当前位置:文档之家› How Sample Completeness Affects Gamma-Ray Burst Classification

How Sample Completeness Affects Gamma-Ray Burst Classification

How Sample Completeness Affects Gamma-Ray Burst Classification
How Sample Completeness Affects Gamma-Ray Burst Classification

a r X i v :a s t r o -p h /0209073v 1 4 S e p 2002How Sample Completeness A?ects Gamma-Ray Burst

Classi?cation

Jon Hakkila and Timothy W.Giblin

Department of Physics and Astronomy,College of Charleston,Charleston,SC,29424

Richard J.Roiger and David J.Haglin Department of Computer and Information Sciences,Minnesota State University,Mankato,MN 56001William S.Paciesas Department of Physics,University of Alabama in Huntsville,Huntsville,AL 35899and Charles A.Meegan NASA,Marshall Space Flight Center,Huntsville,AL 35899ABSTRACT Unsupervised pattern recognition algorithms support the existence of three gamma-ray burst classes;Class I (long,large ?uence bursts of intermediate spec-tral hardness),Class II (short,small ?uence,hard bursts),and Class III (soft bursts of intermediate durations and ?uences).The algorithms surprisingly as-

sign larger membership to Class III than to either of the other two classes.A known systematic bias has been previously used to explain the existence of Class III in terms of Class I;this bias allows the ?uences and durations of some bursts to be underestimated (Hakkila et al.,ApJ 538,165,2000).We show that this bias primarily a?ects only the longest bursts and cannot explain the bulk of the Class III properties.We resolve the question of Class III existence by demon-strating how samples obtained using standard trigger mechanisms fail to preserve the duration characteristics of small peak ?ux bursts.Sample incompleteness is thus primarily responsible for the existence of Class III.In order to avoid this incompleteness,we show how a new dual timescale peak ?ux can be de?ned in terms of peak ?ux and ?uence.The dual timescale peak ?ux preserves the du-ration distribution of faint bursts and correlates better with spectral hardness

(and presumably redshift)than either peak?ux or?uence.The techniques pre-

sented here are generic and have applicability to the studies of other transient

events.The results also indicate that pattern recognition algorithms are sensi-

tive to sample completeness;this can in?uence the study of large astronomical

databases such as those found in a Virtual Observatory.

Subject headings:gamma-rays:bursts—methods:data analysis,statistical—

instrumentation:miscellaneous

1.Introduction

In recent years,data mining algorithms have been used to aid the process of scienti?c classi?cation.Data mining is the extraction of potentially useful information from data using machine learning,statistical,and visualization techniques.Pattern recognition algorithms (or classi?ers)are data mining tools that search for clusters in complex,multi-dimensional spaces of attributes(observed and/or measured properties).These algorithms typically oper-ate in one of two modes:supervised(in which the classi?er is trained with known classi?ca-tion instances)and unsupervised(in which classi?cation occurs without training examples). Algorithms are designed to identify data patterns such as clustering and/or correlations, but their limitations must also be understood:it is up to the scientist to interpret physical mechanisms responsible for producing identi?ed clusters.Clusters found by classi?ers can represent source populations;this happens when the class properties are produced by phys-ical mechanisms pertaining to the sources.Clusters can also result from the way in which source properties are measured;sampling biases,systemic instrumentation errors,and corre-lated properties can all force data to cluster and thus give the appearance of class structure when there is none.

Data mining algorithms can be applied to gamma-ray burst classi?cation.Two gamma-ray burst classes have been recognized for years(Mazets et al.1981;Norris et al.1984; Klebesadel1992;Hurley1992;Kouveliotou et al.1993)on the basis of duration and spec-tral hardness.Class I(Long)bursts are longer,spectrally softer,and have larger?uences than Class II(Short)bursts.Recent classi?cation schemes have used data collected by BATSE(the Burst And Transient Source Experiment on NASA’s Compton Gamma-Ray Observatory;CGRO)(Meegan et al.1992)because this large database(2704bursts ob-served between1991and2000)was collected by a single instrument with known instrumen-tal characteristics.Three attributes of BATSE gamma-ray burst data have been identi?ed as being signi?cant(using techniques such as principal component analysis)in delineating gamma-ray burst classes(Mukherjee et al.1998;Bagoly et al.1998;Hakkila et al.2000a):

duration T90(the time interval during which90%of a burst’s emission is detected),?uence S(time integrated?ux in the50to300keV spectral range),and spectral hardness HR321 (the50to300keV?uence divided by the25to50keV?uence).Logarithmic measures of these values are typically used because classes are more clearly delineated when attributes are de?ned logarithmically.Historically,bursts with durations T90<2seconds have been typically considered to belong to Class II.

Data mining techniques allow a third gamma-ray burst class to be identi?ed in BATSE data.Three classes are preferably recovered instead of two by both statistical clustering techniques(Mukherjee et al.1998;Horv′a th1998)and unsupervised pattern recognition al-gorithms(Roiger et al.2000;Balastegui et al.2001;Rajaniemi and M¨a h¨o nen2002).The third class forms at the boundary between Class I and Class II,and primarily contains the softest and smallest?uence bursts from Class I.Since Class II appears to be relatively un-changed by the detection of the third class,the three classes are called Class II(short,small ?uence,hard bursts),Class I(long,large?uence bursts of intermediate hardness),and Class III(intermediate duration,intermediate?uence,soft bursts;also referred to as Intermediate bursts).

The boundaries between classes are fuzzy,as some bursts are not easily assigned to a speci?c class.Di?erent data mining algorithms do not necessarily assign individual bursts to the same classes because each classi?er operates under di?erent assumptions concerning correlations between data attributes and how these relate to clustering criteria.Some clas-si?ers are designed to work with nominal data while others are not;some employ Bayesian while others employ frequentist statistics;some assume a priori distributions of attribute values while others do not.The results of any classi?er can change if the size and makeup of the data set is altered.Data errors can in?uence the results since few classi?ers cur-rently include measurement error information in their analyses.However,irreproducibility is not necessarily a fault of machine learning methodology.Each classi?er provides di?erent insights into the way the data are structured.For any given data set,there is a good pos-sibility that some critical experiment or observation has not been performed,or that some key measurements have yet to be made,or that the relative importance of some attribute has been underestimated or overestimated.There is no correct way of classifying a dataset because the usefulness of the classi?cation depends on the insights gained from it by the user.

In a previous application of supervised classi?cation(Hakkila et al.2000a)to gamma-ray burst data we hypothesized that Class III does not necessarily represent a separate source population.Instead,instrumental and sampling biases have been proposed as a way in which some Class I bursts can take on Class III characteristics.Due to a known correlation between hardness and intensity(Paciesas et al.1992;Mitrofanov et al.1992;

Nemiro?et al.1994;Atteia et al.1994;Dezalay et al.1997;Qin et al.2001),small?uence Class I bursts are typically softer than bright Class I bursts;this is supported by prin-cipal component analysis(Bagoly et al.1998).Since the correlation results from a shift to smaller average peak spectral energy E p at lower peak?ux but not from changes in the average low-energy spectral index α or the average high-energy spectral index β (Mallozzi et al.1995;Hakkila et al.2000a;Paciesas et al.2002),this correlation has been attributed to the softer bursts being generally at larger cosmological redshift.(This con-clusion may not necessarily be correct because a broad range of gamma-ray burst luminosi-ties is suggested from redshifts of gamma-ray burst afterglows(van Paradijs et al.2000); however,it should be noted that only a small afterglow sample is available.)Addition-ally,?uences and durations of some Class I bursts can systematically be underestimated (Koshut et al.1996;Bonnell et al.1997;Hakkila et al.2000a);we refer to this as the?u-ence duration bias(Hakkila et al.2000a).Simply put,?uences and durations of some Class I bursts(particularly those with the smallest peak?uxes)can be underestimated due to the unrecognizability of low signal-to-noise emission;combined with their spectral softness,this gives them characteristics consistent with Class III.

Unfortunately,the?uence duration bias has been di?cult to quantify.The amounts by which the?uence and duration of an individual burst are a?ected depend on the?tted background rates and estimated burst durations at all energies;to remove the background properly assumes a priori knowledge of the burst’s intrinsic temporal and spectral structure. Such a priori knowledge can only be acquired in the absence of background,and gamma-ray burst observations are inherently noisy.Very high signal-to-noise estimates of a burst’s temporal and spectral structure can only be obtained for a small number of the bursts with the largest?uences.These well-measured quantities are not entirely intrinsic;it appears that even the brightest bursts require systematic correction because they are at large redshift (z≈1).

Our objective is to determine whether or not the?uence duration bias can account for the number of bursts with Class III characteristics.In order to do this,we determine the total number of bursts that exhibit Class III characteristics using several di?erent unsupervised classi?ers.Then,we statistically model the suspected bias and determine whether it is strong enough to produce the Class III bursts.

A number of pertinent questions will have to be addressed in pursuing this objective: Do theoreticians need to develop models for one,two,or three gamma-ray burst classes? How can data mining techniques be used to aid scienti?c classi?cation?Are systematic e?ects present in data collected by BATSE or other gamma-ray burst experiments that alter classi?cation structures?Can these e?ects be understood?Can information on intrinsic

properties of the source population be extracted if these e?ects are present?Can future instruments be designed to minimize or eliminate these e?ects?

