当前位置:文档之家› 拉深模试模的常见缺陷、产生原因及调整方法

拉深模试模的常见缺陷、产生原因及调整方法

拉深模试模的常见缺陷、产生原因及调整方法
拉深模试模的常见缺陷、产生原因及调整方法

拉深模试模的常见缺陷、产生原因及调整方法试冲的

缺陷

产生原因调整方法

制件起皱①压边力太小或不均

②凸、凹模间隙太大

③凹模圆角半径太大

④板料太薄或塑性差

①增加压边力或调整顶件杆

长度、弹簧位置

②减小拉深间隙

③减小凹模圆角半径

④更换材料

制件破裂或有裂纹①压料力太大微信公众号:

hcsteel

②压料力不够,起皱引起破

③毛坯尺寸太大或形状不当

④拉深间隙太小

⑤凹模圆角半径太小

⑥凹模圆角表面粗糙

⑦凸模圆角半径太小

⑧冲压工艺不当

⑨凸模与凹模不同心或不垂

⑩板料质量不好

①调整压料力

②调整顶杆长度或弹簧位置

③调整毛坯形状和尺寸

④加大拉深间隙

⑤加大凹模圆角半径

⑥修整凹模圆角,降低表面粗

糙度

⑦加大凸模圆角半径

⑧增加工序或调换工序

⑨重装凸、凹模

⑩更换材料或增加退火工序,

改善润滑条件

制件拉①毛坯尺寸太大①减小毛坯尺寸

深高度太大②拉深间隙太小

③凸模圆角半径太大

②整修凸、凹模,加大间隙

③减小凸模圆角半径

制件壁厚和高度不均①凸模与凹模间隙不均匀

②定位板或挡料销位置不正

③凸模不垂直

④压料力不均

⑤凹模的几何形状不正确

①重装凸模和凹模,使间隙均

匀一致

②重新修整定位板及挡料销

位置,使之正确

③修整凸模后重装

④调整托杆长度或弹簧位置

⑤重新修整凹模

制件底面不平①凸模或凹模(顶出器)无

出气孔

②顶出器在冲压的最终位置

时顶力不足

③材料本身存在弹性

①钻出气孔

②调整冲模结构,使冲模达到

闭合高度时,顶出器处于刚性

接触状态

③改变凸模、凹模和压料板形

制件表面拉毛①拉深间隙太小或不均匀

②凹模圆角表面粗糙值大

③模具或板料不清洁

④凹模硬度太低,板料有黏

附现象

⑤润滑油质量太差

①修整拉深间隙

②修光凹模圆角

③清洁模具及板料

④提高凹模硬度,进行镀铬及

氮化处理

⑤更换润滑油

拉深模设计实例

5.1拉深模设计实例——保护筒拉深模的设计 5.1.1设计任务 图5-3- 1所示是一金属保护筒,材料为08钢,材料厚度2mm,大批量生产。要求设计该保护筒的冲压模具。 图5-3- 1 保护筒零件图 5.1.2零件工艺性分析 1.材料分析 08钢为优质碳素结构钢,属于深拉深级别钢,具有良好的拉深成形性能。 2. 结构分析 零件为一无凸缘筒形件,结构简单,底部圆角半径为R3,满足筒形拉深件底部圆角半径大于一倍料厚的要求,因此,零件具有良好的结构工艺性。 3. 精度分析 零件上尺寸均为未注公差尺寸,普通拉深即可达到零件的精度要求。 5.1.3工艺方案的确定 零件的生产包括落料、拉深(需计算确定拉深次数)、切边等工序,为了提高生产效率,可以考虑工序的复合,本例中采用落料与第一次拉深复合,经多次拉深成形后,由机械加工方法切边保证零件高度的生产工艺。

