当前位置:文档之家› 场效应管和三极管的区别

场效应管和三极管的区别

场效应管和三极管的区别
场效应管和三极管的区别

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。

普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。

场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。

场效应管是电压控制元件,而三极管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管。而在信号源电压较低,又允许从信号源取较多电流的条件下,应用三极管。

场效应管靠多子导电,管中运动的只是一种极性的载流子;三极管既用多子,又利用少子。由于多子浓度不易受外因的影响,因此在环境变化较强烈的场合,采用场效应管比较合适。

场效应管的输入电阻高,适用于高输入电阻的场合。场效应管的噪声系

数小,适用于低噪声放大器的前置级。

1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。

2.场效应管是电压控制电流器件,由vGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。

3.场效应管栅极几乎不取电流(ig?0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。

4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,而少子浓度受温度、辐射等因素影响较大,因而场效应管比晶体管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。

5.场效应管在源极水与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大,b值将减小很多。

6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。

7.场效应管和三极管均可组成各种放大电路和开路电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。

8。三极管导通电阻大,场效应管导通电阻小,只有几百毫欧姆,在现在的用电器件上,一般都用场效应管做开关来用,他的效率是比较高的。

场效应管G极必须有一个对地的放电电阻,不然上电就烧,而三极管基极不需要

在只允许从信号源取较少电流的情况下,应选用场效应管;

而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.

晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:

晶体管:基极发射极集电极

场效应管:栅极源极漏极

要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。

场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.

有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好.

场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用

经典三极管与场效应管的比较

第2章晶体三极管和场效应管 教学重点 1 ?掌握晶体三极管的结构、工作电压、基本连接方式和电流分配关系。 2 ?熟练掌握晶体三极管的放大作用;共发射极电路的输入、输出特性曲线;主要参 数及温度对参数的影 响。 3?了解MOS 管的工作原理、特性曲线和主要参数。 教学难点 1 ?晶体三极管的放大作用 2 ?输入、输出特性曲线及主要参数 学时分配 序号 内 容 学时 1 2.1晶体三极管 4 2 2.2场效应管 4 3 本章小结与习题 4 本章总课时 8 2.1晶体三极管 晶体三极管:是一种利用输入电流控制输出电流的电流控制型器件。 特点:管内有两种载流子参与导电。 2.1.1三极管的结构、分类和符号 一、晶体三极管的基本结构 1 ?三极管的外形:如图 2.1.1所示。 2 ?特点:有三个电极,故称三极管。 3?三极管的结构:如图 2.1.2所示。 晶体三极管有三个区一一发射区、 基区、集电区; 两个PN 结一一发射结(BE 结)、集 电结(BC 结); 三个电极一一发射极 e ( E )、基极 图2.1.2 三极管的结构图 图2.1.1三极管外形 雄対箱革极集电姑 坯射纬UK 堆电紬

b(B)和集电极c(C); 两种类型一一PNP 型管和NPN 型管。 工艺要求: 发射区掺杂浓度较大;基区很薄且掺杂最少;集电区比发射区体积大且掺杂少。 二、 晶体三极管的符号 晶体三极管的符号如图 2.1.3所示。 箭头:表示发射结加正向电压时的电流方向。 文字符号:V 三、 晶体三极管的分类 1 .三极管有多种分类方法。 按内部结构分:有 NPN 型和PNP 型 管; 按工作频率分:有低频和高频管; 按功率分:有小功率和大 功率管; 按用途分:有普通管和开关管; 按半导体材料分:有锗管和硅管等等。 2 .国产三极管命名法:见《电子线路》 P 249附录二。 例如:3DG 表示高频小功率 NPN 型硅三极管;3CG 表示高频小功率 PNP 型硅三极 管;3AK 表示PNP 型开关锗三极管等。 2.1.2三极管的工作电压和基本连接方式 一、晶体三极管的工作电压 三极管的基本作用是放大电信号; 工作在放大状态的外部条件是发射结加正向电压, 集电结加反向电压。 如图2.1.4所示:V 为三极管,G C 为集电极电源,G B 为基极电源,又称偏置电源, R b 为基极电阻,R c 为集电极电阻。 二、晶体三极管在电路中的基本连接方式 如图2.1.5所示,晶体三极管有三种基本连接方式: 共发射极、共基极和共集电极接 法。最常用的是共发射极接法。 但八PIS 型 (b) 型 图2.1.3 三极管符号 图2.1.4 三极管电源的接法