2.Class III and the Fluence Duration Bias

2.1.The Signi?cance and Size of Class III

We systematically compare the output of various unsupervised algorithms in conjunction with a homogeneous gamma-ray burst data set obtained with one set of instrumental settings. We use the online gamma-ray burst ToolSHED(Haglin et al.2000)(SHell for Expeditions in Data mining)that we are developing to aid our analysis.This ToolSHED(currently ready for pre-beta testers at https://www.doczj.com/doc/265195001.html,/grbts/)provides a suite of supervised and unsupervised data mining tools and a large database of preprocessed gamma-ray burst attributes.It allows users to classify data using more than one algorithm in order to identify consistencies in the di?erent classi?cation techniques and thereby gain better insight into the heterogeneous nature of the data.

In order to further minimize the e?ects of instrumental biases,we have limited our database to bursts detected with a homogeneous set of BATSE trigger criteria.The database consists of bursts from the BATSE Current Burst Catalog(https://www.doczj.com/doc/265195001.html,/batse/ grb/catalog/current/).Bursts included are non-overwriting and non-overwritten bursts(e.g. those whose BATSE readout periods did not overlap detectable bursts immediately preceding or following their detection)triggering at least two BATSE detectors in the50to300keV energy range with the trigger threshold set5.5σabove background on any of the three trigger timescales.We require all classi?ers to use only the three attributes of log(T90),log(HR321), and log(S).

We apply four unsupervised ToolSHED algorithms with di?erent approaches to cluster-ing.These algorithms are ESX,a Kohonen neural network,the unsupervised EM algorithm, and the unsupervised Kmeans algorithm.

ESX(Roiger et al.1999)is a classi?er that forms a three-level tree structure.The root level of the tree contains summary information for all bursts.The second(concept)level of the tree sub-divides the root level into clusters formed as a result of applying a similarity-based evaluation function.The third tree level holds the individual bursts.

A Kohonen neural network(Kohonen1982)architecture is represented as a collection of input and output units.During training,the input units iteratively feed the burst instances to the output units.The output units compete for the burst instances.The output units

collecting the most bursts are saved.The saved units represent the clusters found within the data.

The unsupervised EM algorithm(Dempster et al.1977)assumes that the attribute space can be subdivided into a predetermined number of normally distributed clusters.An initial guess is made as to the properties of each random distribution,and this guess is used to calculate probabilities that bursts belong to each cluster.The cluster characteristics are iteratively adjusted until all clusters are optimally-de?ned.

The Kmeans(Lloyd1982)algorithm randomly selects K data points as initial cluster centers.Each instance is then placed in the cluster to which it is most similar.Once all instances have been placed in their appropriate cluster,the cluster centers are updated by computing the mean of each new cluster.The process continues until an iteration of the algorithm shows no change in the cluster centers.

Predetermined classi?cation signi?cance helps de?ne the number of classes that can be recovered.When allowed to?nd an optimum number of classes based on a default signi?cance,the aforementioned classi?ers typically recover three to four burst classes as opposed to the two traditionally accepted classes.This indicates that the two traditional classes are not considered to be the optimal solution.

We force all four classi?ers to recover two,three,and four classes because we hope that by studying the properties of these force-recovered classes we can determine why the three-class solution is preferred over the two-class solution.The properties of three force-recovered classes are indicated in table1.The properties of these classes are similar to those obtained using other clustering techniques(Mukherjee et al.1998;Horv′a th1998;Roiger et al.2000; Balastegui et al.2001;Rajaniemi and M¨a h¨o nen2002),so we again refer to these as Class I(Long),Class II(Short),and Class III(Intermediate).However,these previous results typically place fewer bursts in Class III than Class I,whereas three of our four classi?ers place the largest number in Class III.Therefore,our analysis?nds Class III to be the dominant class.

In order to explain why the percentage of Class III members is so large,we examine the placement of Class III bursts when classi?ers are forced to recover only two classes(Short and Long).The results are remarkably consistent:all four classi?ers fail to clearly delineate the traditionally-accepted Short and Long classes,and each places a large number of soft Class III bursts in with the hard Short class(see Figure1).This is surprising,since Class III clustering is not obvious to the naked eye in the hardness vs.duration parameter space whereas Short and Long burst clustering is.The hardness vs.duration boundary is not chosen by the classi?ers because a sharper one exists in the?uence vs.duration parameter

space(Figure2);the boundary separating short faint bursts from long bright bursts is more signi?cant than that separating short hard bursts from long soft bursts.

It is surprising that?uence plays such an important role in the classi?cation.First,?uence is an extrinsic attribute(since it represents a convolution of a burst’s luminosity and distance)as opposed to hardness and duration,so there is no reason why?uence clustering should relate to any physical di?erences between burst classes.Second,one would intuitively expect a burst with a longer duration to have a larger?uence,indicating that?uence and duration should be highly-correlated attributes.Thus,clustering in the duration attribute can also cause clustering in the?uence attribute,and the use of?uence as a classi?cation attribute magni?es the clustering importance of duration relative to hardness.The break between short faint and long bright bursts therefore appears due in part to the use of?uence, an attribute which is of questionable value.

To determine if the?uence bias can be removed,we eliminate this attribute and perform the classi?cation using only log(T90)duration and log(HR321)hardness ratio.Even without ?uence,the classi?ers again prefer to recover three classes instead of two,and Class III is not diminished in size.Examination of the three class properties indicates that log(T90) has been used almost exclusively to delineate the classes;hardness is almost ignored by the classi?ers.This is surprising,since the eye tends to delineate two burst classes.We check this result by supplying only the T90attribute to the classi?ers.Indeed,the classi?ers again return three classes rather than two(Class I bursts have T90>6sec.,Class II bursts have T90<1.4sec.,and Class III bursts have1.4sec.≤T90≤6sec.).However,the size of Class III has been diminished in this reclassi?cation and it is no longer the largest class;this result is consistent with that obtained earlier using only the duration attribute(Horv′a th1998). We conclude that strong evidence exists for the three-class structure.

Before accepting the new class as a separate source population,we must try to dis-count alternative explanations concerning its existence.It is possible that the classi?ers have detected a data cluster resulting from the way that the data have been collected,rather than from a separate and distinct source population.We consider it unlikely that Class III represents a statistical anomaly since it has been found by four classi?ers using di?erent algorithms,and since stringent requirements have been imposed for each classi?er to?nd additional classes.Thus,Class III could result from a systematic e?ect such as an instru-mental or sampling bias.The suspected bias appears to primarily a?ect duration and the coupled yet extrinsic attribute of?uence.

This conclusion leads us again to examine the hypothesized?uence duration bias.This bias could provide a mechanism for underestimating both?uence and duration of some Class I bursts(particularly faint soft ones),and could cause these bursts to take on Class III

characteristics.However,with the increased size of Class III,it is reasonable to think that the bias might be strong.

2.2.Inadequacy of the Fluence Duration Bias Model to Explain Class III

Properties

In an attempt to quantify the?uence duration bias,we have developed a simple model of the bias that can be applied statistically.The model only in?uences Class I and Class III bursts(as de?ned by the EM algorithm),since the bias has not been hypothesized to alter Class II properties.In a previous work(Hakkila et al.2000a)we estimated the maximum amount by which the?uences and durations of?ve bright bursts might need to be corrected if their signal-to-noise ratios were reduced;our simple model averages these values to obtain maximum corrections of?uence and duration as functions of p1024(peak?ux measured on the1024ms timescale).We do not know how much the?uence of an individual burst might need to be corrected,therefore we assume that the?uence of each burst should be corrected between0ergs cm?2sec?1and the maximum?uence correction S max,and that the duration of each burst should be corrected between0seconds and the maximum duration correction T90max.The amount of the maximum correction is dependent upon the signal-to-noise ratio and thus on the peak?ux;the suspected bias is more pronounced for bursts with peak?uxes near the detection threshold.We naively assume a probabilityρthat each burst’s measured ?uence and duration will be altered with equal probability in the intervals[0,log(S)max]and [0,log(T90)max].Thus,the modeled amount by which an individual burst’s?uence would be a?ected by the bias isρlog(S)max and the amount by which its duration would be a?ected is ρlog(T90)max.The problem can be inverted to estimate how much observed burst?uences and durations have been underestimated as a function of p1024.

If the?uence duration bias produces Class III properties,then(1)the faint Class I and Class III bursts(as measured by p1024)should show evidence of having their?uences(and durations)systematically underestimated,and(2)no evidence of this bias should be present if this combined distribution has been properly corrected for the e?ect.We would thus like to compare both the observed distribution and the corrected distribution with the“true”distribution.Unfortunately,we do not know the“true”distribution.

If we assume that the bias has not a?ected the?uence and duration distributions of bright bursts(as measured by p1024),then we can compare the corrected and uncorrected distributions of faint bursts to the observed distributions of bright bursts.The comparison can be made once we identify how the?uence and duration distributions scale with peak ?ux.

If a given burst’s intensity were decreased(either by decreasing the burst’s luminosity or if the burst were observed at a larger distance),then its?uence would decrease proportionally to its peak?ux.This generic statement is false only in the presence of sampling and/or instrumental biases.The e?ect of time dilation due to cosmological expansion is an example of a sampling bias that can systematically a?ect?uence count rates di?erently than peak?ux count rates.Since we measure the peak?ux and?uence in the same energy channels,the primary source of bias is that the observed peak?ux can be as little as(1+z)?1of its actual value due to time dilation,whereas the?uence would not be expected to be lessened.This bias would cause the peak?ux of distant bursts to be small relative to the?uence;note that this bias cannot explain Class III characteristics,since Class III bursts have?uences that are small relative to their peak?uxes.In going from bright bursts to faint bursts,a decreasing signal-to-noise ratio can cause?uences of faint bursts to decrease non-proportionally to peak ?uxes;this is an example of a statistical(rather than systematic)instrumental bias.

