当前位置:文档之家› BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算
BOOST升压电路的电感、电容计算

【转】 BOOST升压电路的电感、电容计算

2011-05-06 23:54

转载自分享

最终编辑kxw102

已知参数:

输入电压:12V --- Vi

输出电压:18V ---Vo

输出电流:1A --- Io

输出纹波:36mV --- Vpp

工作频率:100KHz --- f

***************************************************************** *******

1:占空比

稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有

don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572

2:电感量

先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量

其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,

deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A

当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取

L=60uH,

deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,

I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,

参数带入,I1=1.2A,I2=1.92A

3:输出电容:

此例中输出电容选择位陶瓷电容,故 ESR可以忽略

C=Io*don/(f*Vpp),参数带入,

C=99.5uF,3个33uF/25V陶瓷电容并联

4:磁环及线径:

查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A

按此电流有效值及工作频率选择线径

其他参数:

电感:L 占空比:don

初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

BOOST电路方案设计

项目名称基于PWM控制BOOST变换器设计 一、目的 1 ?熟悉BOOST变换电路工作原理,探究PID闭环调压系统设计方法。 2 ?熟悉专用PWM控制芯片工作原理, 3?探究由运放构成的PID闭环控制电路调节规律,并分析系统稳定性。 二、内容 设计基于PWM控制的BOOST变换器,指标参数如下: 输入电压:9V?15V; 输出电压:24V,纹波<1%; 输出功率:30W 开关频率:40kHz 具有过流、短路保护和过压保护功能,并设计报警电路。 具有软启动功能。 进行Boost变换电路的设计、仿真(选择项)与电路调试 三、实验仪器设备 1 ?示波器 2 .稳压电源 3 ?电烙铁 4. 计算机 5. 万用表 四、研究内容 (一)方案设计 本设计方案主要分为4个部分:1)Boost变换器主电路设计;2)PWM控 制电路设计;3)驱动电路设计;4)保护电路设计。系统总体方案设计框图如图 1.1所示。

1 ?主电路参数设计[1,2] 电路设计要求:输入直流电压9~15V ,输出直流电压24V ,输出功率30W , 输 出纹波电压小于输出电压的1%,开关频率40kHz , Boost 电路工作在电流连续 工作 模式(CCM )。 Boost 变换器主电路如图1.2所示,由主开关管Q 、电感L 、滤波电容C 、功率 二极管VD 和负载R 组成。 1)电感计算 忽略电路损耗,工作在CCM 状态,根据Boost 电路输出电压表达式可得PWM 占空比: 艮卩,0.375 乞 D 乞 0.625 。 D max 八十十齐0.625 图1.1系统总体方案设计框图 图1.2 Boost 变换器主电路

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

boost 升压芯片 ap3015

MICRO POWER STEP-UP DC-DC CONVERTER AP3015/A 1 Aug. 2006 Rev. 1. 0 BCD Semiconductor Manufacturing Limited General Description The AP3015/A are Pulse Frequency Modulation (PFM) DC/DC converters. These two devices are func-tionally equivalent except the switching current limit.The AP3015 is designed for higher power systems with 350mA current limit, and the AP3015A is for lower power systems with 100mA current limit.The AP3015/A feature a wide input voltage. The oper-ation voltage is ranged from 1.2Vto 12V (1V to 12V for AP3015A). A current limited, fixed off-time con-trol scheme conserves operating current, resulting in high efficiency over a broad range of load current.They also feature low quiescent current, switching cur-rent limiting, low temperature coefficient, etc. Fewer tiny external components are required in the applications to save space and lower cost.Furthermore, to ease its use in differnet systems, a dis-able terminal is designed to turn on or turn off the chip. The AP3015/A are available in SOT-23-5 package. Features ·Low Quiescent Current In Active Mode (Not Switching): 17μA Typical In Shutdown Mode: <1μA ·Low Operating V IN 1.2V Typical for AP3015 1.0V Typical for AP3015A ·Low V CESAT Switch 200mV Typical at 300mA for AP3015 70mV Typical at 70mA for AP3015A ·High Output V oltage: up to 34V ·Fixed Off-Time Control ·Switching Current Limiting 350mA Typical for AP3015 100mA Typical for AP3015A ·Operating Temperature Range: -40o C to 85o C Applications ·MP3, MP4 ·Battery Power Supply System ·LCD/OLED Bias Supply ·Handheld Device · Portable Communication Device Figure 1. Package Type of AP3015/A SOT-23-5

