当前位置:文档之家› 2章+随机变量及其分布习题解答

2章+随机变量及其分布习题解答

2章+随机变量及其分布习题解答
2章+随机变量及其分布习题解答

第二章 随机变量及其分布

1、解:

设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010

投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X

2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律

解:X 可以取值3,4,5,分布律为

10

61)4,3,2,1,5()5(1031)3,2,1,4()4(10

11)2,1,3()3(35

2

435

2

335

2

2=?=

===

?====

?=

==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5

P :10

6,

103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

35

22

)0(315313=

==C C X P 3512)1(3

15213

12=?==C C C X P 35

1)2(3

15

113

22=

?=

=C C C X P 再列为下表 X : 0, 1, 2

P : 35

1,

3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

(2

)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。)

(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -

1p k=1,2,……

(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功}

,,2,1,0,

)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,

或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C r

k r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…

P (X 取偶数)=

31

11

45.0)55.0()2(1

121

=

=

=∑

=-∞

=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。

(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。 (2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y 的分布律。

(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率。 解:(1)X 的可能取值为1,2,3,…,n ,…

P {X=n }=P {前n -1次飞向了另2扇窗子,第n 次飞了出去}

=3

1

)32(1?-n , n=1,2,……

(2)Y 的可能取值为1,2,3

P {Y=1}=P {第1次飞了出去}=

3

1 P {Y=2}=P {第1次飞向 另2扇窗子中的一扇,第2次飞了出去}

=3

1

2132=?

P {Y=3}=P {第1,2次飞向了另2扇窗子,第3次飞了出去}

=3

1

!3!2=

∑∑===<===<==

<3

2

3

1}

|{}{}

|{}{}{)3(k k k Y Y X P k Y P k Y Y X P k Y P Y X P ???

? ??==<0}1|{Y Y X P 全概率公式并注意到

278313231313131}

{}{3

2=??

?????+?+?=<==

∑=k k X P k Y P }{}|{,k X P k Y Y X P Y X <==<独立即

注意到

同上,∑=====

=3

1

}|{}{}{k k Y Y X P k Y P Y X P

81

19

2743192313131}{}{3

1

=

?+?+?=

===

=k k X P k Y P 故81

38){}{1}{=

=-<-=

(1)恰有2个设备被使用的概率是多少?

0729.0)9.0()1.0()2(322

525225=??===-C q p C X P (2)至少有3个设备被使用的概率是多少?

00856.0)1.0()9.0()1.0()9.0()1.0()3(55

54452335=?+??+??=≥C C C X P (3)至多有3个设备被使用的概率是多少?

322

5415505)9.0()1.0()9.0(1.0)9.0()3(??+??+=≤C C C X P 99954.0)9.0()1.0(233

5=??+C

(4)至少有一个设备被使用的概率是多少? 40951.059049.01)0(1)1(=-==-=≥X P X P

7、设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号。(1)进行了5 次独立试验,求指示灯发出信号的概率 。(2)进行了7次独立试验,求指示灯发出信号的概率

解: 设X 为 A 发生的次数。 则()0.3,.X B n n=5,7

B:“指示等发出信号“ ① (){}3P B P X =≥5

55

30.30.70.163k k k k C

-===∑

②(){}3P B P X =≥=

{}{}7

2

3

1k P X K P X K ===-=∑∑

7

1

6

2

2

5

10.70.30.70.30.70.353G G =--??-?≈ 8、甲、乙二人投篮,投中的概率各为0.6, 0.7,令各投三次。求 (1)二人投中次数相等的概率。 记X 表甲三次投篮中投中的次数 Y 表乙三次投篮中投中的次数

由于甲、乙每次投篮独立,且彼此投篮也独立。 P (X =Y )=P (X =0, Y=0)+P (X =2, Y=2)+P (X=3, Y=3)

= P (X =0) P (Y=0)+ P (X =1) P (Y=1)+ P (X =2) P (Y=2)+ P (X =3) P (Y=3)

= (0.4)3× (0.3)3+ [])3.0(7.0[])4.0(6.021

3213?????C C

3223223)6.0(]3.)7.0([]4.0)6.0([+?????+C C

321.0)7.0(3=?