Sampling biases can cause the faint burst distribution(as measured by either peak?ux or?uence)to be di?erent than the bright burst distribution.Trigger biases can cause bursts with certain characteristics to trigger disproportionately relative to other bursts.However, trigger biases that have been proposed prior to this manuscript do not appear to alter the makeup of the BATSE dataset by large amounts(Meegan et al.2000).We therefore assume in testing the?uence duration bias that it is primarily responsible for causing a burst’s?uence to change not in proportion to the change in its peak?ux,and that the faint burst distribution of Class I+III bursts would be the same as the bright distribution in the absence of this e?ect.

The distribution of burst?uences at a given peak?ux indicates bursts with di?erent time histories;greater?uence typically belongs to longer bursts with more pulses and smaller ?uence typically belongs to shorter bursts with fewer pulses.If these burst peak?uxes were all decreased by the same amount,then their?uences would decrease proportionally along a line de?ned by log(S)line=log(p1024)+R(where R is an arbitrary constant).The di?erence ?log(S)=log(S)line?log(S)obs obtained for each burst indicates the?uence o?set of each burst from the line given its peak?ux.The distribution of?log(S)can be examined for bright bursts(e.g.those presumably una?ected by the bias)and for faint bursts(e.g.those a?ected by the bias).In the absence of any biases,the faint distribution will be similar to the bright distribution.If the?uence duration bias is present,then the faint distribution will di?er from the bright distribution.The aforementioned statistical correction should make the“corrected”?uence distribution?log(S)corr=ρlog(S)max?log(S)obs more compatible with the bright distribution than is the uncorrected faint distribution.

Figure3is a plot of log(S)vs.log(p1024)for the burst sample used in this study.

Class I,II,and III bursts have been identi?ed using the unsupervised EM algorithm.The proportional decrease of?uence and peak?ux is shown for a hypothetical Class I burst (diagonal line);the curving path indicates how the bias might a?ect the measured?uence of this burst as a function of p1024(curving line)in the case whereρ=1.The amount by which the?uence would need to be corrected?log(S)corr is also shown(vertical line).

We construct eight?log(S)bins for the set of bright bursts and eight bins for the faint bursts(the zero point for the?log(S)scale is arbitrary,so we use?log(S)=log(S)?log p1024+6).The dividing line between“bright”and“faint”bursts is set at log(p1024)≥1 photon cm?2sec?1since bursts brighter than this value should be essentially una?ected by the proposed?uence duration bias.The faint uncorrected?log(S)distribution is moder-ately di?erent than the bright distribution,with aχ2=13.8for7degrees of freedom and a corresponding probability of q=0.055.The?uence distribution(as determined from ?log(S))has been shifted to lower values consistent with the?uence duration bias.

In order to test the correction by the proposed model,we correct the?uence of each of the i bursts by di?ering amountsρi log(S max).Theχ2of the corrected faint burst distribution is again compared to the“control”sample of bright bursts.Since we might have overcorrected some bursts while undercorrecting others,we run the analysis a total of100times and average the results.The corrected?log(S)corr distribution is signi?cantly di?erent than the bright distribution(we obtain χ2 =34.0for7degrees of freedom and a corresponding probability of q=2×10?5that the two distributions are identical)indicating that our model has signi?cantly overcorrected for the suspected bias.Similar results are obtained using the ?log(T90)distributions.

Since we have apparently overestimated the amplitude of the?uence duration bias ρi log(S)max for typical bursts,we can decrease our estimate of the bias by introducing a free parameter D in the relationshipsρi D log(S)max andρi D log(T90)max,where D=0represents the uncorrected sample while D=1indicates the originally hypothesized bias.In table2, we demonstrate the e?ectiveness of the?uence duration bias for di?erent values of D chosen arbitrarily.The model?t is only improved when we reduce our estimates of log(S)max and log(T90)max signi?cantly.

We have shown previously(Hakkila et al.2000a)that the maximum time interval used to calculate burst?uences decreases dramatically near the BATSE detection threshold(es-sentially no bursts in the3B catalog with p1024<0.4photons cm?2sec?1have?uence durations≥100seconds).This indicates that the?uence duration bias causes?uences and durations of very long bursts with small peak?uxes to be underestimated.Our current analysis supports this hypothesis:the?log(S)and?log(T90)distributions suggest that shorter bursts with small peak?uxes have probably not been a?ected by the bias,whereas

some longer bursts have.Our experience with BATSE data analysis procedures is also in agreement:?uence duration intervals are rarely chosen to be shorter than many tens of seconds,and the time histories of only a few bursts are particularly susceptible to this bias (Koshut et al.1996).This should prevent a systematic bias from being introduced for short bursts with small peak?ux but not necessarily for long bursts with small peak?ux.

These results indicate that the?uence duration bias does not in?uence faint bursts to the extent hypothesized previously.The shorter Class I bursts,which were originally thought most likely to take on Class III characteristics via the bias,are apparently a?ected the least.The?uence duration bias appears to primarily in?uence the properties of some longer BATSE bursts.We conclude that the?uence duration bias is not responsible for the large number of shorter softer bursts comprising Class III.

3.Sample Incompleteness and the Duration Distribution

Although the?uence duration bias does not appear to be responsible for the creation of Class III,our analysis of the proportional decrease of?uence and peak?ux has unexpect-edly provided new insight into measured burst properties.The faint?uence and duration distributions used in classi?cation are truncated because the samples triggered using short-timescale peak?uxes.This truncation has the potential of biasing the sample via sample incompleteness.In order to study the potential e?ects of sample truncation,we consider the advantages of a?uence-limited sample relative to a peak?ux-limited sample.

An experiment triggering with a short integration window is more likely to detect a short burst than an experiment triggering with a long integration window,because in the latter case the entire burst?ux can be recorded in a single temporal bin.A peak?ux-limited sample is thus biased towards shorter bursts relative to longer bursts because it excludes longer bursts having large?uences but with peak?uxes too faint to trigger.However,a long timescale trigger(such as one that could trigger on?uence)would prove to be equally-biased.

A hypothetical experiment triggering on?uence(e.g.one with a10,000second integration window)would be more likely to detect a faint long burst(having little of its?uence in one temporal window)than would an experiment triggering on peak?ux.A?uence-limited sample would be biased towards longer bursts because it would include faint longer bursts but exclude faint shorter bursts with the same peak?ux.Figure3demonstrates that an excessive number of short Class III bursts are found near BATSE’s peak?ux trigger;the ?uence distribution of these bursts is acutely truncated by the peak?ux trigger.Thus,Class III occupies a?uence vs.peak?ux region where the instrumental(peak?ux)trigger favors detection of shorter bursts over longer ones.

We would like to identify a peak?ux measure that does not su?er from truncation of the duration distribution.The proportional relationship between?uence S and peak?ux p1024as a burst’s luminosity is decreased or as its distance is increased provides a method for identifying such a peak?ux measure.We can re-de?ne?uence to be a peak?ux by de?ning an extremely long temporal windowτ(τis a constant)that contains the entire ?ux of the sample’s longest burst.The?uence divided by this temporal window(S/τ)is a peak?ux(having units of photons cm?2sec?1or ergs cm?2sec?1,using an approximate transformation of A≈2.24×10?7ergs photon?1)(Hakkila et al.2000b).The equation governing this proportional decrease in peak?ux and?uence is

2log(F0)=log(S/(Aτ))+log(p1024)(1)

or F20=S/(Aτ)(p1024)where F0has units of?ux and is thus a measure of burst intensity. We de?ne this quantity as the dual timescale peak?ux(Hakkila et al.2002)since it uses two di?erent timescale measurements.The minimum value of the dual timescale peak?ux F0can be called the dual timescale threshold.The dual timescale peak?ux is merely a multiple of this threshold value,log(F)=log(F0)+K(or F=K F0),where K is a constant.A dual timescale threshold can be de?ned as an instrumental setting for a gamma-ray burst experiment(e.g.by requiring S/(τ)(p1024)to exceed a trigger value),as a selection process on previously-detected events in a standard experiment,or with archival data from an experiment triggering independently on one temporal trigger at a time(such as BATSE).This latter concept is not new;several studies have developed their own post facto BATSE triggers using archival time series data(Schmidt1999;Kommers et al.2001;Stern et al.2001).

The dual timescale peak?ux treats longer bursts having larger?uences and smaller peak ?uxes on an equal basis with shorter bursts having smaller?uences and larger peak?uxes: these bursts with di?erent temporal structures have something in common,which is that they have equal probability of detection using the dual timescale peak?ux.Their di?erences must therefore be de?ned by a line orthogonal to the dual timescale peak?ux,e.g.one that satis?es the relationship

log(Γ)=log(S/A)?log(p1024).(2) orΓ=S/(Ap1024)whereΓhas units of time and represents a duration.We callΓthe?ux durationΓ;it measures the total time that a burst could emit at its peak?ux in order to produce its?uence.Longer bursts typically have large S/p1024values and shorter bursts should typically have small S/p1024values.In fact,the correlation for Class I+III bursts demonstrated in Figure4has a Spearman Rank-Order correlation signi?cance0f10?118that Γand T90are uncorrelated.

