表明,BPSO 算法应用到人脸识别中有较高的识别率,是一种非常有效的特征提取方法。

YangHua-chao[23]提出了基于PSO和支持向量机(SupportveetorMaehine,SVM)的高光谱图像特征选择方法,利用混沌粒子群算法的全局优化能力和支持向量机的良好分类能力能有效地提取到最优波段,具有较高的分类准确性;Fumin[24]

等提出了基于粒子群的照片时间戳自动识别方法,利用PSO优化算法确定一组合适的参数,对包含时间戳的区域进行精细分割和模板匹配,从而完成时间戳识别,具有很高的识别正确率。朱音[25]提出的基于图像规格化与Zemike矩相结合的目标识别方法,该方法通过把图像进行紧凑化,再结合紧凑化后图像边缘轮廓Zemike矩的计算,使得由于人眼或摄像机的观察视角不同而引起物体的各种形变,校正到一个紧凑图像,再通过各高阶Zemike矩的不同特征,进行不同模式的目标识别。

图像识别技术应用的范围很广,如视频交通流信息采集、指纹的识别等。基于PSO算法的图像识别技术为更好的识别图形中的信息提供了有效的途径,与原有的图像识别技术比较,理论上基于PSO算法的图像识别技术提高了效率,具有可实现性和有效性。

2.3 应用于图像压缩问题

图像压缩的基本思想是:具有自相似性的几何体可以用一组简单的代数关系式表达。主要理论基础是迭代函数系统理论和拼贴定理,要解决的问题是当把被压缩的图像作为吸引子时如何得到迭代函数系统的参数。

TsengChun-chieh[26]等将粒子群算法应用于分形图像压缩,提出了基于视觉信息的PSO分形图像压缩方法,PSO通过利用图像块边缘特性的视觉信息,能加快编码速度,保护图像质量,其编码速度比全遍历搜索方法要高125倍;Li Xiao xia[27]等提出了一种基于JPEG和PSO的隐写方法,利用PSO算法进行最优置换矩阵的搜索,同时将待隐藏的秘密信息进行无损压缩,以降低实际嵌入信息量,保证隐藏大信息量的stego图像。

陈玉萍[28]将粒子群算法的基本理论与基于量子行为的粒子群算法的基本理论应用到图像压缩中,并建立模型,通过仿真实验证明粒子群优化算法用于图像压缩优化的可行性。姜来[29]等提出一种基于粒子群优化算法的图像矢量量化码书设计算法,该算法引入粒子群的全局搜索策略,结合矢量量化码书设计方法,增加了算法解的随机性和多样性。实验结果显示,本算法与传统LBG码书设计算法相比,具有更强的鲁棒性,可有效解决LBG算法对初始码书的依赖性,能获得性能较好的码书。

随着信息化社会的高速发展,图像是人们获取信息的主要来源,高质量、高

效率的压缩技术意味着更好的图像视觉效果、更快的传输率和更小的数据存储量,研究新的、更高效的图像压缩理论和方法是当前的需要。结合PSO算法的优点,应用算法于图像压缩中,研究表明,图像的重建质量明显提高,压缩比增大。PSO算法较稳定,收敛速度和收敛精度更高;在图像压缩研究中,该算法使图像的压缩比和图像重建质量都有很大的提高。

2.4 应用于图像融合问题

图像融合是指将不同类型的传感器获得的同一场景的多种信息特征,采用一定的融合算法有机结合起来,产生新图像的技术。图像融合是信息融合的一种强有力工具,作为一门新兴学科有着广阔的发展前景。该技术综合利用各种传感器获得的不同源图像在空间上的相关性及信息上的互补性,以获得对同一场景更为清晰、全面、精确的图像描述,以便图像的进一步分析、理解以及目标的检测、识别或跟踪。图像配准是医学、遥感图像处理、目标识别、图像重建、机器人视觉等领域中的关键技术之一,是图像融合的基础。根据成像模式的性质不同,配准可以分为单模配准和多模配准。单模配准是指待配准的多幅图像是用同一种设备获取的;多模配准是指待配准的多幅图像来源于不同的成像设备。