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

第四章 场效应管习题答案

第四章 场效应管基本放大电路 4-1 选择填空 1.场效应晶体管是用_______控制漏极电流的。 a. 栅源电流 b. 栅源电压 c. 漏源电流 d. 漏源电压 2.结型场效应管发生预夹断后,管子________。 a. 关断 b. 进入恒流区 c. 进入饱和区 d. 可变电阻区 3.场效应管的低频跨导g m 是________。 a. 常数 b. 不是常数 c. 栅源电压有关 d. 栅源电压无关 4. 场效应管靠__________导电。 ) a. 一种载流子 b. 两种载流子 c. 电子 d. 空穴 5. 增强型PMOS 管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 6. 增强型NMOS 管的开启电压__________。 a. 大于零 b. 小于零 c. 等于零 d. 或大于零或小于零 7. 只有__________场效应管才能采取自偏压电路。 a. 增强型 b. 耗尽型 c. 结型 d. 增强型和耗尽型 8. 分压式电路中的栅极电阻R G 一般阻值很大,目的是__________。 a. 设置合适的静态工作点 b. 减小栅极电流 c. 提高电路的电压放大倍数 d. 提高电路的输入电阻 / 9. 源极跟随器(共漏极放大器)的输出电阻与___________有关。 a. 管子跨导g m b. 源极电阻R S c. 管子跨导g m 和源极电阻R S 10. 某场效应管的I DSS 为6mA ,而I DQ 自漏极流出,大小为8mA ,则该管是_______。 a. P 沟道结型管 b. N 沟道结型管 c. 增强型PMOS 管 d. 耗尽型PMOS 管 e. 增强型NMOS 管 f. 耗尽型NMOS 管 解答: ,c 4. a 7. b,c 8. d 、 4-2 已知题4-2图所示中各场效应管工作在恒流区,请将管子类型、电源V DD 的极性(+、-)、u GS 的极性(>0,≥0,<0,≤0,任意)分别填写在表格中。 D DD (a )题4-2图 D DD (b ) D DD (c )D DD (d ) D DD (e )D DD (f ) 解:

场效应管驱动电阻的经典计算方法

Q L Rg Cgs DR IVE VC C 12V

驱动电压: 驱动电流: 可以看到当Rg比较小时驱动电压上冲会比较高,震荡比较多,L越大越明显,此时会对MOSFET及其他器件性能产生影响。但是阻值过大时驱动波形上升比较慢,当MOSFET有较大电流通过时会有不利影响。 此外也要看到,当L比较小时, 此时驱动电流的峰值比较大,而一般 IC的驱动电流输出能力都是有一定 限制的,当实际驱动电流达到IC输 出的最大值时,此时IC输出相当于 一个恒流源,对Cgs线性充电,驱动 电压波形的上升率会变慢。电流曲线 就可能如左图所示(此时由于电流不 变,电感不起作用)。这样可能会对 IC的可靠性产生影响,电压波形上升 段可能会产生一个小的台阶或毛刺。

TR(nS) 19 49 230 20 45 229 Rg(ohm) 10 22 100 10 22 100 L(nH) 30 30 30 80 80 80 可以看到L 对上升时间的影响比较小,主要还是Rg 影响比较大。上升时间可以用2*Rg*Cgs 来近似估算,通常上升时间小于导通时间的二十分之一时,MOSFET 开关导通时的损耗不致于会太大造成发热问题,因此当MOSFET 的最小导通时间确定后Rg 最大值 也就确定了 Rg 140Ton_min Cgs ,一般Rg 在取值范围内越小越好,但是考虑EMI 的话可以 适当取大。 以上讨论的是MOSFET ON 状态时电阻的选择,在MOSFET OFF 状态时为了保证栅极电荷快速泻放,此时阻值要尽量小,这也是Rsink