The dual timescale peak?ux does not favor bursts of any duration(longer than the smallest1024ms integration window),whereas peak?ux or?uence do by truncating the

distribution and thereby favoring“faint”bursts(e.g.those near the threshold)of longer or shorter durations.Since the dual timescale peak?ux does not truncate the duration distribution,we can say that the dual timescale peak?ux-limited sample retains the duration characteristics of the sample by preserving the duration S/p1024relative to the intensity (S/τ)(p1024).

It was recognized soon after BATSE’s launch(Petrosian et al.1994)that long-timescale triggers underestimated the intensities of shorter bursts and biased the sample.However,our analysis demonstrates(perhaps surprisingly)that short temporal timescale triggers would also bias the sample against longer bursts.

Figure5demonstrates how BATSE’s peak?ux trigger in?uences the number of events placed in Class III relative to those placed in Class I.Shorter bursts(small S/p1024;denoted by region‘C’)have been detected while faint longer bursts(large S/p1024;denoted by‘A’) have been excluded by the trigger.A hypothetical?uence trigger allowing the faintest shorter bursts currently detected by BATSE to trigger would not resolve this problem:shorter bursts (large S/p1024;denoted by‘B’)would go undetected by the?uence trigger relative to longer bursts(small S/p1024;denoted by‘D’).A dual timescale threshold is shown(diagonal dashed line)that favors neither longer nor shorter BATSE bursts.The threshold excludes most of the bursts previously identi?ed as Class III because these have been favored by the one-second trigger window relative to longer bursts.It also excludes many Class II bursts which are both typically faint and shorter than the one-second trigger window.

We make a cut on our BATSE sample that is equally complete for both longer(large S/p1024)and shorter(small S/p1024)bursts and use this as our dual timescale threshold.This threshold follows the relation log(S)+log(p1024)=?6.5,and has been chosen so that even the longest bursts with the largest S/p1024values are detected by BATSE’s actual peak?ux trigger.This is demonstrated by the diagonal dotted line in Figure4,and corresponds to a dual timescale peak?ux(via equation1)of F0=0.048photons cm?2sec?1forτ=617 seconds(the T90of the longest burst in the sample).

We wish to determine how the sample properties vary with dual timescale peak?ux.We thus divide our sample of Class I+III into four subsamples containing similar numbers of bursts but with di?erent dual timescale peak?uxes:bright bursts(log S+log p1024≥?5.1, or K =7.49),moderately bright bursts(?5.8≤log S+log p1024

enough bursts to constitute a reasonable statistical sample.

We identify three?ux duration intervals from the sample:longer bursts(log S≥log p1024?5.6),middle bursts(log p1024?6.1≤log S

The attributeΓis closely related to GRB duty cycle(Hakkila et al.2000b).The duty cycleΨmeasures the persistence of burst emission via the relationship

S

Ψ=

This evidence supports our hypothesis that the bulk of the Class III bursts are short Class I bursts that have preferentially been detected by BATSE’s short timescale trigger.

If a corresponding sample of longer Class I bursts is detected(by having a lower peak ?ux trigger threshold and/or by having some bursts trigger on a longer timescale),then these bursts most likely would be as soft as the Class III bursts.We suggest that the FXTs (Fast X-ray Transients)found by BeppoSAX(Heise et al.2001)using an x-ray trigger and subsequently identi?ed in BATSE data(Kippen et al.2001)might be long soft bursts that previously escaped detection.

The slope of the log(HR321)vs.log(peak?ux)relation is largest when log(F)is used as the peak?ux measure as opposed to either log(S)or log(p1024);this is true regardless of whether the sample is peak?ux-limited,?uence-limited,or duration-limited.This result is demonstrated in table3,where hardness vs.intensity correlations are examined using a Spearman Rank-Order Correlation test for the three di?erent intensity measures:the1024 ms peak?ux p1024,the?uence S,and the dual timescale peak?ux F.Small probabilities indicate strong correlations between spectral hardness and the peak?ux measure.Spectral hardness(and presumably redshift)correlates better with the dual timescale peak?ux than with any other peak?ux measure,regardless of which measure is used to select the sample. Furthermore,the log(HR321)vs.log(peak?ux)slope is essentially identical for burst samples of di?erent T90durations when log(F)is used;it does not appear that the same can be said when either log(p1024)or log(S)are used as a peak?ux measure.Thus,F appears to more easily deconvolve the attributes of hardness,duration,and peak?ux than do either S or p1024. We take this to indicate that F is a preferred peak?ux indicator to S and p1024.

There are potentially far-reaching consequences to having F as a less-biased temporal ?ux measure.To date,essentially all statistical studies have used either log(p1024)or S as intensity measures(e.g.log(N>S)vs.log(S),log(N>p1024)vs.log(p1024),E peak vs. log(p1024)).These studies are potentially biased because S and p1024do not deconvolve the hardness intensity correlation as cleanly as does F.Presumably,studies made using S and p1024combine longer bursts measured at one value of HR321with short bursts measured at another value of HR321.The use of F in future modeling endeavors might improve our understanding of gamma-ray burst properties better than do either?uence or peak?ux.

We test our hypothesis that Class I bursts and Class III bursts belong to the same population by submitting all bursts in the original sample brighter than F0to the EM algorithm for unsupervised classi?cation,and using the attributes of S,T90,and HR321. The classi?er preferably recovers six classes as opposed to three;the original three-class structure is lost as a result of the new trigger.Despite this,Class II is still easily identi?able even though it contains only40members(Class II bursts in the BATSE Catalogs thus appear

to have been preferentially detected as a result of BATSE’s short timescale trigger).The remaining bursts are placed in?ve classes with properties not recognizable as belonging to the original Class I or Class III.These classes may provide interesting additional insights into burst properties,but they warrant no further discussion here because they are not identi?able as the original burst classes.

Thus,strong reasons exist that the Class III cluster arises primarily from the shape of the attribute space de?ned by BATSE’s peak?ux trigger,and not from a separate source population.Our results support the hypothesis that Class III does not represent a separate source population.We have demonstrated that both?uence and duration are truncated by BATSE’s peak?ux trigger.The truncation e?ectively oversamples short bursts relative to long bursts.As a result of this truncation,the database contains an excess of faint,short (soft)bursts.The use of the dual timescale trigger supports the hypothesis that Classes I and III are really one continuous duration distribution with faint bursts being softer than bright bursts.The properties of this continuous distribution become somewhat ambiguous at low signal-to-noise,where the?uence duration bias alters burst properties.

On the other hand,Class II appears to represent a separate source population from Class I(Hakkila et al.2000a).Neither sampling biases nor instrumental biases appear to be responsible for creating Class II characteristics from Class I bursts.However,it should be noted that BATSE’s short trigger timescales have aided in the large detection rate of these short events.

4.Conclusions

We have demonstrated that

1.Gamma-ray burst Class III does not have to represent a separate source population;

it can be produced by the integration time of the instrumental trigger,

2.the?uence duration bias by itself,as modeled from a sample of high signal-to-noise

bursts,is unlikely to be responsible for the existence of Class III.

3.Class III is likely produced by an excess of short,low?uence bursts detected by

BATSE’s short trigger temporal window.

4.The excess bursts can be eliminated via a selection process that is dual timescale peak

?ux-limited,rather than peak?ux-limited or?uence-limited.

5.The dual timescale peak?ux measure resulting from this selection process appears

to correlate better with hardness(and therefore with E peak and redshift)than either peak?ux or?uence.This adds support to the argument that dual timescale peak ?uxes correct the temporal limitations introduced by using single timescale peak?uxes.

Dual timescale peak?uxes can be established for many combinations of temporal measurements.

The results found here are important to gamma-ray burst astrophysics as well as to the general problem of scienti?c classi?cation.Data mining tools can help identify complex clusters in multi-dimensional attribute spaces.The tools are sensitive to clusters and data patterns,as evidenced here because they have allowed us to discover clusters produced arti?cially as a result of sample incompleteness.This sensitivity is advantageous,because a better understanding of instrumental response and sampling biases can be used to improve the design of future instruments.

We note that sample incompleteness is generic and applies to the detection of any transient sources identi?ed as the result of a temporal trigger.Examples of transient event statistics that might be biased by a temporal trigger include?are stars,soft gamma repeaters, x-ray bursts,and earthquakes.

However,the sensitivity of data mining tools can also cause problems.Data mining is central to the operation of planned Virtual Observatories,which will electronically combine data collected from a variety of instruments with a range of temporal,spectral,and inten-sity responses.Since sample incompleteness can cause a single instrument with one set of characteristics to?nd phantom classes,classes identi?ed using multiple instruments should be interpreted cautiously.The instrumental responses of Virtual Observatory components will have to be accurately known in order for newly-identi?ed classes to be recognized as separate source populations.

It is important to recognize that data mining techniques have their limitations.Principal component analysis has identi?ed?uence,duration,and hardness as being critical gamma-ray burst classi?cation attributes,while the trigger attribute of peak?ux was not chosen. Data mining classi?ers failed to recognize that attribute selection had removed the attribute that could have provided the most insight into the gamma-ray burst clustering structure.

We gratefully acknowledge NASA support under grant NRA-98-OSS-03(the Applied Information Systems Research Program)and NSF support under grant AST-0098499(Re-search in Undergraduate Institutions).We also thank James Ne?and Robert Dukes for valuable discussions.

REFERENCES

Atteia,J.-L.,Barat,C.,Boer,M.,Dezalay,J.-P.,Niel,M.,Talon,R.,Vedrenne,G.,Hur-ley,K.,Sommer,M.,Sunyaev,R.,Kuznetsov,A.,and Terekhov,O.1994,Astron.