(2)甲比乙投中次数多的概率。

P (X>Y )=P (X =1, Y=0)+P (X =2, Y=0)+P (X=2, Y=1)+

P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2) =P (X =1) P (Y=0) + P (X =2, Y=0)+ P (X=2, Y=1)+ P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2)

=+???+???82233213)3.0(]4.0)6.0([)3.0(])4.0(6.0[C C

3213223)6.0(])3.0(7.0[]4.0)6.0([+?????C C 321333)6.0(])3.0(7.0[)6.0()3.0(+???+?C

243.0]3.0)7.0([223=???C

9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求

(1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率

(3)这批产品按第2次检验的标准被接受的概率

(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率 (5)这批产品被接受的概率

解:X 表示10件中次品的个数,Y 表示5件中次品的个数, 由于产品总数很大,故X~B (10,0.1),Y~B (5,0.1)(近似服从)

(1)P {X =0}=0.910

≈0.349

(2)P {X ≤2}=P {X =2}+ P {X =1}=581.09.01.09.01.091

1082210≈+C C (3)P {Y =0}=0.9 5≈0.590

(4)P {0

(5)P {X =0}+ P {0

10、有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。

(1)某人随机地去猜,问他试验成功一次的概率是多少?

(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)

解:(1)P (一次成功)=701

148

=C

(2)P (连续试验10次,成功3次)= 10000

3

)7069()701(

733

10=

C 。此概率太小,按实际推断原理,就认为他确有区分能力。

11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X 服从参数为6的泊松分布。求明年没有此类文章的概率。

解: ().6~πX 6=λ

{}0025.01

06

6≈=

==∴-e e X P 12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。

()4~πX 4=λ

(1){}∑∑

=∞=--?-?==89

9

484!!8r r r e r e X P λλ 029771.0021363.0051134.0=-

= (2)566530.0}4{}3{=≥=>X P X P

13. 某一公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔的起点无关(时间以小时计)。

(1)求某一天中午12时至下午3时没有收到紧急呼救的概率。 (2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。

解:2

t

λ=

()X πλ ①3

2

λ= {}3200.2231P X e -===

②52λ= {} 2.5

1

2.510.918!k k e P X k -∞

=≥==∑

14、解:~(2)X t π

(1)、10t =分钟时1

6t =小时,

{}13

1310.2388!1

k e

e P X k κλ--====

(2)、{}00.

5P X =≥故

()0

220.50.346571

t

t e t -≥?≥(小时)

所以0.34657*6020.79t ≥≈(分钟)

15、解:

{}()(){}10

500005000100.001510.0015100.8622

k k

k P X k P X -=??≤=- ?

??

≤≈∑ 16、解:{}{}{}

011000,0.0001,0.1

2101110.99530.0047

0!

1!

n p np P X P X P X e e λ

λ

λλλ--====≥=-=-==-

-

≈-=

17、解:

设X 服从()01 分布,其分布率为{}()

11,0,1k

k

P X k p p k -==-=,求X 的

分布函数,并作出其图形。

()0,1X

X 的分布函数为:

()0010111x F x p x x ,

=- , ≤

18.在区间[]0,a 上任意投掷一个质点,以X 表示这个质点的坐标。设这个质点落在[]0,a 中任意小区间内的概率与这个小区间的长度成正比例,试求X 的分布函数。

解:① 当0X <时。{}X x ≤是不可能事件,(){}0F X P X x =≤= ②当0x a ≤≤时, {}0P X x kx ≤≤= 而 {}0X a ≤≤是必然事件

{}1

01P X x ka k a

∴≤≤==?= {}0x P X x kx a

∴≤≤==

则 (){}{}{}00x F x P X x P X P X x a

=≤=≤+≤≤=

③当x a >时,{}X x ≤是必然事件,有(){}1F x P X x =≤=

()0001x x F x x a a x a , < ???