YinPeng-yeng[7]提出了基于粒子群的点匹配算法,利用粒子群优化算法求解变换参数,在有效性和效率方面胜过遗传算法和模拟退火算法;杨延西等将混沌粒子群方法用于图像匹配,实验结果证明该方法的有效性且该方法很好的解决了噪声情况下的图像匹配[30];谭佳琳则对比基本粒子群算法和混沌粒子群算法进行了大量的实验,也证明了粒子群应用于地形匹配的有效性和高效性[31]。

H.Talbi和M.C.Batouche[32]提出了基于粒子群的图像配准,利用改进的粒子群算法来求解配准所需的空间变换参数;Wachowiak[33]将改进粒子群算法应用于多模态的生物医学图像配准,取得较好效果;李小林[34]对相关匹配中的最大互相关算法进行了改进,减少了相似性度量的计算量,缩短了匹配时问;对标准PSO进行了改进,提出了一种混合粒子群优化算法,改善了标准PSO自身的性能,并将改进的算法用作图像匹配的搜索策略,提出了基于HPSO优化的图像匹配算法,提高了匹配效率。

冯林[35]等提出了一种粒子群优化算法和Powell混合优化方法进行图像配准,经检验,这种方法能有效地克服互信息函数的局部极值,大大地提高了配准

精度,达到亚像素级。田霞[36]研究的内容是粒子群优化算法在图像融合中的应用问题,且研究的是像素级图像融合。结合图像融合规则中闲值和参数大多凭主观经验设定难以确保最佳融合效果的问题,在改进粒子群优化算法的基础上将其应用于图像融合中,以获得较好的融合质量和效果。

牛轶峰和沈林成[37, 38]将粒子群算法和图像融合结合,提出了基于MOPSO算法的多目标多聚焦图像融合,利用粒子群算法对融合参数进行多目标优化搜索,为多目标多聚焦的图像融合提供了一种新的思路和方法。牛轶峰[38]提出了一种基于MOPSO的多目标多聚焦图像融合方法,简化了多聚焦图像的融合模型,以模型参数最为决策变量,采用MOPSO算法进行多目标优化搜索,克服了参数配置对经验的依赖性;滕春英[39]提出了基于量子行为的粒子群优化算法(QPSO)在图像融合在中的应用,以融合指标均方根误差(RMSE)最小为适应度函数,设计了基于QPSO的求解算法;之后滕春英[40]提出了一种基于HSL和QPSO的图像融合算法,利用QPSO算法求解HSI变换中光谱强度分量的最优变换问题,使最后变换后的图像与多光谱图像和全色图像都有很强的相关性;闫允一[41]将PSO 应用于小波域图像融合中,小波区域图像融合算法中若干阂值和系数多是凭主观经验而得,很难确保达到最佳的融合效果,该文将粒子群优化融合规则中的关键阑值和系数,使得融合图像质量达到最优。

目前图像融合评价指标受到了人们的极大关注,通过评价指标可以对具体的融合算法设置最优参数以及对不同的图像源选取最优的融合算法。由于图像信息的多样性,如何定义融合算法的客观评价标准是比较困难和复杂的。有时客观评价会与人眼的感知有偏差,因此,应将人眼的主观因素考虑到评价体系中,或考虑基于视觉特性的融合评价体系中,所以,进一步完善图像融合质量和融合算法性能的评价体系有待继续。

2.5 应用于图像处理领域的其他问题

PSO算法在图像处理的其他领域中也得到了较为广泛的应用,主要有:Zhang yan[42]等将粒子群算法应用于图像的纹理合成,利用粒子群算法对基于块采样的纹理合成算法的搜索匹配过程进行了改进,改变了原算法的全遍历搜索过程,在不影响合成质量的前提下加快了合成速度。李乐[43]以EIT图像重构为研究对象,提出了电阻抗正问题的数学模型,并分析粒子群优化算法和量子粒子群优化算法

的优缺点,最终选定了使用量子粒子群优化算法来进行电阻抗图像重构,最后做了大量的仿真实验来验证该算法的可行性。梁睿[44]将文化算法融入粒子群算法框架以得到文化粒子群算法,并将其应用于线性规划图像增强中,以获得新的优化适应度函数。对图像增强的效率和效果的理论分析及相关实验结果表明,所提方法可行,且相对于传统直方图均衡法在图像增强效果方面有一定程度的改善,能满足人眼视觉感知的需要。赵子鹏[45]采用粒子群的一种新的拓扑结构—树状结构解决分类问题,提出的粒子编码方式是在现有研究者研究成果的基础上,针对特定领域进行了微许改进,应用于图像检索问题并取得了非常理想的效果。