Astrophys.,288,213

Bagoly,Z.,M′e sz′a ros,A.,Horv′a th,I.,Balazs,L.G.,and M′e sz′a ros,P.1998,ApJ,498,342 Balastegui,A.,Ruiz-Lapuente,P.,and Canal,R.2001,MNRAS,328,283

Bonnell,J.T.,Norris,J.P.,Nemiro?,R.J.,and Scargle,J.D.1997,ApJ,490,79 Dempster,A.P.,Laird,N.M.,and Rubin,D.B.1977,Journal of the Royal Statistical Society,Series B,39,1

Dezalay,J.-P.,Atteia,J.-L.,Barat,C.,Boer,M.,Darracq,F.,Goupil,P.,Niel,M.,Talon, R.,Vedrenne,G.,Hurley,K.,Terekhov,O.,Sunyaev,R.,and Kuznetsov,A.1997, ApJ,490,L17

Haglin,D.J.,Roiger,R.J.,Hakkila,J.,Pendleton,G.N.and Mallozzi,R.2000,Gamma-Ray Bursts,R.M.Kippen,R.S.Mallozzi,and G.J.Fishman,New York:AIP,877 Hakkila,J.,Haglin,D.J.,Pendleton,G.N.,Mallozzi,R.S.,Meegan,C.A.,and Roiger,R.

J.2000a,ApJ,538,165

Hakkila,J.,Preece,R.D.,and Pendleton,G.N.2000b,Gamma-Ray Bursts,R.M.Kippen, R.S.Mallozzi,and G.J.Fishman,New York:AIP,83

Hakkila,J.Giblin,T.W.,Roiger,R.J.,Haglin,D.J.,and Paciesas,W.S.2002,Proceed-ings of SCI2002,N.Callaos,Y.He,and J.A.Perez-Peraza,Orlando:International Institute of Informatics and Systematics Press,479.

Heise,J.,in’t Zand,J.,Kippen,R.M.,and Woods,P.M.2001,Gamma-Ray Bursts in the Afterglow Era,E.Costa,F.Frontera,and J.Hjorth.Berlin Heidelberg:Springer,16. Horv′a th,I.,1998,ApJ,508,757

Hurley,K.,1992,Gamma-Ray Bursts,W.S.Paciesas and G.J.Fishman,New York,AIP,3 Kippen,R.M.,Woods,P.M.,Heise,J.,in’t Zand,J.,Preece,R.D.,and Briggs,M.S.

2001,Gamma-Ray Bursts in the Afterglow Era,E.Costa,F.Frontera,and J.Hjorth.

Berlin Heidelberg:Springer,22.

Klebesadel,R.W.,1992,Gamma-Ray Bursts-Observations,Analyses and Theories,C.Ho, R.I.Epstein,and E.E.Fenimore1992,Cambridge:Cambridge Univ.Press,161

Kohonen,T.1982,Proceedings of the Sixth International Conference on Pattern Recognition Clustering,Taxonomy,and Topological Maps of Patterns,https://www.doczj.com/doc/265195001.html,ng,Silver Springs, MD:IEEE Computer Society Press,114

Kommers,J.M.,Lewin,W.H.G.,Kouveliotou,C.,van Paradijs,J.,Pendleton,G.N., Meegan,C.A.,and Fishman,G.J.2001,ApJS,134,385

Koshut,T.M.,Paciesas,W.S.,Kouveliotou,C.,van Paradijs,J.,Pendleton,G.N.,Fishman,

G.J.,and Meegan,C.A.1996,ApJ,463,570

Kouveliotou,C.,Meegan,C.A.,Fishman,G.J.,Bhat,N.P.,Briggs,M.S.,Koshut,T.M., Paciesas,W.S.,and Pendleton,G.N.1993,ApJ,413,L101

Lloyd,S.P.1982,IEEE Transactions on Information Theory,2,129

Mallozzi,R.S.,Paciesas,W.S.,Pendleton,G.N.,Briggs,M.S.,Preece,R.D.,Meegan,C.

A.,and Fishman,G.J.1995,ApJ,454,597

Mazets,E.P.,and Golenetskii,S.V.,1981,Astrophys.Space Sci.,75,47

Meegan,C.A.,Fishman,G.J.,Wilson,R.B.,Horack,J.M.,Brock,M.N.,Paciesas,W.

S.,Pendleton,G.N.,and Kouveliotou,C.1992,Nature,355,143

Meegan,C.A.,Pendleton,G.N.,Briggs,M.S.,Kouveliotou,C.,Koshut,T.M.,Lestrade, J.P.,Paciesas,W.S.,McCollough,M.L.,Brainerd,J.J.,Horack,J.M.,Hakkila,J., Henze,W.,Preece,R.D.,Mallozzi,R.S.,and Fishman,G.J.1996,ApJS,106,65 Meegan,C.A.,Hakkila,J.,Johnson,A.,Pendleton,G.N.,and Mallozzi,R.S.2000,Gamma-Ray Bursts,R.M.Kippen,R.S.Mallozzi,and G.J.Fishman,New York:AIP,43

Mitrofanov,I.,Pozanenko,A.,Atteia,J.-L.,Barat,C.,Chernenko,A.,Dolidze,V.,Jourdain,

E.,Kozlenkov,A.,Kucherova,R.,and Niel,M.1992,Gamma-Ray Bursts-Observa-

tions,Analyses and Theories,C.Ho,R.I.Epstein,and E.E.Fenimore,Cambridge: Cambridge Univ.Press,203

Mukherjee,S.,Feigelson,E.D.,Babu,G.J.,Murtagh,F.,Fraley,C.and Raftery,A.1998, ApJ,508,314

Nemiro?,R.J.,Norris,J.P.,Bonnell,J.T.,Wickramasinghe,W.A.D.T.,Kouveliotou,

C.,Paciesas,W.S.,Fishman,G.J.,and Meegan,C.A.1994,ApJ,435,L133

Norris,J.P.,Cline,T.L.,Desai,U.D.,and Teegarden,B.J.,1984,Nature,308,434

Paciesas,W.S.,Pendleton,G.N.,Kouveliotou,C.,Fishman,G.J.,Meegan,C.A.,and Wilson,R.B.1992,Gamma-Ray Bursts,W.S.Paciesas and G.J.Fishman,New York:AIP,190

Paciesas,W.S.,et al.2002,HETE-II Woods Hole Conference on Gamma-Ray Bursts,G.

R.Ricker,New York:AIP,in press.

Petrosian,V.,Lee,T.T.,and Azzam,W.J.,1994,in Gamma-Ray Bursts,G.J.Fishman, J.J.Brainerd,and K.J.Hurley,New York:American Institute of Physics,93 Qin,Y.-P.,Xie,G.-Z.,Liang,E.-W.,and Zheng,X.-T.2001,Astron.Astrophys.,369,537 Rajaniemi,H.J.and M¨a h¨o nen,P.2002,ApJ,566,202

Roiger,R.J.,Geatz,M.W.,Haglin,D.J.,and Hakkila,J.1999,Proceedings of the Fed-eral Data Mining Symposium&Exposition’99,W.T.Price,Fairfax,VA:AFCEA International,109

Roiger,R.J.,Hakkila,J.,Haglin,D.J.,Pendleton,G.N.,and Mallozzi,R.S.2000,Gamma-Ray Bursts,R.M.Kippen,R.S.Mallozzi,and G.J.Fishman,New York:AIP,38 Schmidt,M.,1999,A&AS,138,409

Stern,B.E.,Tikhomirova,Y.,Kompaneets,D.,Svensson,R.,and Poutanen,J.,2001,ApJ, 563,80

van Paradijs,J.,Kouveliotou,C.,and Wijers,R.A.M.J.,2000,Ann.Rev.Astron.Astro-phys.,38,379

最新小学数学课程标准(完整解读).

小学数学课程标准 第一部分前言 数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。 一、课程性质 义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。 二、课程基本理念 1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。 3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。 数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。 学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。 教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。 4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。 5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。 三、课程设计思路 义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。 按以上思路具体设计如下。

小学数学新课标解读

小学数学新课标解读 《全日制义务教育数学课程标准(修定稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。根据《义务教育法》.《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学.评价.教材编写)提出建议。 《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写.教学.评估.和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。 二、设计理念 数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。数学教育作

为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。 义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面.持续.和谐发展。课程设计要满足学生未来生活.工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感.态度与价值观等方面都要得到发展;要符合数学科学本身的特点.体现数学科学的精神实质;要符合学生的认知规律和心理特征.有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题.构建数学模型.得到结果.解决问题的过程。为此,制定了《标准》的基本理念与设计思路。 基本理念 数学课程应致力于实现义务教育阶段的培养目标,体现基础性.普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。课程内容既要反映社会的需要.数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容要贴近学生的生活,有利于学生经验.思考与探索。内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化.情境化与知识系统性的关系。课程内容

最新小学数学课程标准(完整解读)

小学数学课程标准 一、总目标 通过义务教育阶段的数学学习,学生能: 1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。 2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。 3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。 总目标从以下四个方面具体阐述: 知识技能 1.经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。 2.经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。 3.经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。 4.参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。 数学思考

1.建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。 2.体会统计方法的意义,发展数据分析观念,感受随机现象。 3.在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。 4.学会独立思考,体会数学的基本思想和思维方式。 问题解决 1.初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。 2.获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。 3.学会与他人合作交流。 4.初步形成评价与反思的意识。 情感态度 1.积极参与数学活动,对数学有好奇心和求知欲。 2.在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。 3.体会数学的特点,了解数学的价值。 4.养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。 总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四