5.1.4 零件工艺计算 1.拉深工艺计算 零件的材料厚度为2mm ,所以所有计算以中径为准。 (1)确定零件修边余量 零件的相对高度 63.230 180=-=d h ,经查得修边余量mm h 6=?,所以,修正后拉深件的总高应为79+6=85mm 。 (2)确定坯料尺寸D 由无凸缘筒形拉深件坯料尺寸计算公式得 mm 105mm 456.043072.1853043056.072.14222 2≈?-??-??+=---=r dr dh d D (3)判断是否采用压边圈 零件的相对厚度 9.1100105 2100=?=?D t ,经查压边圈为可用可不用的范围,为了保证零件质量,减少拉深次数,决定采用压边圈。 (4)确定拉深次数 查得零件的各次极限拉深系数分别为[ m 1]=0.5,[ m 2]=0.75,[ m 3]=0.78,[ m 4]=0.8。所以,每次拉深后筒形件的直径分别为 m m 5.52m m 1055.0][11=?==D m d m m 38.39m m 5.5275.0][122=?==d m d m m 72.30m m 38.3978.0][233=?==d m d m m 30m m 58.24m m 72.308.0][344<=?==d m d 由上计算可知共需4次拉深。 (5)确定各工序件直径 调整各次拉深系数分别为 53.01=m ,78.02=m ,82.03=m ,则调整后每次拉深所得筒形件的直径为 m m 65.55m m 10553.011=?==D m d m m 41.43m m 65.5578.0122=?==d m d mm 60.35mm 41.4382.0233=?==d m d

拉深缺陷及解决措施

壁破裂 这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(r cd)附近。在模具设计阶段,一般难以预料。破裂形状如图1所示,即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。它是一种原因比较清楚而又少见的疵病。 方筒拉深,直边部和角部变形不均匀。随着拉深的进行,板厚只在角部增加。从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。 为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线如图2所示,载荷峰值出现两次。 图1 方筒壁破裂 图2 方筒拉深时,凸模行程与拉深载荷的关系 第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。就平均载荷而言,第一峰值最高。就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。 与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。即使拉深象圆筒那样的均匀的产品,往往也会发生壁破裂。 原因及消除方法 (1)制品形状。 ① 拉深深度过深。 由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。 ② r d、r c过小。 由于该缺陷是在方筒角部半径(r c)过小时发生的,所以就应增大r c。凹模圆角半径(r d)小而进行深拉深时,也有产生壁破裂的危险。如果产生破裂,就要好好研磨(r d),将其加大。 (2)冲压条件。 ① 压边力过大。 只要不起皱,就可降低压边力。如果起皱是引起破裂的原因,则降低压边力必须慎

拉伸模的常有缺陷

拉伸模的常有缺陷 壁破裂 这种缺陷一般出现在方筒角部附近的侧壁,通常,出现在凹模圆角半径(rcd)附近。在模具设计阶段,一般难以预料。破裂形状如图1所示,即倒W字形,在其上方出现与拉深方向呈45°的交叉网格。交叉网格象用划线针划过一样,当寻找壁破裂产生原因时,如不注意,往往不会看漏。它是一种原因比较清楚而又少见的疵病。 方筒拉深,直边部和角部变形不均匀。随着拉深的进行,板厚只在角部增加。从而,研磨了的压边圈,压边力集中于角部,同时,也促进了加工硬化。 为此,弯曲和变直中所需要的力就增大,拉深载荷集中于角部,这种拉深的行程载荷曲线如图2所示,载荷峰值出现两次。 图1 方筒壁破裂 图2 方筒拉深时,凸模行 程与拉深载荷的关系 第一峰值与拉深破裂相对应,第二峰值与壁破裂相对应。就平均载荷而言,第一峰值最高。就角部来说,在加工后期由于拉深载荷明显地向角部集中,在第二峰值就往往出现壁破裂。 与碳素钢板(软钢板)相比较,18—8系列不锈钢由于加工硬化严重,容易发生壁破裂。即使拉深象圆筒那样的均匀的产品,往往也会发生壁破裂。 原因及消除方法 (1)制品形状。 ① 拉深深度过深。 由于该缺陷是在深拉深时产生的,如将拉深深度降低即可解决。但是必须按图纸尺寸要求进行拉深时,用其他方法解决的例子也很多。 ② rd、rc过小。 由于该缺陷是在方筒角部半径(rc)过小时发生的,所以就应增大rc。凹模圆角半径(rd)小而进行深拉深时,也有产生壁破裂的危险。如果产生破裂,就要好好研磨(rd),将其加大。 (2)冲压条件。 ① 压边力过大。 只要不起皱,就可降低压边力。如果起皱是引起破裂的原因,则降低压边力必须慎重。如果在整个凸缘上发生薄薄的折皱,又还在破裂地方发亮,那就可能是由于缓冲销高度没有加工好,模具精度差,压力机精度低,压边圈的平行度不好及发生撞击等局部原因。必须采取相应措施。是否存在上述因素,可以通过撞击痕迹来加以判断,如果撞击痕迹正常,形状就整齐,如果不整齐,则表明某处一定有问题。 ② 润滑不良。 加工油的选择非常重要。区别润滑油是否合适的方法,是当将制品从模具内取出来时,如果制品温度高到不能用手触摸的程度,就必须重新考虑润滑油的选择和润滑方法。 在拉深过程中,最重要的因素之一是不能将润滑油的油膜破裂。凸模侧壁温度上升而使材料软化,是引起故障的原因。 因此,在进行深拉深时,要尽量减少拉深引起的磨擦,另外,还需要同时考虑积极的冷却方案。 ③ 毛坯形状不当。 根据经验,在试拉深阶段产生壁破裂时,只要改变毛坯形状,就可消除缺陷,这种实例非常多。 拉深方筒时,首先使用方形毛坯进行拉深,rd部位如果产生破裂,就对毛坯四角进行切角。 在此阶段,如果发生倒W字形破裂和网格疵病,则表示四角的切角量过