Boost型ZVT电路参数计算

Boost 型ZVT-PWM 高功率因数软开关变换电路 2.3.1 电路原理图及工作波形图 从2-2章节我们可以知道,本文采用单相有源高功率因数校正电路,所选用的变换器为Boost ZVT-PWM 变换器,其电路原理图及工作波形图如图2-3和图2-4所示[5] 。 L R O 图2-3 Boost 型ZVT-PWM 变换器主电路 v g T r T v i ds i Lr v D i D

图2-4 Boost 型ZVT-PWM 变换器一周期主要电量波形 2.3.2 Boost 型ZVT-PWM 变换器工作原理 设t

PFC电感及匝数计算

(1) 升压电感的设计 升压电感的值决定转换器开关频率的大小,它主要由最小开关频率和输出功率决定。设开关管在一个周期里的导通时间为on t ,关断时间为off t ,则: VAC I L V I L t Lpk inpk Lpk on ??=???=2)sin()sin(θθ (2.32) ) sin(2)sin(θθ??-??=VAC V I L t out Lpk off (2.33) 式中,θ为交流输入电压的瞬时相位。 由式(2.33)可知,在交流输入电压的一个周期内,开关管的导通时间与电压的瞬时相位无关。由on t 和off t ,可得开关周期: [] )sin(22) sin(22)sin(2)sin(2122θθθθ??-????=??-????=?? ??????-+???=+=VAC V VAC P V L VAC V VAC V I L VAC V VAC I L t t T out in out out out Lpk out Lpk off on s (2.34) 故变换器的开关频率为: [] in out out sw sw P V L VAC V VAC T f ?????-?==2)sin(212θ (2.35) 所以,当1)sin(=θ时,开关频率最小;当0)sin(=θ时,开关频率最大。 故升压电感大小为: [] in out sw out P V f VAC V VAC L ????-?=min 222 (2.36) 由式(2.35)可知,最小开关频率出现在交流输入电压最大或最小时,分别计算它们对应的电感值: uH H VAC L 35.336400 220300002)2652400(265)(2max =????-?= (2.37) uH H VAC L 89.382400 220300002)852400(85)(2min =????-?= (2.38) 比较两个值,取uH L 310=。当V a c V in 85=时,由式(2.36)可得 k H z k H z f sw 207.33min >=,从而可以避免音频噪声。 根据近似的面积乘积(AP )法来估算升压电感磁芯尺寸的大小,其中面积

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

BOOST升压电路原理简单介绍

B O O S T升压电路原理 简单介绍 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

升压电路介绍 boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高,基本电路如下: 1.1BOOST升压电路工作原理 假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程: 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处 用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程: 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止) 时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 2.提高转换效率 ①尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能; ②尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低; ③尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量;

BOOST升压电路的电感、电容计算

【转】 BOOST升压电路的电感、电容计算 2011-05-06 23:54 转载自分享 最终编辑kxw102 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f ***************************************************************** ******* 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取 L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A

3:输出电容: 此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

Boost升压斩波电路要点

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

boost电路分析

图一 boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率

线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 图三 如图三,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