格力销售分析

目录 一、摘要 二、关键词 三、企业介绍 四、湖南市场基本情况分析 1.市场占有率分析 2. swot分析 五、湖南市场销售计划 1.销售目标 2.销售配额 3.销售预算 六、湖南市场的销售组织 1.销售招牌培训 2.销售组织设计 3.销售团队建设 七、湖南市场的销售区域 1.销售区域划分 销售路线设计 3.销售区域管理 八、湖南市场销售考核激励 九、总结 十、致谢 摘要: 作为中国空调界的领军品牌,格力空调的拓展一直呈强势上升势头。通过近多年的精细化营销运作,市场占有率、品牌美誉度、渠道建设都取得了突飞猛进。面对巨大的市场空间,结合格力目前在湖南的整体状况,本文就如何继续巩固和扩大格力在湖南市场的领先优势、引领空调消费观念、提升品牌形象方面给予分析。 关键词:格力空调销售品牌 一、企业介绍 珠海格力电器股份有限公司是目前中国乃至全球最大的集研发、生产、销售、服务于一体的专业化空调企业。格力电器旗下的“格力”品牌空调,是中国空调

业唯一的“世界名牌”产品。公司自1991年成立以来,紧紧围绕“专业化”的核心技术发展战略,以“创新”精神促进企业发展壮大,以“诚信务实”的经营理念赢取市场和回报社会,使企业在竞争异常激烈的家电市场中连续多年稳健发展,取得了良好的经济效益和社会效益。同时,格力电器在技术、营销、服务和管理等创新领域硕果累累,深情演绎了一个中国企业肩负的历史使命和社会责任,让业界为之动容。在技术创新方面上成功研发出GMV数码多联一拖多、离心式中央空调等高端技术,并全球首创国际领先的超低温热泵中央空调,填补了国内空白,打破了美日制冷巨头的技术垄断,在国际制冷界赢得了广泛的知名度和影响力。在营销创新方面上格力电器独创的以资产为纽带、以品牌为旗帜为灵魂的区域性销售公司模式,树立了格力品牌的领跑地位,被经济界、理论界誉为“21世纪经济领域的全新革命”。 二、湖南市场基本情况分析 (一)湖南市场占有率分析 空调市场连续几年的价格战逐步启动了,二、三级市场的低端需求,同时随着城市建设和人民生活水平的不断提高以及产品更新换代时期的到来带动了一级市场的持续增长幅度,从而带动了整体湖南市场容量的扩张。目前格力在湖南空调市场的占有率约为20.8%左右,但根据行业数据显示近几年一直处于“洗牌”阶段,品牌市场占有率将形成高度的集中化。日前,中国商业联合会、中华全国商业信息中心联合“2010年度中国市场商品销售统计”结果显示,格力空调荣获“2010年市场综合占有率名列同类品牌第一位”。这也是格力空调自1995年起连续16年产销量位居中国空调行业第一,再次证实了其在消费者心目中已经当之无愧成为中国空调业唯一的“世界名牌”。2010年实现营业收入608亿元,同比增长42.6%,实现净利润42.8亿元,同比增长46.8%,享有极高的市场占有率和影响力。格力空调通过以市场销售量份额和市场覆盖面综合的市场占有率评比,荣获“2010市场综合占有率名列同类品牌第一位”,是消费者对格力品牌空调品质的信任。面对巨大的市场空间,结合格力目前在湖南的整体状况,没队伍整合组建是开始,培训提升是保证,高效运营体系是保障,推进监控是基础,网络建立是核心,销售达成是根本。 (二)SWOT分析 S: 1.实实在在做事的一个公司,高度符合素质模型; 2.空调行业已经经历过洗牌,恶性竞争的可能性不太大,利润得到保证; 3.对产业链的控制力很强; 4.技术,全球最大集研发、生产、销售服务于一体的专业化中央空调企业,格力拥有270多套实验室,是目前国内空调行业内最大种类最齐全的企业,在世

(完整版)心理学研究方法

福建省高等教育自学考试应用心理学专业(独立本科段) 《心理学研究方法》课程考试大纲 第一部分课程性质与目标《心理学研究方法》是福建省高等教育自学考试应用心理学专业(独立本科段)的一门专业基础必修课程,目的在于帮助考生了解和掌握心理学研究的理论基础和主要方法,检验考生对心理学研究理论基础与主要方法,检验考生对心理学研究方法的基本知识和主要内容的掌握水平与应用能力。 心理学研究的对象是心理现象。它的研究主题十分广泛:即涉及人的心理也涉及动物的心理;即涉及个体的心理也涉及群体的心理;即涉及有意识的心理也涉及潜意识的心理;即涉及与生理过程密切相关的心理也涉及与社会文化密切相关的心理。心理学研究是一种以经验的方式对心理现象进行科学探究的活动。由于心理学的研究方法是以经验的或实证的资料为依据的,因而使心理学与哲学相区别,也与人文学科相区别。 设置本课程的具体目的要求是,学习和掌握心理学研究方法的基本理论和基本技能,将有助于学生们理解心理学的基本概念、基本原理和基本理论。理解心理学家在探索心理与行动时所做的一切,有助于考生将来为心理学的发展做出有益的贡献。 第二部分考核内容与考核目标 第一编心理学研究基础 第一章心理学与科学 一、学习目的与要求 通过本章学习,要求考生了解心理学的性质,了解心理学科学研究的方法、特征及基本步骤,理解心理学研究的伦理问题和伦理规范。 二、考核知识点与考核目标 1、识记: (1)心理学的含义; (2)心理学科学研究的特征:系统性、重复性、可证伪性和开放性; (3)知情同意。 2、领会: (1)一般人探索世界的常用方法; (2)心理学研究主要包含哪几个步骤; (3)科学研究的开放性主要表现在哪几方面; 3、应用: (1)根据科学研究的特征来分析某些心理学的研究; (2)心理学研究的伦理问题及以人为被试的研究的伦理规范来分析是否可以在心理学研究中使用欺骗的方法。

小学数学新课程标准(修改稿——)解读

小学数学新课程标准(修改稿)解读 一、前言 《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。根据《义务教育法》、《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学、评价、教材编写)提出建议。 《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估、和考试命题的依据。在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。 二、设计理念 数学是研究数量关系和空间形式的科学。数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能 义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。为此,制定了《标准》的基本理念与设计思路基本理念。 (一)总:六大理念 1、人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展 2、数学是人们生活、劳动和学习必不可少的工具,数学是一切重大技术发展的基础,数学是一种文化。 3、数学学习的内容要有利于学生主动地进行观察、实验、猜测、验证、推理、与交流,动手实践、自主探索与合作交流是学生学习数学的重要方式。 4、学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者。 5、评价的目的—了解学生的数学学习历程,改进教师的教学;目标多元,方法多样;重过程,轻结果;关注情感态度。 6、把现代信息技术作为学生学习数学和解决问题的强有力的工具。 (二)分六大理念的解读: 数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 1、关于数学课程的功能 (1)“人人学有价值的数学”是指作为教育内容的数学,应当是适合学生在有限的学习时间里接触、了解和掌握的数学。 怎样理解有价值的数学?

格力电器营运能力分析

格力电器营运能力分析 一、公司简介 珠海格力电器股份有限公司成立于1991年,是目前全球最大的集研发、生产、销售、格力电器标志服务于一体的专业化空调企业。格力电器旗下的“格力电器”品牌空调,是中国空调业唯一的“世界名牌”产品。格力电器旗下的“格力电器”品牌空调,是中国空调业唯一的“世界名牌”产品,业务遍及全球100多个国家和地区。1995年至今,格力电器空调连续16年产销量、市场占有率位居中国空调行业第一;2005年至今,家用空调产销量连续4年位居世界第一;2011年,格力电器全球用户超过8800万。2012年,格力电器实施全球化品牌战略进入第五年。格力电器将继续发扬“创造资源、美誉全球”的企业精神和“人单合一、速战速决”的工作作风,深入推进信息化流程再造,以人单合一的自主经营体为支点,通过“虚实网结合的零库存下的即需即供”商业模式创新,努力打造满足用户动态需求的体系,一如既往地为用户不断创新,创出中华民族自己的世界名牌! 二、历史比较分析 资产运用效率,是指资产利用的有效性和充分性。资产运用效率的衡量与分析,对于不同报表使用人各具重要意义。股

东通过资产运用效率分析,有助于判断企业财务安全性及资产的收益能力,以进行相应的投资决策;债权人通过资产运用效率分析,有助于判明其债权的物质保障程度或其. 安全性,从而进行相应的信用决策;管理者通过资产运用效率分析,可以发现闲置资产和利用不充分的资产,从而处理闲置资产以节约资金,或提高资产利用效率以改善经营业绩。为了帮助大家对格力电器公司有个更好的了解,对格力电器公司的资产运用效率作如下分析: 数据指标值整理如下表 格力电器营运能力历史指标表 表1-1 总资产周转率: 1. 历史比较分析 历史比较分析:、总资产周转率1 11 图—