涨模处理方案

梁、柱涨模及蜂窝麻面处理方案 一、柱、梁混凝土涨模的部位及原因分析 1) 柱、梁的模板极易发生涨模。其主要原因: 1.是在浇筑混凝土时,混凝土本身对模板下侧压力较大; 2.是现在浇筑用混凝土多采用泵送混凝土,泵送混凝土的坍落度及流动性都比较大,而一次浇筑砼量又较多较快,造成对模板下侧压力进一步加大; 3.三是有时振捣人员不能按操作规程振捣,这样就极易造成模板发生涨模现象。 2) 柱、梁的二次接槎和模板拼缝处极易发生涨模。其主要原因为: 在二次接槎处浇筑混凝土时残浆没清理干净,致使模板不能与混凝土面拼严。另外,接槎处模板不易加固、模板拼缝处上下或左右模板在制作或安装时模板较难加固也是易发生涨模的一个重要原因。 3 ) 梁的跨中由于不按要求起拱也会发生下沉现象。 4 ) 梁的两侧边中部,特别是周边梁的外侧中部极易发生涨模。其主要原因是:梁的上部有板,在加固梁时上部没法拉紧,中部需要靠撑杆顶撑,而由于在周边梁的外侧只能顶撑在外架上,所以对模板的加固有很大的影响,造成模板加固不牢,致使在浇筑混凝土时发生涨模现象。 5 ) 柱、梁节点处及墙、柱节点处极易发生涨模。其主要原因是:在节点处极易出现缝,而在节点处模板的加固质量难以控制,不是模

板不到边,就是模板相互吃进。另外,在加固时模板背棱或顶杆有时也顶不到位。 二、柱、梁涨模防止措施 1 ) 模板设计及荷载组合: 现在多采用木模系统,由于其技术指标是在材质干燥的情况下测定的,而经水浸泡后其强度等都会有所降低。因此在计算其加固用钢管及对拉螺栓的问距时要比正常的计算减少15~20 %。在考虑混凝土的侧向压力时除按规范计算外,还应考虑浇筑混凝土时的方法及可能发生的意外。 2 ) 对拉螺栓的设置: 对拉螺栓的布置除按计算进行外,还必须结合现场实际情况灵活设置。在柱、梁的对拉螺栓从根部向上1米范围内的对拉螺栓帽用双帽,以加大保险系数。为了有效地控制墙、柱模板加固质量,防止混凝土涨模,在浇筑混凝土时,在距柱、墙模板2 5 0 ~3 0 0 mm处应预埋或钢筋作支脚,以固定模板的对拉螺栓。 3 ) 二次接槎的地方,在支模板前将梁、柱下的残浆、浮浆清理干净;在浇筑混凝土时,在其模板内侧周边固定2 0 mm宽2 0mm厚的木条,使浇筑后的混凝土上形成凸型在支设模板时就能与混凝土面紧密接触,加上有钢筋支脚当对拉螺栓,这就保证了模板不发生涨模现象。 4)在模板拼缝处,基本保证混凝土不发生涨模,确保了混凝土质量。在节点处模板不易加固,而往往在支设模板时又把拼缝留在了