场效应管和三极管的区别

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。 普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。 场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。 场效应管是电压控制元件,而三极管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管。而在信号源电压较低,又允许从信号源取较多电流的条件下,应用三极管。 场效应管靠多子导电,管中运动的只是一种极性的载流子;三极管既用多子,又利用少子。由于多子浓度不易受外因的影响,因此在环境变化较强烈的场合,采用场效应管比较合适。 场效应管的输入电阻高,适用于高输入电阻的场合。场效应管的噪声系

数小,适用于低噪声放大器的前置级。 1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。 2.场效应管是电压控制电流器件,由vGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。 3.场效应管栅极几乎不取电流(ig?0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。 4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,而少子浓度受温度、辐射等因素影响较大,因而场效应管比晶体管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。 5.场效应管在源极水与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大,b值将减小很多。 6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。 7.场效应管和三极管均可组成各种放大电路和开路电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。 8。三极管导通电阻大,场效应管导通电阻小,只有几百毫欧姆,在现在的用电器件上,一般都用场效应管做开关来用,他的效率是比较高的。 场效应管G极必须有一个对地的放电电阻,不然上电就烧,而三极管基极不需要 在只允许从信号源取较少电流的情况下,应选用场效应管; 而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管. 晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计: 晶体管:基极发射极集电极 场效应管:栅极源极漏极 要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。 场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.

三极管的判断方法

三极管的判断万法三极管类型 集电极C f N 基极珈0—〒 I V ■ >i ■ ? I! N 发射极E jT NP N PN P 区 结 结 区 电 电 区 射 射 集 集 基 岌 发

1. 先判定基极b(一般中间的就是):先假定一个 管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管 脚,测得或 者都是高阻值时,说明假定正确。 2. 因为红表 笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料,两端是 P型材料,就是PNP型。 3. 所以当测得都是 高阻值时,b是P型材料, N 两端是N型材料,就是NPN型。 4?我们一般可以容易找到基极b,但另外两个电极哪个是集 电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 ⑴对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c P] N—— 1

极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻Rce ;之 后将假 设的c ,e 极对调 再测一 1K档 黑表笔一c极一b极一巳极一红表笔b

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察, 总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔 TC极-b极-e极T红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 ⑵对于PNP型的三极管,道理也类似于NPN型,其电流 流向一定是:黑表笔—e极—b极—c极—红表笔,其电流流 向也与三极管符号中的箭头方向一致,所以此时黑表笔所接 的一定是发射 极e,红表笔所 接的一定是集 电极c 黑表笔一e极一b极一c极一红表笔4. 直流放大倍 数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器, 使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

正确选取MOS管之四大法则

mos管是金属(metal)-氧化物(oxid)-半导体(semiconductor)场效应晶体管,或者称是金属-绝缘体(insulator)-半导体。MOS管的source 和drain是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。 选择好MOS管器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。 确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS.知道MOS 管能承受的最大电压会随温度而变化这点十分重要。我们须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V. 法则之二:确定MOS管的额定电流 该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS 管在"导通"时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显着变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 法则之三:选择MOS管的下一步是系统的散热要求 须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个式子可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。我们已将要通过器件的最大电流,可以计算出不同温度下的RDS(ON)。另外,还要做好电路板及其MOS管的散热。

二极管、三极管与场效应管

电子元器件知识:二极管、三极管与场效应管。 一、半导体二极管 2、半导体二极管的分类 分类:a 按材质分:硅二极管和锗二极管; b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。 3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。 4、半导体二极管的导通电压是: a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间. B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间. 5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。 6、半导体二极管可分为整流、检波、发光、光电、变容等作用。 7、半导体二极管的识别方法:

a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极. b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极. c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。 8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。 变容二极管发生故障,主要表现为漏电或性能变差: (1)发生漏电现象时,高频调制电路将不工作或调制性能变差。 (2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对方接收后产生失真。 出现上述情况之一时,就应该更换同型号的变容二极管。 9、稳压二极管的基本知识