格力企业运营系统分析

企业运营系统分析 格力——掌握核心科技 一、公司简介 成立于1991年的珠海格力电器股份有限公司是目前全球最大的集研发、生产、销售、服务于一体的国有控股专业化空调企业,2012年实现营业总收入1001.10亿元,成为中国首家超过千亿的家电上市公司;2013年实现营业总收入1200.43亿元,净利润108.71亿元,纳税超过102.70亿元,是中国首家净利润、纳税双双超过百亿的家电企业,连续12年上榜美国《财富》杂志“中国上市公司100强”。2014年1-9月,格力电器实现营业总收入1000.19亿元,同比增长12.7%;净利润98.27亿元,同比增长29.67%。继续保持稳健的发展态势。 格力空调,是中国空调业唯一的“世界名牌”产品,业务遍及全球100多个国家和地区。家用空调年产能超过6000万台(套),商用空调年产能550万台(套);2005年至今,格力空调产销量连续9年领跑全球,用户超过3亿。 作为一家专注于空调产品的大型电器制造商,格力电器致力于为全球消费者提供技术领先、品质卓越的空调产品。在全球拥有珠海、重庆、合肥、郑州、武汉、石家庄、芜湖、巴西、巴基斯坦等9大生产基地,7万多名员工,至今已开发出包括家用空调、商用空调在内的20大类、400个系列、12700多个品种规格的产品,能充分满足不同消费群体的各种需求;累计申请技术专利近13000项,其中申请发明专利近4000项,自主研发的超低温数码多联机组、永磁同步变频离心式冷水机组、多功能地暖户式中央空调、1赫兹变频空调、R290环保冷媒空调、无稀土变频压缩机、双级变频压缩机、光伏直驱变频离心机系统、磁悬浮变频离心式制冷压缩机及冷水机组等一系列“国际领先”产品,填补了行业空白,改写了空调业百年历史。 在激烈的市场竞争中,格力空调先后中标2008年“北京奥运媒体村”、2010年南非“世界杯”主场馆及多个配套工程、2010年广州亚运会14个比赛场馆、2014年俄罗斯索契冬奥会配套工程等国际知名空调招标项目,在国际舞台上赢得了广泛的知名度和影响力,引领“中国制造”走向“中国创造”。 实干赢取未来,创新成就梦想。展望未来,格力电器将坚持专业化的发展战略,求真务实,开拓创新,以“缔造全球领先的空调企业,成就格力百年的世界品牌”为目标,为“中国梦”贡献更多的力量。 二、投入产出分析 格力作为空调制造业的领先者,以其主体业务空调制造为例,其投入产出自然与制造业大致相同。 企业通过投入厂房、设备、原材料等硬件,包括有生产厂房,存放产品和原材料的厂房,生产设备、加工设备和生产原材料。同时也投入人力资源,包括生产工人,管理人员,技术人员,再加上软件资源包括信息技术和资金等,进行生产和加工这一转换过程。生产过程完

2011版小学数学课程标准解读(全)

解读《义务教育小学数学课程标准》(2011年版)一 【新旧课标比较】与旧课标相比,新课标从基本理念、课程目标、内容标准 到实施建议都更加准确、规范、明了和全面。具体变化如下: 一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。 2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。 二、关于数学观的变化 2001年版: 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。 数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。 2011年版: 数学是研究数量关系和空间形式的科学。 数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。 数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。 三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”: 人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。 2011年版“两句话”: 人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 “6条”改“5条”: 在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。 2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术 四、理念中新增加了一些提法 要处理好四个关系 数学课程基本理念(两句话) 数学教学活动的本质要求 培养良好的数学学习习惯 注重启发式 正确看待教师的主导作用 处理好评价中的关系

(完整版)人教版四年级数学新课标解读

人教版小学数学四年级下册新课标解读 崔庙镇实验小学 四年级

人教版小学数学四年级下册新课标解读 一、教材的主要内容: 小数的意义与性质,小数的加法和减法,四则运算,运算定律与简便计算,三角形,位置与方向,折线统计图,数学广角和数学综合运用活动等。 其中小数的意义与性质,小数的加法和减法,运算定律与简便计算,以及三角形是本册的重点教学内容。 二、教材的学习目标 1、理解小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。 2、掌握四则混合运算的顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。 3、认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边以及三角形的内角和是 180°。 4、初步掌握确定物体位置的方法,能根据方向和距离确定物体的位置,能描述简单的路线图。 5、认识折线统计图,了解折线统计图的特点,初步学会根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用。

6、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。 7、了解解决植树问题的思想方法,培养从生活中发现数学问题的意识,初步培养探索解决问题有效方法的能力,初步形成观察、分析及推理的能力。 8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。 9、养成认真作业、书写整洁的良好习惯。 三、教材的编写特点: 本册实验教材具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算法多样化、改变学生的学习方式,体现开放性的教学方法等特点。同时,本实验教材还具有下面几个明显的特点。 1. 改进四则运算的编排,降低学习的难度,促进学生的思维水平的提高。 四则运算的知识和技能是小学生学习数学需要掌握的基础知识和基本技能。以往的小学数学教材在四年级时要对以前学习过的四则运算知识进行较为系统的概括和总结,如概括出四则运算的意义和运算定律等。对于这些相关的内容,本套实验教材在本册安排了“四则运算”和“运算定律与简便计算”两个单元。“四则运算”单元的教学内容主要包括四则混合运算和四则运算的顺序。而关于四则运算的意义没有进行概括,简化了教学内容,降低了学习的难度。

(完整版)06059心理学研究方法复习题

心理学研究方法复习题 一、重要概念 1、研究的效度:即有效性,它是指测量工具或手段能够准确测出所需测量的心理特质的程度。 2、内部一致性信度:主要反映的是测验内部题目之间的信度关系,考察测验的各个题目是否测量了 相同的内容或特质。内部一致性信度又分为分半信度和同质性信度。 3、外推效度:实验研究的结果能被概括到实验情景条件以外的程度。 4、半结构访谈:半结构化访谈指按照一个粗线条式的访谈提纲而进行的非正式的访谈。该方法对访谈 对象的条件、所要询问的问题等只有一个粗略的基本要求,访谈者可以根据访谈时的实际情况灵活地做出必要的调整,至于提问的方式和顺序、访谈对象回答的方式、访谈记录的方式和访谈的时间、地点等没有具体的要求,由访谈者根据根据情况灵活处理。 5、混淆变量:如果应该控制的变量没有控制好,那么,它就会造成因变量的变化,这时,研究者选定 的自变量与一些没有控制好的因素共同造成了因变量的变化,这种情况就称为自变量混 淆。 6、被试内设计:每个被试接受接受自变量的所有情况的处理。 7、客观性原则:是指研究者对待客观事实要采取实事求是的态度,既不能歪曲事实,也不能主观臆断。 8、统计回归效应:在第一次测试较差的学生可能在第二次测试时表现好些,而第一次表现好的学生则 可能相反,这种情形称为统计回归效应.。统计回归效应的真正原因就是偶然因素变化导致的随机误差,以及仅仅根据一次测试结果划分高分组和低分组。 9、主体引发变量:研究对象本身的特征在研究过程中所引起的变量。 11、研究的信度:测量结果的稳定性程度。换句话说,若能用同一测量工具反复测量某人的同一种心理特质,则其多次测量的结果间的一致性程度叫信度,有时也叫测量的可靠性。 12、分层随机抽样:它是先将总体各单位按一定标准分成各种类型(或层);然后根据各类型单位数与总体单位数的比例,确定从各类型中抽取样本单位的数量;最后,按照随机原则从各类型中抽取样本。13、研究的生态效度:生态效度就是实验的外部效度,指实验结果能够推论到样本的总体和其他同类现象中去的程度,即试验结果的普遍代表性和适用性。 14、结构访谈:又称为标准化访谈,指按照统一的设计要求,按照有一定结构的问卷而进行的比较正式的访谈,结构访谈对选择访谈对象的标准和方法、访谈中提出的问题、提问的方式和顺序、访谈者回答的方式等都有统一的要求。 15、被试间设计:要求每个被试者(组)只接受一个自变量处理,对另一被试者(组)进行另一种处理。

2019年格力电器运营分析报告

2019年格力电器运营分析报告

内容目录 一、复盘:空调巨头成长史的标志性阶段?............................... 错误!未定义书签。 阶段一、2000 年之前:“需求爆发期” ....................................................... -5 - 阶段二、2000-2005 年:“成长血拼期” ..................................................... -5 - 阶段三、2005-2012 年:“优势塑造期” ..................................................... -5 - 阶段四、2012 年至今:“寡头巩固期” ....................................................... -5 - 二、剖析:有哪些独立的经营模式、财务特征?................................................ - 7 - 其一:周期性............................................................................................... - 7 - 其二:股权结构........................................................................................... - 7 - 其三:经营模式& ROE 特征.......................................................................... - 8 -三、解构周期,可以跌到多深?....................................................................... - 11 - 维度一:股价跌幅分析.............................................................................. - 12 - 维度二:PB/ROE 分析................................................................................. - 12 -维度三:PE&股息率分析............................................................................ - 12 -四、解构成长,市值一路高成长的密码?......................................................... - 13 - 第一重动力来自清晰的量价逻辑............................................................... - 13 - 第二重动力来自全球化的扩张预期............................................................ - 15 - 第三重动力来自多元化的成长空间............................................................ - 15 - 第四重动力来自于高度的确定性............................................................... - 15 - 五、解构买点!................................................................................................. - 16 - 六、行业增速最重要吗?.................................................................................. - 19 - 七、估值为何长期折价?.................................................................................. - 19 - 八、未来,多元化之辩与或有的挑战?............................................................ - 21 -