浅谈冲压拉深件制造中缺陷的产生和消除

浅谈汽车车身冲压拉深件制造中缺陷的产 生和消除 陆国庆 (上海大众汽车有限公司) 摘要:冲压工件的制造工艺水平及质量,在较大程度上对汽车制造质量和成本有直接的影响。 而为了减少车身总成的分块数量、同时也为减少冲压过程的工序数、节约投资额和能耗,现在汽车称身制造中较多采用大面积冲压件,如车顶、发动机盖外板等,这样既可使汽车外形美观、空气阻力减少,又可减少冲压件数量及焊点,能有效地降低成本(图1)。这样相应的对于生产制造厂中的冲压拉深件的质量控制、及缺陷产生后的消除又提出了更高的要求。本篇主要介绍部分汽车车身冲压拉深件的缺陷和消除方法。 关键词:瘪塘麻点检验冲压 1.简介 冲压工件的制造工艺水平及质量,在较大程度上对汽车制造质量和成本有直接的影响。 而为了减少车身总成的分块数量、同时也为减少冲压过程的工序数、节约投资额和能耗,现在汽车称身制造中较多采用大面积冲压件,如车顶、发动机盖外板等,这样既可使汽车外形美观、空气阻力减少,又可减少冲压件数量及焊点,能有效地降低成本(图1)。这样相应的对于生产制造厂中的冲压拉深件的质量控制、及缺陷产生后的消除又提出了更高的要求。本篇主要介绍部分汽车车身冲压拉深件的缺陷和消除方法。 图1 santana2000车顶 2.瘪塘 1.1产生 如图2所示,当对大曲面制品的顶部施加正向压力时,会产生部分瘪塘,但去掉该正向压力后又回复到原来形状;或者去掉压力后不回复而照样瘪塘,但从里面施加压力后又回复成原样。象这类对顶部施加小正压力产生的缺陷,称之为瘪塘。

其原因是:用刚性低的材料成形曲率半径大的形状时,由于材料张力刚性不足产生凹陷。因此,这是材料性能不好引起的表面精度不良。 图2 瘪塘 1.2检验方法 用LAPPORT公司的200MM*20MM*20MM的油石(Oelstein)(适用于大平面)或100MM*10MM*10MM(适用于圆弧处以及难以够到的部位)的油石(Oelstein)轻轻打磨成形后的制品,这时高的地方有油石 B5冲压件图例:油石打磨线断显出零件表面凹陷 擦伤的痕迹,而低的地方却没有Array(如图3),这样,配合状态也就 一目了然了。要创造全面而均衡 的配合状态,就要花时间用砂轮 对压边圈板面或凸模面进行认真 打磨,将表面打磨成象镜面那样, 拉伸条件就会变好,同时,还要 达到全面而均衡的胀形。配合状 态好,弹性回复变形也就会减少, 张力刚性提高。 1.3消除方法 1.3.1消除凹陷方法从下面几方面考虑。 1.3.1.1凹陷是被成形件的弹性回复问题。 1.3.1.2凹陷的大小由板厚和形状决定。 1.3.1.3成形性好,屈服点低,屈强比低的材料比较好,而与钢种关系不大。然而,如果制品形状复杂,则张力刚性和钢种之间关系密切。 1.3.2消除方法 1.3.2.1制品形状。 1.3.2.1.1将曲率半径减小。 大曲面制品,或多或少都会发生凹陷。一般而言,这与张力刚性和形状有关。主要措施是减小曲率半径,这时,跳移负荷增大,刚性增高;但如果形状复杂,周围支承条件也不是简单支承时,这时只从形状上就难以判断。 然而,即使用拉深和胀形加工成形形状,由于整体弹性回复变形,曲率半径变大,多数情况张力刚性会下降。 1.3.2.1.2增加板材厚度。 张力刚性一般为板厚的三次方。如果将法向力和曲率半径固定,增加板厚,变形量就会渐渐减少。因此,当不允许形状变化时,增加板厚,凹陷就一定会减少。 1.3.2.2冲压条件。 1.3.2.2.1采用拉深胀形法。 凹陷由于是张力刚性不足引起的弹性回复问题,就加工方法而言,拉伸要均衡,有必要 将拉深加工改在修整线外。原先是将毛坯尺寸增大来进行拉伸成形的,现代生产一般为了提 高材料利用率均采用拉深筋。