3 总结及展望

本文主要概括了当前学术界应用PSO算法于图像处理问题上的研究现状,具体地说,图像处理问题主要可以分为图像分割、图像压缩、图像识别、图像融合和其他一些图像处理的领域。通过分析粒子群算法及其在图像处理领域的应用研究现状,发现粒子群算法应用于图像预处理问题上的理论和应用研究还比较少,图像预处理主要是指图像增强、图像复原等两个方面。目前,PSO算法在这两个方面均具有值得进一步深入探索和研究的价值。两个方面主要是指:(1)在图像增强方面。经过多年的研究和发展,多种学科的共同发展促进了图像增强算法的进步,在当前的国际社会,图像增强算法和国民经济发展有着紧密的联系,这就要求在图像增强算法上还需要下很大的功夫,才能紧跟时代发展的步伐。有很多图像增强方法要经过相互融合,适当运用经验法才能达到适合人眼视觉的效果,而且有关图像增强效果的定量评价指标相当有限。对于灰度图像增强,对比度变换是一种较为有效的方法,但如何实现图像对比度的自适应增强还需进一步研究;对于彩色图像滤波,已有的矢量滤波器通常不能自适应地确定滤波器窗口内像素之间的空间距离对滤波效果的影响,将遗传算法应用于矢量滤波器虽能实现彩色图像的自适应滤波,但算法的复杂度较高。

(2)在图像复原方面。目前,对基本粒子群算法的改进方法很多,但是在像复原领域的应用不是很多,随着对智能算法的研究的不断深入和不断改进,它在图像处理方面将有着更广泛的应用。现在也没有统一的图像复原方法,现有的图像复原方法必须要有较多的先验知识或约束条件,而且计算求解比较复杂,对噪声十分敏感;在维纳滤波图像复原中,为确定最佳噪信功率比,必须具备一定

的图像先验知识,这使其应用受到了一定局限。粒子群算法应用于图像恢复中还不是很完善,需要更多、更好的数学模型并做理论上的研究。

参考文献

[1] Eberhart R, Kennedy J. A new optimizer using particle swarm theory, 1995[C]. IEEE, 1995.

[2] Shi Y, Eberhart R C. Parameter selection in particle swarm optimization, 1998[C]. Springer,

1998.

[3] Li J, Chi Z, Yu L, et al. The Maximum Variance Between Clusters Method of Image

Segmentation Based on Particle Swarm Optimization, 2006[C]. IEEE, 2006.

[4] Yin P. Particle swarm optimization for point pattern matching[J]. Journal of visual

communication and image representation, 2006,17(1):143-162.

[5] Zhang R, Liu J. Underwater image segmentation with maximum entropy based on Particle Swarm

Optimization (PSO), 2006[C]. IEEE, 2006.

[6] Feng D, Wenkang S, Liangzhou C, et al. Infrared image segmentation with 2-D maximum

entropy method based on particle swarm optimization (PSO)[J]. Pattern Recognition Letters, 2005,26(5):597-603.

[7] Yin P. Multilevel minimum cross entropy threshold selection based on particle swarm

optimization[J]. Applied mathematics and computation, 2007,184(2):503-513.

[8] 杜峰施文康. 红外小目标的证据理论识别方法[J]. 光电工程, 2005,08:6-8.

[9] Fan S S, Lin Y. A multi-level thresholding approach using a hybrid optimal estimation

algorithm[J]. Pattern Recognition Letters, 2007,28(5):662-669.

[10] Omran M G. Particle swarm optimization methods for pattern recognition and image

processing[Z]. University of Pretoria, 2004.

[11] Omran M, Engelbrecht A P, Salman A. Particle swarm optimization method for image

clustering[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005,19(03):297-321.

[12] 胡萍萍. 粒子群算法在图像处理中的应用研究[D]. 中国石油大学, 2008.