∴ , ≤≤?? , >

??

19、以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是

???<≥-=-00

,1)(4.0x x e x F x X

求下述概率:

(1)P {至多3分钟};(2)P {至少4分钟};(3)P {3分钟至4分钟之间}; (4)P {至多3分钟或至少4分钟};(5)P {恰好2.5分钟} 解:(1)P {至多3分钟}= P {X ≤3} =2.11)3(--=e F X (2)P {至少4分钟} P (X ≥4) =6.1)4(1-=-e F X

(3)P {3分钟至4分钟之间}= P {3

20、设随机变量X 的分布函数为???

??≥<≤<=.

,1,1,ln ,1,0)(e x e x x x x F X ,

求(1)P (X<2), P {0

4

5

ln 2ln 25ln )2()25(252(=-=-=<

(2)?????<<==其它

,0,

1,1)(')(e x x x F x f

21、设随机变量X 的概率密度)(x f 为

(1)??

???≤≤--=其它

01112

)(2

x x x f π

(2)???

??≤≤-<≤=其他0

21210)(x x x x x f

求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形。 解:(1)当-1≤x ≤1时: 2

1arcsin 111arcsin 211212120)(212121

++-=

???

???+-=

-+=---∞-?

?

x x x x x x π

dx x πdx x F X

x

当1

1121=+-+=?

??--∞-x

dx dx x πdx x F

故分布函数为:

??

???<≤≤-++--<=x x x πx x πx x F 111121arcsin 11110)(2

解:(2)?

-=

≤=x

dt t f x X P x F )()()(

?

?

?

?

??

?

?

?

?

=+

-+

+

=

<--

=-+

+

=≤≤=

+=<≤==

<∞

-∞

-∞-∞

-1

2

2

1

2

1

1

2

00

1

0)2(0)(,212

2)2(0)(,212

0)(,100

0)(,0x

x

x

x

dt dt t dt t dt x F x x

x dt t dt t dt x F x x dt t dt x F x dt x F x 时当时当时当时当

故分布函数为

?????????<≤≤--<≤<=x x x x x x

x x F 21

21122102

00

)(2

2 (2)中的f (x )与F (x )的图形如下

22、⑴由统计物理学知,分子运动速度的绝对值X 服从迈克斯韦尔

(Maxwell)分布,其概率密度为

()2

20

0x b Ax e x f x -?? , >=?

, ??其它

其中2b m kT =,k 为Boltzmann 常数,T 为绝对温度,m 是分子的质量。试确定常数A 。

解: ① ()1x dx +∞

-∞

=?

()220

x b

f x dx Ax e

dx -

+∞

+∞

-∞

=?

?

2

202x b Ab x xe d b -+∞??

=-- ???

?

2

2

2

000

()|222x

x x b

b b Ab Ab Ab xd e xe e dx ---+∞+∞+∞=-=-+??

x

1 2 0

2

21

2

00

2

x

b

Ab

e dx d x

-

-

+∞+∞?

==?

?

?

1

1

22

Ab

==

2

2

1

2

u

du

+∞-

??

=

?

?

??

?

A

∴=

②当0

t<时,()00

t

T

F t dt

-?

=?=

?

当0

t≥时,()()()241

1

241

x

t t

T T

F t f x dt F t e dt

-

-∞

=?==

??

241

1

t

e-

=-

()

241

0,0

1,0

t

T

t

F t

e t

-

<

??

∴=?

?- ≥

?

{}{}{}()()

501001005010050

P T P T P T F F

∴<<=<-≤=-

50100

e e

--

=-

或{}()

100

50

50100

P T f t dt

<<=?50100

100

241241241

50

1

241

t

e dt e e

---

==-

?