弯曲模,拉伸模的基本原理

弯曲模的基本原理(一) 一、弯曲的基本原理 (一)弯曲工艺的概念及弯曲件 1.弯曲工艺:是根据零件形状的需要,通过模具和压力机把毛坯弯成一定角度,一定形状工件的冲压工艺方法。 2.弯曲成形工艺在工业生产中的应用:应用相当广泛,如汽车上很多履盖件,小汽车的柜架构件,摩托车上把柄,脚支架,单车上的支架构件,把柄,小的如门扣,夹子(铁夹)等。 (二)、弯曲的基本原理:以V形板料弯曲件的弯曲变形为例进行说明。其过程为:1.凸模运动接触板料(毛坯)由于凸,凹模不同的接触点力作用而产生弯短矩,在弯矩作用下发生弹性变形,产生弯曲。 2.随着凸模继续下行,毛坯与凹模表面逐渐靠近接触,使弯曲半径及弯曲力臂均随之减少,毛坯与凹模接触点由凹模两肩移到凹模两斜面上。(塑变开始阶段)。 3.随着凸模的继续下行,毛坯两端接触凸模斜面开始弯曲。(回弯曲阶段)。 4.压平阶段,随着凸凹模间的间隙不断变小,板料在凸凹模间被压平。 5.校正阶段,当行程终了,对板料进行校正,使其圆角直边与凸模全部贴合而成所需的形状。 (三)、弯曲变形的特点: 弯曲变形的特点是:板料在弯曲变形区的曲率发生变化,即弯曲半径发生变化。 从弯曲断面可划分为三个区:拉伸区、压缩区和中性层。 二、弯曲件的质量分析 在实际生产中,弯曲件的主要质量总是有回弹、滑移、弯裂等。

1.弯曲件的回弹: 由于弹性回复的存在,使弯曲件弯曲部分的曲率半径和弯曲角度在弯曲外力撤去后(工件小模具中取出后)发生变化(与加工中在模具里的形状发生变化)的现象称弹性回复跳(回弹)。 回弹以弯曲角度的变化大小来衡量。Δφ=φ-φt 1)影响回弹的回素: A.材料的机械性能与屈服极限成正比,与弹性模数E成反比。 B.相对弯曲半径r/t,r越小,变形量越大,弹性变形量所点变形量比例越小。回弹越小。 C.弯曲力:弯曲力适当,带校正成分适合,弯曲回弹很小。 D.磨擦与间隙:磨擦越大,变形区拉应力大,回弹小。凸、凹模之间隙小,磨擦大,校正力大,回弹小。 E.弯曲件的形状:弯曲部分中心角越大,弹性变形量越大,回弹大,形状越复杂,回弹时各部分相应牵制,回弹小。 2)回弹值的确定,可查表。 3)减小回弹的措施: A.从工件设计上采取措施。 a). 加强筋的设计 b). 材料的选用:选用弹性模数大,屈服极限小,机械性能稳定的材料。 B.工艺措施 a). 采用校正弯曲,增加弯曲力 b). 冷作硬化材料,弯曲前进行退火,降低屈服极限。 c). 加热弯曲 d). r/t>100用拉深弯曲

框架柱涨模原因分析及处理方案

框架柱涨模爆模原因分析及处理方案 一、质量问题概况: 某信号楼二层4/B轴框架柱在混凝土浇筑过程中模板涨裂,造成框架柱变形,局部截面尺寸变大,与设计尺寸偏差较大。如下图: 二、原因分析: 1、在模板安装支设阶段,框架柱模板安装加固方式不正确或不牢固。模板质量差,板拼缝不严密,支撑点数不够,加固螺栓不紧,木楞加固部位不正确,或支撑系统不够稳定都是导致胀模的原因。 2、在混凝土浇筑阶段工人操作不正确。由于本层屋面采用坡屋面,本颗框架柱处于屋脊处高度高达7.5米,混凝土工缺缺乏经验,未使用串筒或溜槽投料,投料口过高,落差较大,致使混凝土的冲击力全部做用在侧模上,模板压力过大造成胀模。或振捣时间过长导致