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

三极管三个管脚识别

三极管三个管脚识别1、由三极管外形判断三个管脚

2、用万用表测量判断 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型),并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型: 将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e: 仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、 C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为c 、e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表 测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。

半导体二极管三极管和场效应管

第4章半导体二极管及其应用 电子电路区别于以前所学电路的主要特点是电路中引入各种电子器件。电子器件的类型很多,目前使用得最广泛的是半导体器件——二极管、稳压管、晶体管、绝缘栅场效应管等。由于本课程的任务不是研究这些器件内部的物理过程,而是讨论它们的应用,因此,在简单介绍这些器件的外部特性的基础上,讨论它们的应用电路。 4.1 PN结和半导体二极管 4.1.1 PN结的单向导电性 我们在物理课中已经知道,在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。这是由于形成了有传导电流能力的载流子。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 在一块半导体基片上通过适当的半导体工艺技术可以形成P型半导体和N型半导体的交接面,称为PN结。PN结具有单向导电性:当PN结加正向电压时,P端电位高于N端,PN 结变窄,由多子形成的电流可以由P区向N区流通,见图4-1 (a),而当PN结加反向电压时,N端电位高于P端,PN结变宽,由少子形成的电流极小,视为截止(不导通),见图4-1 (b)。 4.1.2半导体二极管 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。二极管的种类很多,按材料来分,最常用的有硅管和锗管

如何用万用表测量场效应管三极管的好坏.doc

如何用万用表测量场效应管三极管的好坏 导读: 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 一、定性判断MOS型场效应管的好坏 先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。 二、定性判断结型场效应管的电极 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。 注意事项: (1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。 (2)也可以用舌尖舔住栅极,现象同上。 三、晶体三极管管脚判别 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP)

三极管的使用方法

1.三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN而言,如果Uc>Ub>Ue,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce之间的电压是不确定的);如果Ub>Ue, Ub>Uc,该管处于饱和状态,c-e之间导通,其管压降为0.3-0.7V,与截止区相对立,此时该 二极管起到了开关的作用, 如图所示: 般应用在数字电路中。 3.72 12 * 饱和 3. 3 放大区截■ 止 3 区 3 区 对于PNP而言,当Ue>Ub>Uc即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且 Uc>Ub(这时候,Uc^ Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于 开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因 此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c点得工 作电压是不确定的(实际上在真正的电路中c点电压是确定的,但是从电路图中我们看不出 来)。真正的判断方法如下:当I/0引脚为高电平时,b点基极的电流是一定的,那么c点电 流也是一定的,而且是处在了三极管的饱和区,因此b点的电压为0.7v,三极管导通,贝U c 点的电压与e点压相同(比e点略大,约为0.5v,即为Uce),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN三极管断开,c-e之间不导通,那么此时 c 点(OUT)电位为高电平即VCC电压。这从而达到了用单片机引脚来控制Vcc的效果。 综上所述:当I/O为高电平,b-e之间有电压,三极管导通,c-e管压降小,OUT为低电平(Q 0.5);当I/O为低电平时,b-e之间没电压,三极管关断,c-e管压降非常大,OUT为高电平=Vcc; 上面就是NPN的使用方法。我们可以这么理解:在使用NPN时,要尽可能将e端接地,当b 端比e端至少高0.7v时,管子导通;否则管子断开。 同理,我们可以得出PNP三极管的使用电路和方法:

三极管开关原理与场效应管开关原理(看过就全懂了).