[13] Yi F, Chongxun Z, Chen P, et al. White blood cell image segmentation using on-line trained

neural network, 2006[C]. IEEE, 2006.

[14] 周欣. 粒子群算法在图像处理中的应用研究[D]. 湖北工业大学, 2011.

[15] 陈允杰张建伟韦志辉夏德深王平安. 基于高斯混合模型的活动轮廓模型脑MRI分割[J]. 计

算机研究与发展, 2007,09:1595-1603.

[16] 张颖陈雪波王宁. 粒子群优化算法在柔性边缘检测方法选取中的应用[J]. 清华大学学报(自

然科学版), 2007,S2:1751-1755.

[17] 徐小慧张安. 基于粒子群优化算法的最佳熵阈值图像分割[J]. 计算机工程与应用,

2006,10:8-11.

[18] 张新娟. 改进粒子群优化算法及其在图像分割中的应用[D]. 陕西师范大学, 2011.

[19] 孙越泓. 基于粒子群优化算法的图像分割研究[D]. 南京理工大学, 2010.

[20] Senaratne R, Halgamuge S. Optimised landmark model matching for face recognition, 2006[C].

IEEE, 2006.

[21] Sugisaka M, Fan X. An effective search method for NN-based face detection using PSO, 2004[C].

IEEE, 2004.

[22] 程国建石彩云朱凯. 二进制粒子群算法在人脸识别中的应用[J]. 计算机工程与设计,

2012,04:1558-1562.

[23] YANG H, ZHANG S, DENG K, et al. Research into a feature selection method for hyperspectral

imagery using PSO and SVM[J]. Journal of China University of Mining and Technology,

2007,17(4):473-478.

[24] Fumin B, Aiguo L, Zheng Q. Photo time-stamp recognition based on particle swarm optimization,

2004[C]. IEEE Computer Society, 2004.

[25] Chang C, Chen T, Chung L. A steganographic method based upon JPEG and quantization table

modification[J]. Information Sciences, 2002,141(1):123-138.

[26] Tseng C, Hsieh J, Jeng J. Fractal image compression using visual-based particle swarm

optimization[J]. Image and Vision Computing, 2008,26(8):1154-1162.

[27] Huang T, Mohan A S. A microparticle swarm optimizer for the reconstruction of microwave

images[J]. Antennas and Propagation, IEEE Transactions on, 2007,55(3):568-576.

[28] 陈玉萍. 群体智能算法在图像压缩中的应用研究[D]. 江南大学, 2007.

[29] 姜来黄彩玲纪震. 基于粒子群优化算法的矢量量化图像压缩方法[J]. 深圳大学学报,

2006,03:268-271.

[30] 杨延西刘丁辛菁. 基于混沌粒子群优化的图像相关匹配算法研究[J]. 电子与信息学报,

2008,03:529-533.

[31] 谭佳琳. 基于粒子群优化的地形匹配导航算法研究[D]. 哈尔滨工程大学, 2009.

[32] Talbi H, Batouche M. Hybrid particle swarm with differential evolution for multimodal image

registration, 2004[C]. IEEE, 2004.

[33] Wachowiak M P, SmolíkováR, Zheng Y, et al. An approach to multimodal biomedical image

registration utilizing particle swarm optimization[J]. Evolutionary Computation, IEEE Transactions on, 2004,8(3):289-301.

[34] 李小林. 混合粒子群优化算法及其在图像匹配中的应用研究[D]. 西安电子科技大学, 2010.

[35] 冯林张名举贺明峰戚正君. 用改进的粒子群算法实现多模态刚性医学图像的配准[J]. 计算

机辅助设计与图形学学报, 2004,09:1269-1274.

[36] 田霞. 混合粒子群优化算法在图像融合中的应用[D]. 陕西师范大学, 2009.

[37] Niu Y, Shen L. A novel approach to image fusion based on multi-objective optimization, 2006[C].

IEEE, 2006.

[38] 牛轶峰沈林成. 基于IMOPSO算法的多目标多聚焦图像融合[J]. 电子学报,

2006,09:1578-1583.

[39] 滕春英须文波孙俊. 基于QPSO的图像融合算法的研究[J]. 计算机应用研究,

2007,05:298-299.