23、某种型号的电子的寿命X(以小时计)具有以下的概率密度:

??

?

?

?

>

=

其它

1000

1000

)

(2

x

x

x

f

现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少?

解:一个电子管寿命大于1500小时的概率为

3

2

)

3

2

1(

1

)1

(

1000

1

1000

1

)

1500

(

1

)

1500

(1500

1000

1500

1000

2

=

-

-

=

?

?

?

?

?

?-

-

=

-

=

-

=

>?x

dx

x

X

P

X

P

令Y表示“任取5只此种电子管中寿命大于1500小时的个数”。则)

3

2

,5(

~B

Y,

{}

243

232

243

11

1

3

2

5

1

1

)

3

1

(

)

3

2

(

)

3

1

(

1

)1

(

)0

(

1

)2

(

1

)2

(

5

4

1

5

5

=

-

=

?

+

-

=

?

?

?

?

?

?

?

?

+

-

=

=

+

=

-

=

<

-

=

≥C

Y

P

Y

P

Y

P

Y

P

24、设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率

密度为:

???

??>=-其它

,00,51)(x e x F x

X

某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律。并求P (Y ≥1)。

解:该顾客“一次等待服务未成而离去”的概率为

210

510

5

10

5

1

)()10(-∞+-

+-

+=-==

=

>?

?

e e

dx e

dx x f X P x

x X

因此5,4,3,2,1(,)1(5)().,5(~5222=-??

?

??==----k e e k k Y P e B Y k k 即

.

5167.04833.018677.01)1353363.01(1)389

.711(1)1(1)0(1)1(1)1(55

5

52=-=-=--=-

-=--==-=<-=≥-e Y P Y P Y P 25、设K 在(0,5)上服从均匀分布,求方程02442=+++K xK x 有实根的概率

∵ K 的分布密度为:?????<<-=其他0

5

0051)(K K f

要方程有根,就是要K 满足(4K )2-4×4× (K+2)≥0。 解不等式,得K ≥2时,方程有实根。

5

305

1

)()2(5

5

22

=

+=

=

≥?

?

?

∞+∞+dx dx dx x f K P 26、设X ~N (3.22)

(1)求P (22},P (X>3)

∵ 若X ~N (μ,σ2),则P (α

? ??-σ

μα

∴ P (2

?

? ??-232=φ(1)-φ(-0.5)

=0.8413-0.3085=0.5328

P (-4

?

? ??--234=φ(3.5)-φ

(-3.5)

=0.9998-0.0002=0.9996 P (|X |>2)=1-P (|X |<2)= 1-P (-2< P <2 )

=??

?????

?? ??--Φ-??? ??-Φ-2322321

=1-φ(-0.5) +φ(-2.5) =1-0.3085+0.0062=0.6977

P (X >3)=1-P (X ≤3)=1-φ??

?

??-233=1-0.5=0.5

(2)决定C 使得P (X > C )=P (X ≤C ) ∵ P (X > C )=1-P (X ≤C )= P (X ≤C )

P (X ≤C )=

2

1

=0.5 又 P (X ≤C )=φ023,5.023=-=?

?

? ??-C C 查表可得 ∴ C =3

27、某地区18岁的女青年的血压(收缩区,以mm-Hg 计)服从)12,110(2N 在该地区任选一18岁女青年,测量她的血压X 。求

(1)P (X ≤105),P (100x ) ≤ 0.05.

解:

3384.06616.01)4167.0(1)4167.0()12

110

105()105()1(=-=Φ-=-Φ=-Φ=≤X P

5952

.017976.021)8333.0(21)6

5

(2)

65

()65()12110100()12110120()120100(=-?=-Φ=-Φ=-Φ-Φ=-Φ--Φ=≤

.

74.129.74.12974.19110.645.112

110

.