模板加固螺栓松懈和开裂。 3、人员及管理问题:施工人员操作不当,操作不认真,责任心不强,技术不过关。管理方面管理不到位,制度措施不全,检查执行不足。 三、处理方法 1、处理流程: 技术交底支搭施工脚手架及防护变形部位剔凿冲刷清理刷结合层抹灰养护 2、首先对工人进行安全及技术交底,让工人清楚施工工艺,对不合格部位进行整改并修补,施工过程中做到安全施工。 3、对涨模部位按设计尺寸弹墨线,对墨线外涨模部分混凝土进行人工剔除至墨线部位,做到小锤细凿避免破坏结构钢筋。剔凿过程中禁止使用电锤等电动工具,剔除后表面平整,禁止裸露钢筋,不能有大于1mm的深沟,表面观感达到斩假石的效果。凿完后无松动石子及混凝土颗粒。

3、剔凿完成后用钢丝刷刷掉浮灰及松动的石子,浇水湿润并冲洗干净,刷一层水泥胶浆结合层,用1:2水泥砂浆对剔凿面进行修补,表面压光。待水泥砂浆初凝后包裹塑料薄膜养护,以保证修补质量。

钢筋混凝土结构涨模处理方法

混凝土蜂窝、麻面及涨模等问题处理措施 陕西瑞森建筑工程有限公司曲江风景线 一标段工程项目部 2012年3月20日

一、混凝土质量问题现象 在1#楼地下一层西段剪力墙及5#楼地下二层西段剪力墙混凝土施工时均出现了较严重质量问题。1#楼主要表现为:漏浆、烂根、涨模;2#楼主要表现为:涨模。 二、原因分析 (一)、管理因素: a、这段时间施工任务紧张,一味盲目的追求进度,对质量管理有所松懈。 b、管理人员在过程质量检查时,走马观花、敷衍了事,缺乏责任心。 c、对质量管理中的质量验收程序执行不彻底,甚至未执行就开始了下道工序施工。 (二)、技术因素 a、模板支设时未按照或未完全按照既定施工方案进行施工。 b、混凝土浇筑时分层厚度过大、过振。 三、处理措施 (一)、管理措施 a、在思想上加强所有施工参建人员的意识,是每个人时时刻刻都牢记施工质量控制是进度控制、成本控制的前提。 b、加强管理人员在过程检查时的责任心,切实的履行自己岗位职责。采取经济奖惩措施,功必奖过必罚。 c、整顿并坚持报验程序,坚持自检、互检及交接检的三检制度。三检完后按程序进行报验,严禁未经报验程序进入下道工序。 (二)、技术措施

a、技术人员重新对施工专项方案进行审核,结合工程中出现的质量问题改进施工方案和施工工艺,重新制定最适合本工程特点施工方案和施工工艺。 b、组织施工人员学习施工方案及操作工艺,使每个管理人员及每一个操作工人熟练掌握每一个操作步骤和每一个操作细节,做到人人心中有数。四、实施方案 (一)、施工准备 1、拟修补墙、柱的砼蜂窝、麻面、胀模等缺陷部位,大小标记清晰。 2、对施工过程中使用的架子、锤子、铁锤、吊锤、墨斗准备好。 3、对操作施工人员进行施工技术、安全的交底。 4、对施工人员进行技术指导和检查监督工作。 5、要求待修补处的砼强度达到设计强度的85%后,才能进行修补工作。(二)、劳动力准备 施工人员根据缺陷存在的数量,由生产经理合理安排。 (三)、施工方法 1、涨模处理 (1)、先弹垂直线,将涨模一侧混凝土面用钢钎逐层剔凿,用毛刷刷干净,并用水冲洗,使其无松动石子及粉尘。 (2)、检查因涨模是否引起钢筋位移。如果钢筋位移,剔凿的深度应满足钢筋复位后保护层厚度要求,然后进行钢筋复位。重新用毛刷刷干净,并用水冲洗,使其无松动石子及粉尘。 (3)、对修补处涂刷一层用同结构砼相同的水泥做成水泥浆进行界面处理,以使新旧混凝土能结合良好。