[40] 滕春英须文波孙俊. 基于HSI变换和QPSO变换的图像融合算法[J]. 计算机工程与应用,

2007,16:45-46.

[41] 闫允一. 粒子群优化及其在图像处理中的应用研究[D]. 西安电子科技大学, 2008.

[42] Zhang Y, Meng Y, Li W, et al. Particle swarm optimization-based texture synthesis and texture

transfer, 2004[C]. IEEE, 2004.

[43] 李乐. 基于量子粒子群算法的电阻抗图像重构研究[D]. 重庆大学, 2012.

[44] 梁睿吴成茂王阳. 基于文化粒子群算法的快速图像增强方法[J]. 西安邮电学院学报,

2012,04:29-34.

[45] 赵子鹏. 粒子群优化算法及其在图像检索中相关反馈上的应用[D]. 吉林大学, 2006.

图像处理实验-图像增强和图像分割

图像处理实验 图像增强和图像分割 一、实验目的: 掌握用空间滤波进行图像增强的基本方法,掌握图像分割的基本方法。 二、 实验要求: 1、测试图像1中同时含有均值为零的均匀分布噪声和椒盐噪声。用大小为5×5的算术均值滤波器和中值滤波器对图像进行处理,在不同窗口中显示原图像及各处理结果图像,并分析哪一种滤波器去噪效果好? 2、对测试图像2进行图像分割,求出分割测试图像2的最佳阈值。分别显示原图、原图的直方图(标出阈值)、和分割后的二值图。 实验内容: 1. 实验原理 1) 图像增强:流程图: 图像增强可以通过滤波的方式来完成,即消除一部分的噪声。滤波又可以分为均值滤波和中值滤波。 1. 中值滤波原理:中值滤波就是选用一个含有奇数个像素的滑动窗口,将该窗口在图像上扫描,把其中所含像素点按灰度级的升(或降)序排列,取位于中间的灰度值来代替窗口中心点的灰度值。

对于一维序列{N f }: 21,},...,,...,{-=∈=+-m u N i f f f M e d y u i i u i i 对于二维序列{ij F }:为滤波窗口W y ij F Med W ij }{= 2. 均值滤波原理:对于含噪声的原始图像g(s,t)的每一个像素点去一个领 域N ,用N 中所包含的相速的灰度平均值,作为领域平均处理后的图像f(x,y)的像素值,即: ∑∈=xy S t s t s g mn y x f ),(),(1),(? 2) 图像分割: 图像分割:依据图像的灰度、颜色等特征,将一幅图像分为若干个互不重叠的、具有某种同质特征的区域。

本实验中我们是根据灰度值,将灰度值大于阈值T的像素统一置为255,小于的则置为0。如何求出最合适的分割阈值,则需要用到迭代算法。 迭代法算法步骤: (1) 初始化阈值T (一般为原图像所有像素平均值)。 (2) 用T分割图像成两个集合:G1 和G2,其中G1包含所有灰度值小于T的像素,G2包含所有灰度值大于T的像素。 (3) 计算G1中像素的平均值m1及G2中像素的平均值m2。 (4) 计算新的阈值:T =(m1+m2)/2 。 (5)如果新阈值跟原阈值之间的差值小于一个预先设定的范围,停止循环,否则继续(2)-(4)步。 2.程序代码与分析: 1)图像增强: clear all;clc; %读入图像 I1=imread('Fig5.12(b).jpg'); %均值滤波模板 h1=ones(5,'uint8'); %获取分辨率 [a,b]=size(I1); %创建变量 I2=zeros(a+4,b+4,'uint8'); I3=zeros(a+4,b+4,'uint8'); %复制原始图像 for n=3:a+2 for m=3:b+2 I2(n,m)=I1(n-2,m-2); I3(n,m)=I1(n-2,m-2); end end

关于数字图像处理论文的题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

数字图像处理应用论文数字图像处理技术论文

数字图像处理应用论文数字图像处理技术论文 关于数字图像处理及其应用的研究 摘要:首先对数字图像处理的关键技术以及相应的处理设备进行详细的探讨,然后对数字图像处理的应用领域以及发展趋势进行详尽论述。 关键词:数字图像处理:关键技术;应用领域 0 引言 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪50年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代扔,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系,成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。