95.0)12110

(05.0)12110(1)(1)()2(==+≥?≥-≥-Φ?≤-Φ-=≤-=>X x x x x x X P x X P 故最小的查表得

28、由某机器生产的螺栓长度(cm )服从参数为μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少?

设螺栓长度为X P {X 不属于(10.05-0.12, 10.05+0.12) =1-P (10.05-0.12

=1-???

?????????--Φ-?????

?-+Φ06.005.10)12.005.10(06.005.10)12.005.10( =1-{φ(2)-φ(-2)} =1-{0.9772-0.0228} =0.0456

29、一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X ≤200==0.80,允许σ最大为多少?

∵ P (120<X ≤200)=80.04040160120160200=?

?

? ??-Φ-??? ??Φ=??? ??-Φ-??? ??-Φσσσσ

又对标准正态分布有φ(-x )=1-φ(x )

∴ 上式变为80.040140≥??

?????

?? ??Φ--??? ??Φσσ

解出9

.040:40≥?

?

? ??Φ??? ??Φσσ便得 再查表,得25.31281

.140

281.140=≤≥σσ

30、解:

[]{}{}{}223120

~(120,2) ~(0,1)2

P 118,122P 1181222P 12(10.8413)0.3174

5(1)0.32042V V N X N V V V X p p -=

?==->=-=??

∴-= ???

则p=

31、解:

0 ,0()0.20.8/30 ,0301 ,30x F x x x x

=+≤

32、解:

[]()0,()0,01()(1)()0()(1)()()(1)()(1)1

f x

g x a af x a g x af x a g x dx a f x dx a g x dx a a ∞∞

-∞

-∞-∞≥≥<<∴+-≥+-=+-=+-=?

?? 且

所以()(1)()af x a g x +-为概率密度函数 33、设随机变量X 的分布律为: X :-2, -1, 0, 1, 3

P :

51, 61, 51, 151, 30

11 求Y=X 2的分布律 ∵ Y=X 2:(-2)2 (-1)2 (0)2 (1)2 (3)2

P : 51 61

51 15

1 3011

再把X 2的取值相同的合并,并按从小到大排列,就得函数Y 的分布律为: ∴ Y : 0 1 4 9

P : 51 15161+

5

1 3011

34、设随机变量X 在(0,1)上服从均匀分布 (1)求Y=e X 的分布密度

∵ X 的分布密度为:???<<=为其他

x x x f 01

01)(

Y=g (X ) =e X 是单调增函数 又 X=h (Y )=lnY ,反函数存在 且 α = min [g (0), g (1)]=min (1, e )=1 =βmax [g (0), g (1)]=max (1, e )= e

∴ Y 的分布密度为:??

?

??<

y e y y

y h y h f y ψ0111|)('|)]([)(

(2)求Y=-2lnX 的概率密度。

∵ Y= g (X )=-2lnX 是单调减函数

又 2

)(Y e Y h X -== 反函数存在。 且 α = min [g (0), g (1)]=min (+∞, 0 )=0 β=max [g (0), g (1)]=max (+∞, 0 )= +∞

∴ Y 的分布密度为:?????+∞<<=-?=?=--为其他

y y e e

y h y h f y ψy y 002

1211|)('|)]([)(22

35、设X ~N (0,1)

(1)求Y=e X 的概率密度

∵ X 的概率密度是+∞<<∞-=

-

x e π

x f x ,21

)(2

Y= g (X )=e X

是单调增函数 又 X= h (Y ) = lnY 反函数存在 且 α = min [g (-∞), g (+∞)]=min (0, +∞)=0

β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:

??

???+∞<

为其他y y y e πy h y h f y ψy 00121|)('|)]([)(2)(ln 2 (2)求Y=2X 2+1的概率密度。

在这里,Y=2X 2+1在(+∞,-∞)不是单调函数,没有一般的结论可用。 设Y 的分布函数是F Y (y ), 则 F Y ( y )=P (Y ≤y )=P (2X 2+1≤y )

=???