心理学研究方法复习资料

心理学研究方法复习资料 考试题型概念解释(5*4=20)、简答(3*8=24)、案例分析(4*10=40)、研究设计(1*16=16)。本资料包括老师提到的概念解释和简答,案例分析和研究设计来自于课本挑战性问题。本资料仅供参考。 名词解释: 1、研究假设(Hypothesis):是由理论所推衍出来的更为具体的预测,是针对研究问题提出的有待验证的、暂时性的、推测性的解答。 2、实验混淆(confounding):如果我们所设定的自变量其发生量的改变时,另一个已知或潜在的变量亦随之有量的改变,则这两个变量的作用就发生了相互混淆。 3、观察者间信度(interobserver reliability):指不同的独立的观察者针对同一观察所做记录的一致性程度。 4、便利抽样(convenience sampling):主要根据获得调查对象的容易程度和调查对象参加调查的意愿所进行的。便利抽样是所有取样技术中花费最小的,抽样单元是可以接近的、容易测量的,并且是可以合作的。便利取样是非随机抽样,所选取的样本缺乏代表性。 5、假相关(spurious relationship):如果两个变量间的关系可以通过第三个变量进行解释,那么这种关系就被称之为“假相关”。 6、操作定义(operational definition):指仅根据可观察的程度来解释概念,这个观察程度是来产生和测量概念的。即从具体的行为、特征、指标上对变量的操作进行描述,将抽象的概念转换成可观测、可检验的项目。 7、外部效度(external validity):是指研究结果能够一般化和普遍化到样本来自的总体和其他条件、时间、和背景中去的程度。 8、内部效度(internal validity):指实验中的自标量与因变量之间因果关系的明确程度。如果在试验中:当自变量发生变化时因变量随之发生改变,而自变量恒定时因变量则不发生变化,那么这个实验就具有较高的内部效度。内部效度与无关变量的控制有关。 9、交互作用(interaction effect):是指一个因子的效应依赖于另一个因子的不同水平,当一个自变量的效应在另一自变量的不同水平上存在差异时,就表示出现了交互作用。10、知情同意(informed consent):是被试在充分理解研究性质、不参加的后果、影响参加意愿的所有因素后,明确表达参加研究的意愿。 11、统计效力(power):指研究者在进行统计检验时,正确拒绝虚无假设的可能性,换言之,就是当存在真正效应时检验发现效应的概率。统计效力受到统计显著性水平、处理效应大小

小学数学新课程标准解读读书笔记

学习数学课程标准解读读书笔记 今天我又重温了一下《小学数学新课程标准》,它的基本理念有以下几点: 1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。 2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。 3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动.内容的呈现应采用不同的表达方式,以满足多样化 的学习需求.有效的数学学习活动不能单纯地依赖模仿与记忆,动手 实践、自主探索与合作交流是学生学习数学的重要方式.由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。 4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和

掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。 5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。 6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技 术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。 1、数学教育是中小学的一门基础的学科教育,如同其他的学科一样,其教育意义并不局限于本学科的只是掌握,更反映在它有理地促进人的素质的发展,是人的文化修养的最深刻、最有效的部分之一。 2、经济发达国家的数学教育改革方向:学校数学的焦点从双重任务---对大多数人教最少的数学,而把高等数学教给少数人----- 过渡到单一中心,把数学的最重要的公共核心教给所有的学生。从基于传递只是的权威性的模式过渡到以启发学习为特征的,以学生为中

心理学分析研究方法纯手打整理重点

变量:属性地逻辑组合,通常用定义来解释或限定.自变量—实验条件(操控); 调节变量:所要解释地是自变量在何种条件下会影响因变量,也就是说,当自变量与因变量间地相关大小或正负方向受到其它因素地影响时,这个其它因素就是该自变量与因变量之间地调节变量.中介变量:不可观察地,而在理论上又是影响所观察现象地因素 因变量—所需测定地特征或方面(可测量)额外变量—对因变量有一定影响,但与该次实验研究目地无关地变量(控制:屏蔽、中和))随机误差:可见误差.偶然地、随机地无关变量引起,较难控制,无规律可循;影响信效度.系统误差:常定误差.常定地、有规律地无关变量引起,其方向和大小地变化是恒定而有规律地.影响效度. 无关变量地控制:、消除法排除或隔离无关变量对实验效果地影响.标准化指导语、双盲程序、内隐测量、恒定法实验期间,尽量使得所有地实验条件、实验处理、实验者及被试都保持恒定.研究在同一时间、地点举行,程序、拉丁方设计、平衡法设置使得无关变量对所有地实验组和对照组地影响都均等、统计控制:一种事后补救,统计隔离无关变量地影响,协方差分析,偏相关.操作定义:描述所界定地变量或事项如何测量,包括:工具,方法,程序.将变量或指标地抽象称述转化为具体地操作称述地过程. 、简单随机取样(不作任何预处理,适用范围:对总体中各类比例不了解或来不及了解地情况)) 抽彩法(充分搅匀))随机表法(随

机进入))随机函数法(种子问题) 、分层随机取样:对总体进行预处理,分成若干层次后然后独立地从每一层次中选取样本. ()比例分层取样:按每一层次个体数量占总体中地比例决定该层次样本地数量. ()非比例分层取样:每层次中样本量不按该层次在总体中地比例抽取,而是根据研究者对不同层次个体地研究兴趣和侧重程度确定比例地大小. 、内部效度(逻辑度与额外因素影响度):研究中自变量与因变量因果关系地明确程度. 影响因素:成熟因素、历史因素、被试选择上地差异、 研究被试缺失产生地效应、前测地影响、实验程序不一致或处理扩散产生地效应、统计回归效应、研究条件与因素间地交互作用.、外部效度:可细分为总体效度和生态效度.研究结果能一般化或普遍化到样本来自地总体(总体效度)和其它变量条件、时间和背景(生态效度)中去地程度,即研究结果地普遍代表性和适用性.影响因素:.取样代表性;.变量地操作方式不准,致使研究地可重复性差;.研究对被试地反作用;.事前测量与实验处理地相互影响;.多种处理地干扰;.实验者效应.研究地人为性;.被试选择与实验处理地交互作用.提高方法:严格控制;做好取样工作,包括被试取样、实验情境、研究工具、

2第二章 设计心理学的研究方法

第二章设计心理学的研究方法 2.1 设计心理学的研究方法 人的消费活动是一种复杂的社会行为, 是人类心理活动的一部分。研究消费者心理活动规律的方法与整个心理学的一般研究方法是一致的, 心理学本身的发展, 为心理学应用分支的发展提供了科学的基础。但人类的消费活动是一种特殊领域。在运用心理学的某些研究方法了解消费行为规律时, 必然有一些新的内容和新的问题。因此探索设计心理学研究方法, 不仅有利于自身的发展, 也丰富了心理学主干研究方法的积累。设计心理学一般常用的研究方法有观察法、访谈法、问卷法、投射法、实验法、态度总加量表法、语义分析量表法、案例研究法、心理描述法、抽样调查法、创新思维法1 1 种方法。 2.1.1 观察法 观察法是心理学的基本方法之一。观察是科学研究的最一般的实践方法, 同时也是最简便、易行的研究方法。所谓观察法是在自然条件下, 有目的、有计划地直接观察研究对象( 消费者) 的言行表现, 从而分析其心理活动和行为规律的方法。设计心理学借助观察法, 用以研究广告、商标、包装、橱窗以及柜台设计等方面的效果。例如, 为了评估商店橱窗设计的效果, 可以在重新布置橱窗的前后, 观察行人注意橱窗或停下来观看橱窗的人数, 以及观看橱窗的人数在过路行人中所占的比例。通过重新布置前后观看橱窗的人数变化来说明橱窗设计的效果。 观察法的核心, 是按观察的目的, 确定观察的对象、方式和时机。观察时应随时记录消费者面对广告宣传、产品造型、包装设计以及柜台设计等方面所表现的行为举止, 包括语言的评价、目光注视度、面部表情、走路姿态, 等等。 观察记录的内容应包括: 观察的目的、对象, 观察时间, 被观察对象的有关言行、表情、动作等的数量与质量等。另外, 还有观察者对观察结果的综合评价。 观察法的优点是自然、真实、可靠、简便易行、花费低廉。在确定观察的时间和地点时, 要注意防止可能发生的取样误差。例如, 在了解商店消费者的构成时, 要区分休息日和非休息日, 也要区别上班时间和下班时间。有时商店消费者的构成也受周围居民成分的影响, 要观察少数民族消费者的特点, 就应该选择少数民族特需品的供应商店。在分析观察结果时, 要注意区分偶然的事件和有规律性的事实, 使结论具有科学性。 观察法的缺点也是明显的。在进行观察时, 观察者要被动地等待所要观察的事件出现。而且, 当事件出现时, 也只能观察到消费者是怎样从事活动的, 并不能得到消费者为什么会这样活动, 他的内心是怎样想的资料。 现代科技水平的发展, 使观察法能借用先进的观察设备诸如录像、录音、闭路电视的方式进行观察, 使观察效果更准确更及时, 并节省观察人员。但观察法只能记录消费者流露出来的言行、表情, 而对流露出这种言行、表情的原因, 是无法通过观察法直接获取, 因而必须结合其他的有关方法, 才能进一步了解消费行为规律。当研究的心理现象不能直接观察时, 可通过搜集有关资料, 间接了解消费者的心理活动, 这种研究方法叫调查法。调查法分为两种: 一种是口头调查法, 亦称谈话法、访谈法; 另一种是书面调查法, 亦称问卷法、调查表法。 2.1.2 访谈法 访谈法是通过访谈者与受访者之间的交谈, 了解受访者的动机、态度、个性和价值

相关主题
文本预览
相关文档 最新文档