1 数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原,以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节。或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。

基于图像处理的森林火灾检测文献综述

本科毕业论文(设计) 文献综述 学生姓名文慧学号091014429 专业机械设计制造 班级机械09-4 及其自动化 指导教师郑嫦娥

基于红外图像处理的森林火灾识别方法研究 1国内外现状 国内外很多公司、科研机构和大学院校都对图像型火灾探测技术进行过大量的研究。 Bosque 公司的BSDS 系统采用红外和普通摄像机进行双波段监控,在准确识别森林火灾的同时还可以区别其它现象的干扰,误报率较低。在大空间火灾监控方面有ISLI 公司和Magnox Electric 公司联合开发的用于电站火灾监控的VSD-8 系统。该系统以视频运动检测软件为主体,使用各种滤波器技术,并与人工智能相结合,进行电站内的火灾监控。 国内相关单位对于图像型火灾探测技术也进行了深入的研究。其中,中国科技大学的火灾科学国家重点实验室的研究处于国际领先的地位。依托火灾科学重点实验室的科大立安公司已经研制出双波段火灾探测器LIAN-DC,并通过相关反面的验收,投入实际应用。同时,上海交通大学,西安交通大学都曾在火灾探测方面进行过积极的研究,并在工程实践中提出过一些算法,其探测手段主要集中在使用红外型摄像机,探测系统的抗干扰性还有待提高。 迄今为止,国内外图像型火灾探测系统还存在误报率高,自动灭火算法误差大等问题。还有待提出更多更好的探测算法以及算法的实现方法。 2常用的探测系统 国内外科研机构和各大公司开发的众多火灾探测系统基于各种火灾识别模式,常见的是感烟探测系统、感温探测系统、火焰探测系统、气体探测系统和复合式探测系统等,感烟探测系统占有量最高,约70%~80%。 2.1感烟探测系统 感烟式火灾探测器主要是利用烟雾传感器探测火灾中产生的烟雾气溶胶,如中国科技大学提出高灵敏度红外图像式烟雾相对浓度测试系统,该系统利用利

图像处理文献综述

文献综述 近年来,随着计算机视觉技术的日益发展,图像处理作为该领域的关键方向受到越来越多研究人员的关注与思考。在现在的日常生活中,由于通信设备低廉的价格和便捷的操作,人们越来越喜欢用图像和视频来进行交流和分享,消费性的电子产品在消费者中已经非常普遍,例如移动手机和数码相机等等。在这个纷繁多变的世界,每天都有数以万计的图像产生,同时信息冗余问题也随之而来。尽管在一定的程度上,内存技术的增加和网络带宽的提高解决了图像的压缩和传输问题,但是智能的图像检索和有效的数据存储,以及图像内容的提取依然没有能很好的解决。 视觉注意机制可以被看做是人类对视觉信息的一个筛选过程,也就是说只有一小部分重要的信息能够被大脑进行处理。人类在观察一个场景时,他们往往会将他们的注意力集中在他们感兴趣的区域,例如拥有鲜艳的颜色,光滑的亮度,特殊的形状以及有趣的方位的区域。传统的图像处理方法是将整幅图像统一的处理,均匀的分配计算机资源;然而许多的视觉任务仅仅只关系图像中的一个或几个区域,统一的处理整幅图像很明显会浪费过多的计算机资源,减少处理的效率 [1,2]。因此,在计算机视觉领域,建立具有人类视觉系统独特数据筛选能力的数学模型显得至关重要。受高效的视觉信息处理机制的启发,计算机视觉领域的显著性检测应运而生。图像显著性检测是通过建立一定的数学模型,让计算机来模拟人类的视觉系统,使得计算机能够准确高效的定位到感兴趣的区域。 一般来说,一个信号的显著性可以表示为其和周围环境的差异性。正是因为这个信号和周围的其他信号的迥异性,使得视觉系统不需要对环境中的所有感兴趣的区域进行逐个的扫描,显著的目标会自动从环境中凸显出来。另外,一些心理学研究表明人类的视觉机制不仅仅是由低级的视觉信号来驱动的,基于记忆、经验等的先验知识同样能够决定场景中的不同信号的显著性,而这些先验知识往往是和一些高层次的事件以及视觉任务联系在一起的。基于当前场景的视觉显著性机制是低级的,慢速的。而基于先验知识的显著性机制通常是和高层次的任务关联在一起的,其效率通常低于由视觉信号驱动的显著性机制。人眼视觉系统通过显著性原理来处理复杂的视觉感知是不争的事实,这种显著性的处理机制使得复杂背景下的目标检测、识别有了很大程度的提升。 在模式识别、计算机视觉等领域,越来越多的计算机工作者致力于开发显著性计算模型,用以简单的表达图像的主要信息。这些显著性模型的检测结果是一个显著性灰度图,其每个像素点的灰度值表示了该像素的显著性,灰度值越大,表明该像素越显著。从信息处理的方式看,显著性模型大致可以分为两类:自顶向下(任务驱动)和自底向上(数据驱动)的方法。 自顶向下的显著性检测方法之所以是任务驱动,这是因为该类模型通常是和某一特定的任务相关。在同样的场景或模式下,检测到的结果因任务的不同而不同是自顶向下模型最突出的特点。例如在目标检测中,检测者需要首先告诉需要检测的目标是什么,检测到的显著性图则表示目标可能出现的位置。自顶向下的显著性检测方法的依据是:如果研究者事先知道需要检测目标的颜色、形状或者方向等特征,那么该检测算法自然会高效的检测到需要检测的目标。因此,自顶向下的算法通常需要人工标记,或是从大量的包含某种特定目标的图像中学习该类目标的特征信息,这些学习方法一般是监督的;然后求测试图像对于训练学习得到的信息的响应,从而得到测试图像的显著性图。现存的一些自顶向下的算法在某些特定的目标上取得了一定的效果,不过这些算法往往只对某些特定的目标有效,对于复杂多变的自然图像,该类算法存在很大的缺陷。自顶向下的模型是慢速的、任务驱动的,有意识的,以及封闭回路的。由于自顶向下模型的特点,其应用受到了很大的限制。