? ??-≤≤--2121y X y P 当y<1时:F Y ( y )=0

当y ≥1时:?

---

-=???

?

?

?

-≤≤--=21

2

12

221212

1

)(y y x y dx e π

y X y P y F

故Y 的分布密度ψ( y )是:

当y ≤1时:ψ( y )= [F Y ( y )]' = (0)' =0

当y>1时,ψ( y )= [F Y ( y )]' ='???

?

??

?---

-212

12

221y y x dx e

π

=41

)

1(21

---y e y π

(3)求Y=| X |的概率密度。

∵ Y 的分布函数为 F Y ( y )=P (Y ≤y )=P ( | X |≤y ) 当y<0时,F Y ( y )=0

当y ≥0时,F Y ( y )=P (| X |≤y )=P (-y ≤X ≤y )=?

--

y y

x dx e π

221

∴ Y 的概率密度为:

当y ≤0时:ψ( y )= [F Y ( y )]' = (0)' =0

当y>0时:ψ( y )= [F Y ( y )]' =22222

21y y y x e πdx e π---='???

? ???

36、(1)设随机变量X 的概率密度为f (x ),求Y = X 3的概率密度。 ∵ Y=g (X )= X 3 是X 单调增函数,

又 X =h (Y ) =1Y ,反函数存在, 且 α = min [g (-∞), g (+∞)]=min (0, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:

ψ( y )= f [h ( h )]·| h' ( y )| = 0,,3

1)(2

1≠+∞<<∞-?-

y y y y f 但

0)0(=ψ

(2)设随机变量X 服从参数为1的指数分布,求Y=X 2的概率密度。

法一:∵ X 的分布密度为:???≤>=-00

0)(x x e x f x

Y =x 2是非单调函数

当 x<0时 y =x 2 反函数是y x -=

当 x<0时 y =x 2

y x =

∴ Y ~ f Y (y ) = ))(())(('+'--y y f y y f

=???

??≤>=

+-

-0

0,21

210y y e y

e y

y

y

法二:)()()()()(~y X P y X P y X y P y Y P y Y F Y -≤-≤=≤<-=≤=

???

??≤>-=+--?

,

0,100

y y e dx e y

y x

∴ Y ~ f Y (y ) =???

??≤>-.0,0

.0,21y y e y y

37、设X 的概率密度为

???

??<<=为其他x πx πx x f 0

02)(2

求Y =sin X 的概率密度。 ∵ F Y ( y )=P (Y ≤y )

= P (sin X ≤y ) 当y<0时:F Y ( y )=0

当0≤y ≤1时:F Y ( y ) = P (sin X ≤y ) = P (0≤X ≤arc sin y 或π-arc sin y ≤X ≤π) =

?

?

-+π

y πy

dx πx dx πx

arcsin 2

arcsin 0

2

22

当1

∴ Y 的概率密度ψ( y )为:

y ≤0时,ψ( y )=[ F Y ( y )]' = (0 )' = 0

0

38、设电流I 是一个随机变量,它均匀分布在9安 11安之间。若此电流通过2欧的电阻,在其上消耗2

2.W I =求W 的概率密度。

解:I 在()9,11上服从均匀分布 I ∴的概率密度为:

()1

,1120,q x f x ? <

22W I =的取值为162242W <<

分布函数 (){}{}

2

2

22w w F w P W w P I w P I ?

?=≤=≤=≤

????

(

)q P Q i f x dx ??

=<≤

=???

12q

q ?=

=???

()(

)'

,1622420,w w w f w F w <<∴== ?