DC-DC电感选择

电感 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

电气工程boost斩波电路升压斩波电路电力电子技术课程设计

目录 摘要 ................................................................................................................ 错误!未定义书签。 1 BOOST斩波电路工作原理.................................................................................................. - 1 - 1.1 主电路工作原理...................................................................................................... - 1 - 1.2 控制电路选择.......................................................................................................... - 1 - 2 硬件调试 ................................................................................................................................. - 3 - 2.1 电源电路设计.......................................................................................................... - 3 - 2.2 升压(boost)斩波电路主电路设计 ..................................................................... - 4 - 2.3 控制电路设计.......................................................................................................... - 5 - 2.4 驱动电路设计.......................................................................................................... - 8 - 2.5 保护电路设计.......................................................................................................... - 9 - 2.5.1 过压保护电路.............................................................................................. - 9 - 2.5.2 过流保护电路............................................................................................ - 10 - 2.6 直流升压斩波电路总电路.................................................................................... - 11 - 3总结 ........................................................................................................................................ - 12 - 4参考文献 ................................................................................................................................ - 12 - 直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。另外还有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。斩波器的工作方式有:脉宽调制方式(Ts 不变,改变ton)和频率调制方式(ton不变,改变Ts)。本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。Multisim主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWM控制输出电压的曲线图,通过设置参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。第二部分是硬件电路设计,它通过软件设计完成。 关键字:直流斩波;PWM;SG3525

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即 Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小, 由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容:

此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

升压电感的计算方法

基于L6562的高功率因数boost电路的设计 0 引言 Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。 储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。 1 Boost电路的基本原理 Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont 为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。 分析图2,可得: 式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。 2 临界状态下的Boost-APFC电路设计 基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。 利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 L6562的引脚功能如下: INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端; COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间; MULT:该引脚为芯片内部乘法器的另一输入端; CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流; ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

Boost电路PI参数计算

4.3.1Boost 稳压输出 由于本系统中存在两种工作模式,经研究发现,两种工作模式控制方式的不同最终体现在对逆变器的控制上,因此在设计控制算法时,将前级Boost 升压与后级的逆变分开处理,即前级Boost 电路的作用就是保证直流母线电压恒定,为实现该目标,前级Boost 的稳压输出采用经典控制中的PI 控制算法,设计中采用了增量式PI 控制算法,增量式PID 公式为: )2()(211---+-++-=?n n n D n I n n c n e e e K e K e e K P (4-1) 其中K I 为积分系数,K D 为微分系数,本系统只使用了PI 控制,因此微分系数为零,因此整理后的增量式PI 为: n I n n c n e K e e K P +-=?-)(1 (4-2) 为减小超调,提高调节速度,设计时给系统增加了一个前馈环节。因此,本系统PI 控制的公式为: 11)(--++-=?n n I n n c n P e K e e K P (4-3) PI 控制是工业应用非常广泛的控制算法,但是PI 参数的选择是比较令人头痛的事情,大多数在确定参数时采用试凑与经验相结合方式。本设计结合该系统的控制特点,给出了PI 参数范围确定的比较好的试凑方法。下面以Boost 电路为例,通过PI 控制实现电压输出的稳定。 额定输入电压:24V 输入电压:21.6V —28.8V 输出电压:85V 工作频率:15K 控制器:DSP28035 具体选择如下(其中D 为DSP 中设置的升压比): (1)选取软启动最优工作点 由于Boost 电路在实际带载时,输出电压要低于理论计算值,因此确定最小占空比D 为: 338.0858.28≈=V V D (4-4) 因此在D 初始化时为0.80,软启动过程完成后,D 的值为0.338。 (2)判断控制器的调节精度 DSP 工作频率为15K ,设置的DSP 中PWM 比较器的周期值为1000,因此Boost 电路在调节时的精度为0.001D e ?=,所以Boost 调节的最大误差为(假设此时的D = 0.2): max 21.621.60.50.20.201 V V e V =-= (4-5) 最小误差为(假设此时的D = 0.28): min 28.828.80.40.270.271V V e V = -= (4-6)

相关主题
文本预览
相关文档 最新文档