数字图像处理实验 图像分割

实验报告 实验名称实验四图像分割 课程名称数字图像处理A 姓名成绩 班级学号 日期地点 1.实验目的 (1)了解并掌握图像分割的基本原理; (2)编写程序使用Hough变换处理图像,进行线检测;

(3)编写程序使用阈值处理方法进行图像分割,根据实验结果分析效果; (4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。 2.实验环境(软件条件) Windws2000/XP MATLAB 7.0 3.实验方法 对256级灰度的数字图像camera.bmp(如图4.1所示)和car.bmp(如图4.2所示)进行如下处理: (1)对图像camera.bmp进行Hough变换进行线检测,显示处理前、后图像: 思考如何利用Hough变换进行圆检测; (2)对图像car.bmp分别利用不同的阈值处理方法进行图像中汽车及车牌的分割,显示处理前、后图像;思考不同的阈值处理算法对分割效果的影响? 4.实验分析 实验原理 Hough变换是最常用的直线提取方法,它的基本思想是:将直线上每一个数据点变换为参数平面中的一条直线或曲线,利用共线的数据点对应的参数曲线相交于参数空间中一点的关系,使直线的提取问题转化为计数问题。Hough变换提取直线的主要优点是受直线中的间隙和噪声影响较小。 思考: Hough变换对圆的检测: Hough变换的基本原理在于,利用点与线的对偶性,将图像空间的线条变为参数空间的聚集点,从而检测给定图像是否存在给定性质的曲线。 圆的方程为:222 ()() x a y b r -+-=,通过Hough变换,将图像空间(,) x y对应到参数空间(,,) a b r。 第一题结果图 图4.1 实验图像camera.bmp 图4.2 实验图像car.bmp

数字图像处理论文

华东交通大学理工学院课程设计报告书 所属课程名称数字图像处理期末论文分院电信分院专业班级14 计科 学号20140210440214 学生姓名习俊 指导教师熊渊 2016 年12 月13 日