其它 39、某物体的温度T (o F )是一个随机变量,且有T ~N (98.6,2),试求θ(℃)的概

率密度。[已知)32(9

5

-=T θ]

法一:∵ T 的概率密度为+∞<<∞-=

?--

t e

t f t ,2

21)(2

2)6.98(2

π

又 )32(95

)(-=

=T T g θ 是单调增函数。 325

9

)(+==θθh T 反函数存在。

且 α = min [g (-∞), g (+∞)]=min (-∞, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (-∞, +∞)= +∞ ∴ θ的概率密度ψ(θ)为

5

9

2

21

|)('|)]([)(4)6.98325

9

(2?

=

?=-+-θe

πθh θh f θψ +∞<<∞-=

--

θe π

θ,109

100

)37(812

法二:根据定理:若X ~N (α1, σ1),则Y=aX+b ~N (aα1+b, a 2 σ2 ) 由于T ~N (98.6, 2)

故 ???

????????? ??=????????????

??-?-=295,9333295,91606.9895~91609522

N N T θ

故θ的概率密度为:

+∞<<∞-=

=

--

???

? ????

??

??--

θπ

πθψθθ,1092

9

521

)(100

)37(81295293332

2

2

e

e

随机变量及分布列习题43462

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量,若,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下并放回,如果两球之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布,,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望. 10.某品牌汽车的4S 店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付 款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款, (1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件A :“至多有1位采用分6期付款“的概率()P A ; (2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列和数学期望()E η. 11.某公司有,,,,A B C D E 五辆汽车,其中,A B 两辆汽车的车牌尾号均为1. ,C D 两辆汽车的车牌尾号均

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量分布列练习题二套

随机变量及分布训练一 1. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立.设为该群体的位成员中使用移动支付的人数,,,则 A. B. C. D. 2. 设,随机变量的分布列是 则当在内增大时,() A.减小 B.增大 C.先减小后增大 D.先增大后减小 3. 已知甲盒中仅有个球且为红球,乙盒中有个红球和个蓝球,从乙盒中随机抽取 个球放入甲盒中. 放入个球后,甲盒中含有红球的个数记为; 放入个球后,从甲盒中取个球是红球的概率记为. 则() A., B., C., D., 4. 如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为,则的均值 A. B. C. D. 5. 已知离散型随机变量的分布列为 则的数学期望

A. B. C. D. 6. 已知台机器中有台存在故障,现需要通过逐台检测直至区分出台故障机器为止.若检测一台机器的费用为元,则所需检测费的均值为() A. B. C. D. 7. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为() A. B. C. D. 8. 某种种子每粒发芽的概率都为,现播种了粒,对于没有发芽的种子,每粒需再补种粒,补种的种子数记为,则的数学期望为() A. B. C. D. 9. 某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

随机变量及其分布期末练习题及答案

随机变量及其分布期末练习题及答案 1.在事件A 发生的概率为p 的伯努利试验中,若以ξ记第r 次A 发生时的试验的次数,求 ξ的分布。 [解] {} 发生次试验次而第恰好出现了次试验中前A k r A k P k P 11-)(-==ξ ) ,1,(,) 1()1(1 1 1 11Λ+=-=?-=-------r r k p p C p p p C r k r r k r k r r k 小结 求离散型随机变量的分布律时,首先应该搞清随机变量取可能值时所表示的随机事件,然后确定其分布列。为验证所求分布是否正确,通常可计算一下所求得的“分布列”之和是否为1,若不是,则结果一定是错误的。 2.设随机变量X 的分布函数为 ??? ??>≤≤<=.1,1;10.0 ,1)(2x x Ax x x F 求(1)A 的值;(2)X 落在)21,1(-及)2,3 1 (内的概率;(3)X 的概率密度函数。 [解] (1)有分布函数的右连续性, 在1=x 点处有1)01()1(=+==F A F ,即1=A (2)由分布函数的性质知,4 1)1()21())21 ,1((= --=-∈F F X P ; 98311)31()2())2,31((2 =?? ? ??-=-=-∈F F X P ; (3)由于)(x F 最多除1=x 和0点外处处可导,且在1,0=x 处连续,若取 ? ??≤≤><=.10,2; 10,0)(x x x x x f 或 则0)(≥x f ,且对一切x 有? ∞ -=x dt t f x F )()(,从而)(x f 为随机变量X 的密度函数。 3.设),2(~2 σN X ,且3.0)42(=<