三极管开关原理与场效应管开关原理(看过就全懂了) 2009-07-06 02:35 BJT的开关工作原理: 形象记忆法: 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。它只是把电源的能量转换成信号的能量罢了。但三极管厉害的地方在于:它可以通过小电流控制大电流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小

阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。 如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。 如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。 如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。PN结的击穿又有热击穿和电击穿。当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。电击穿又分为雪崩击穿和齐纳击穿两类,一般两种击穿同时存在。电压低于5-6V的稳压管,齐纳击穿为主,电压高于5-6V的稳压管,雪崩击穿为主。电压在5-6V之间的稳压管,两种击穿程度相

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

二极管、三极管、场效应管的学习

二极管 5.1.5 半导体二极管的型号命名 1.国产半导体器件的命名方法 二极管的型号命名通常根据国家标准GB-249-74规定,由五部分组成。第一部分用数字表示器件电极的数目; 第二部分用汉语拼音字母表示器件材料和极性; 第三部分用汉语拼音字母表示器件的类型; 第四部分用数字表示器件序号; 第五部分用汉语拼音字母表示规格号。如表5.1所示。

2.日本半导体器件的命名方法 日本半导体器件命名型号由五部分组成。 第一部分用数字表示半导体器件有效数目和类型。1表示二极管,2表示三极管;第二部分用S表示已在日本电子工业协会登记的半导体器件; 第三部分用字母表示该器件使用材料、极性和类型; 第四部分表示该器件在日本电子工业协会的登记号; 第五部分表示同一型号的改进型产品。具体符号意义如表5.2所示。 美国电子工业协会半导体分立器件命名型号由五部分组成。 第一部分为前缀; 第二部分、第三部分、第四部分为型号基本部分; 第五部分为后缀;这五部分符号及意义如表5.3所示。

5.1.6二极管的伏安特性 实际的二极管伏安特性曲线如图5.5所示,实线对应硅材料二极管,虚线对应锗材料二极管。 图5.5 二极管的伏安特性曲线 1.正向特性 当二极管承受正向电压小于某一数值(称为死区电压)时,还不足以克服PN结内电场对多数载流子运动的阻挡作用,这一区段二极管正向电流I F很小,称为死区。死区电压的大小与二极管的材料有关,并受环境温度影响。通常,硅材料二极管的死区电压约为0.5V,锗材料二极管的死区电压约为0.1V。 当正向电压超过死区电压值时,外电场抵消了内电场,正向电流随外加电压的增加而明显增大,二极管正向电阻变得很小。当二极管完全导通后,正向压降基本维持不变,称为二极管正向导通压降U F。一般硅管的U F为0.7V,锗管的U F为0.3V。以上是二极管的正向特性。 2.反向特性 当二极管承受反向电压时,外电场与内电场方向一致,只有少数载流子的漂移运动,形成的漏电流I R极小,一般硅管的I R为几微安以下,锗管I R较大,为几十到几百微安。这时二极管反向截止。 当反向电压增大到某一数值时,反向电流将随反向电压的增加而急剧增大,这种现象称二极管反向击穿。击穿时对应的电压称为反向击穿电压。普通二极管发生反向击穿后,造成二极管的永久性损坏,失去单向导电性。以上是二极管的反向特性。 5.2 晶体二极管的主要参数 描述二极管特性的物理量称为二极管的参数,它是反映二极管电性能的质量指标,是合理选择和使用二极管的主要依据。在半导体器件手册或生产厂家的产品目录中,对各种型号的二极管均用表格列出其参数。二极管的主要参数有以下几种:1.最大平均整流电流I F(A V) I F(A V)是指二极管长期工作时,允许通过的最大正向平均电流。它与PN结的面积、材料及散热条件有关。实际应用时,工作电流应小于I F(A V),否则,可能导致结温过高而烧毁PN结。 2.最高反向工作电压V RM V RM是指二极管反向运用时,所允许加的最大反向电压。实际应用时,当反向电压增加到击穿电压V BR时,二极管可能被击穿损坏,因而,V RM通常取为(1/2~2/3)V BR。

相关主题
文本预览
相关文档 最新文档