摘要 数字图像处理是用计算机对图像信息进行处理的一门技术,主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。本文论述了用Matlab编程对数字图像进行图像运算的基本方法。图像运算涵盖了MA TLAB程序设计、图像点运算、代数运算、几何运算等基本知识及其应用(点运算是图象处理的一个重要运算)。以及对图像加入噪声、图像缩放和图像旋转。 关键词图像点运算;代数运算;几何运算;图像缩放;图像旋转

目录 绪论 第一章图像运算 2.1点运算 2.2代数运算 2.3几何运算 第二章程序设计与调试 结束语 参考文献

绪论 早期的计算机无论在计算速度或存储容量方面,难于满足对庞大图像数据进行实时处理的要求。随着计算机硬件技术及数字化技术的发展,计算机、内存及外围设备的价格急剧下降,而其性能却有了大幅度的提高。 图像信息是人类获得外界信息的主要来源,数字图像处理技术越来越多的应用于人们日常工作、学习和生活中。和传统图像处理相比,它具有精度高、再观性好、通用性和灵活性强等特点。在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中也得到了广泛应用。 近几年来,随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从1个专门领域的学科,变成了1种新型的科学研究和人机界面的工具。数字图像作为一门新兴技术,它是二十一世纪五十年代数字计算机发展到相当水平后开拓出来的计算机应用新领域,它把图像转换成数据矩阵存放于计算机中,并进行滤波、增强、删除等处理,包括图像输入输出技术、图像分析、变换于处理技术以及图像识别和特征提取等方面。六十到七十年代数字处理技术的理论和方法更加完善,其准确性、灵活性和通用性逐步提高。 在日常生活中,电脑人像艺术,电视中的特殊效果,自动售货机钞票的识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等均是图像处理的广泛应用。 进行数字图像处理时主要涉及数字图像点运算处理,针对图像的像素进行加、减、乘、除等运算,有效地改变了图像的直方图分布。

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

机器视觉文献综述

文献综述 河北科技师范学院 文献综述 题目:基于计算机视觉测量技术 姓名:张力坤 一.国内外现状 机器视觉自起步发展到现在,已有将近20年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在70~80亿美元,是按照每年8.8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 何谓机器视觉? 简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 机器视觉在国内外的应用现状在国外,机器视觉的应用普及

数字图像处理主题综述汇总

数字图像处理主题综述 姓名: 学号: 201203284 班级: 计科11202 序号: 31 院系: 计算机科学学院 主题: 医学图片处理

目录 1.引言 (3) 2.医学图像三维可视化技术 (3) 3.医学图像分割 (4) 4.医学图像配准和融合 (6) 5.医学图像纹理分析 (8) 6.应用 (9) 7.总结 (10) 8.参考文献 (10)

1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。 2.2关键技术: 图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、

数字图像处理结课论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现 学生姓名: 学号: 学院:理学院 班级:电科班 指导教师:

摘要:图像增强的目的是使处理后的图像更适合于具体的应用,即指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。从总体上可以分为两大类:空域增强和频域增强。频域处理时将原定义空间中的图像以某种形式转换到其他空间中,利用该空间的特有性质方便的进行图像处理。而空域增强是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。本文主要从空域展开图像增强技术,重点阐明数字图像增强处理的基本方法,介绍几种空域图像增强方法。 关键词:图像增强 MATLAB 空域增强锐化空间滤波平滑空间滤波

目录: 1、何为数字图像处理及MATLAB的历史 2、空间域图像增强技术研究的目的和意义 3、空间域的增强 3.1 背景知识 3.2 空间域滤波和频域滤波之间的对应关系 3.3 锐化滤波 3.4 平滑滤波 4、结论 1、何为数字图像处理及MATLAB的历史 数字图像处理(digital image processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。总的来说,数字图像处理包括运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。 MATLAB是由美国Math Works公司推出的软件产品。MATLAB是“Matric Laboratory”的缩写,意及“矩阵实验室”。MATLAB是一完整的并可扩展的计算机环境,是一种进行科学和工程计算的交互式程序语言。它的基本数据单元是不需要指定维数的矩阵,它可直接用于表达数学的算式和技术概念,而普通的高级语言只能对一个个具体的数据单元进行操作。它还是一种有利的教学工具,它在大学的线性代数课程以及其它领域的高一级课程的教学中,已成为标准的教学工具。

相关主题
文本预览
相关文档 最新文档