离散型随机变量和分布列(基础+复习+习题+练习)

课题:离散型随机变量及其分布列 考纲要求:①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;②理解超几何分布及其推导过程,并能进行简单的应用. 教材复习 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变 量叫做离散型随机变量 若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间的一切值,这样的变量就 叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5.离散型随机变量的分布列:设离散型随机变量ξ可能取的值为1x 、2x 、…、i x 、… ξ 为随机变量ξ的概率分布,简称ξ的分布列 6.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()P A ≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:()1i p ≥0,1,2,i =…;()212p p ++…1= 对于离散型随机变量在某一围取值的概率等于它取这个围各个值的概率的和.即 (P ξ≥1)()()k k k x P x P x ξξ+==+=+??? 7.两点分布:若随机变量服从两点分布,即其分布列: 其中P =(1)P X =称为成功概率(表中01p <<). 8.几何分布:在独立重复试验中,某事件第一次发生时, 所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =, ()(1)k p A q q p ==-,那么 112311231()()()()()() ()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…, p q -=1)

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/225434502.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710 (1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0、6,且各次投篮就是否投中相互独立,则该同学通过测试的概率为( ) (A)0、648 (B)0、432 (C)0、36 (D)0、312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率就是15 4,刮三级以上风的概率为152,既刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A 、2258 B 、21 C 、8 3 D 、43 5.从4名男生与2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中 女生的人数,则P (ξ≤1)等于( ). A 、15 B 、25 C 、35 D 、45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A 、2101012)85()83(?C B 、83)85()83(29911? C C 、29911)83()85(?C D 、 29911)8 5()83(?C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A 、53 B 、43 C 、21 D 、 103

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示: X X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. 两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤, 这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参

数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立 重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列 由式 00111 0()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从 正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 22 ()2()x f x μσ--= ,x ∈R ,其中μ,σ是参数,且0σ>, μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

(完整版)离散型随机变量及其分布列测试题

离散型随机变量及其分布列测试题 一、选择题: 1、如果X 是一个离散型随机变量,则假命题是( ) A. X 取每一个可能值的概率都是非负数; B. X 取所有可能值的概率之和为1; C. X 取某几个值的概率等于分别取其中每个值的概率之和; D . X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和 2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξ A.4.06.01 ?-k B.76.024.01 ?-k C.6.04.01 ?-k D.24.076.01 ?-k 3、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( ) A. 4 B. 6 C . 10 D. 无法确定 4、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( ) A. 一枚是3点,一枚是1点 B. 两枚都是2点 C. 两枚都是4点 D . 一枚是3点,一枚是1点或两枚都是2点 5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是3 10 的事件为( ) A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的 D .至多有2只是坏的 6. 如果n x x ??? ? ? -3223 的展开式中含有非零常数项,则正整数n 的最小值为 A.3 B .5 C.6 D.10 7.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则?? ? ? ?π∈θ2 0,的概 率是 A. 125 B.21 C .127 D.6 5 8.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2 5 21(<<ξP 等于( ) A.21 B.91 C. 61 D.5 1 9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.4100 4 901C C - B.4 100 390 110490010C C C C C + C. 4100 110C C D. 4100 390110C C C . 10.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向 上、向右移动的概率都是 2 1 .质点P 移动5次后位于点(2,3)的概率是: A.5)2 1( B .525)21(C C.335)21(C D.5 3525)21(C C 11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中 甲获胜的概率为0.6,则本次比赛甲获胜的概率是 A. 0.216 B.0.36 C.0.432 D .0.648 5.把一枚质地不均匀..... 的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不

相关主题
文本预览
相关文档 最新文档