重磅拉深模设计案例

拉深模设计案例 拉深图所示带凸缘圆筒形零件,材料为08钢,厚度t =1mm ,大批量生产。试确定拉深工艺,设计拉深模。 1.零件的工艺性分析 该零件为带凸缘圆筒形件,要求内形尺寸,料厚t =1mm ,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径r =2mm >t ,凸缘处的圆角半径R =2mm=2t ,满足拉深工艺对形状和圆角半径的要求;尺寸φ2 .00 1.20+mm 为IT12级,其余 尺寸为自由公差,满足拉深工艺对精度等级的要求;零件所用材料08钢的拉深性能较好,易于拉深成形。 综上所述,该零件的拉深工艺性较好,可用拉深工序加工。 2.确定工艺方案 为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。 (1) 计算坯料直径D 根据零件尺寸查表5-5得切边余量?R =2.2mm ,故实际凸缘直径d t =(55.4+2×2.2)=59.8mm 。由表5-6查得带凸缘圆筒形件的坯料直径计算公式为 D =232 4222212156.428.64828.6d d R Rd h d r rd d -++++++ 依图5-23,d 1=16.1mm ,R =r =2.5mm ,d 2=21.1mm ,h =27mm ,d 3=26.1mm ,d 4=59.8mm , 代入上式得 D =28953200+≈78(mm) (其中3200×π/4为该拉深件除去凸缘平面部分的表面积) (2) 判断可否一次拉深成形 根据 t /D =1/78 = 1.28 % d t /d = 59.8/21.1 = 2.83 H /d = 32/21.1 =1. 52 m t =d /D =21.1/78=0.27 查表5-12、表5-13,[m 1]=0.35,[H 1/d 1]=0.21,说明该零件不能一次拉深成形,需要多次拉深。 (3) 确定首次拉深工序件尺寸 初定d t /d 1=1.3,查表5-12得[m 1]=0.51,取m 1= 0.52,则 d 1= m 1 ×D = 0.52×78 = 40.5(mm) 取r 1=R 1= 5.5 mm 为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即零件中除去凸缘平面以外的表面积3200×π/4)增加5%,故坯料直径修正为 D =2895%1053200+?≈79(mm) 按式(5-9),可得首次拉深高度为 H 1 = )(14.0)(43.0)(25.0212 11 11221R r d R r d D d t -+++- = )5.55.5(43.0)8.5979(5 .4025 .022+?+-?=21.2(mm) 验算所取m 1是否合理:根据t /D =1.28 %,d t /d 1 = 59.8/40.5=1.48,查表5-13可知[H 1/d 1]=

拉伸模经验总结

拉深模经验总结 许多人对拉深模望而却步,这是因为拉深模不仅仅设计时要考虑许多因素,更主要的是在试模时往往不能一次成型,还要经过多次修模,才能达到理想的结果。因此,在实践中需不断积累经验,这对拉深模的设计大有裨益。 一、材料 好的材料是成功的一半,对于拉深,万万不可忽视。 拉深用冷轧薄钢板主要有08Al、08、08F、10、15、20号钢,其中用量最大的是08号钢,分为沸腾钢和镇静钢,沸腾钢价格低,表面质量好,但偏析较严重,有“应变时效”倾向,不适用于对冲压性能要求高外观要求较严格的零件,镇静钢较好,性能均匀但价格较高,代表牌号为铝镇静钢08Al。 国外钢材用过日本SPCC-SD深冲压钢,其拉深性能优于08Al。 经验1:当客户对材料的要求不是很苛刻、反复试模达不到要求时,可以换一种材料再试。 二、毛坯尺寸的确定 形状简单的旋转体拉深件的毛坯直径在不变薄的拉深中,材料厚度虽有变化,但基本与原始厚度十分接近,可以根据毛坯面积与拉深件面积(若有修边须加上修边余量)相等的原则计算出。 但是,往往拉深件形状和过程比较复杂,有时还要变薄拉深,虽然现在有许多三维软件可进行展开料计算,但其精确度不能100%达到要求。 解决办法:试料。 一个产件要经过多道工序,头道工序一般是落料工序。首先要进行展开料计算,对毛坯的形状和大小有个大概认识,以便确定落料模的总体尺寸。在模具设计完成后不要加工落料模的凸凹模尺寸。先用线切割加工毛坯(毛坯较大时可用铣床铣后再钳修),经过后续拉深工序的反复实验,最终确定了毛坯尺寸,然后再加工落料模的凸凹模。 经验2:倒排工序,先试拉深模,后加工毛坯的落料刃口尺寸,事倍功半。 三、拉深系数m 拉深系数是拉深工艺计算中的主要工艺参数之一,通常用它来决定拉深的顺序和次数。 影响拉深系数m的因数很多,包括材料性能、材料的相对厚度、拉深方式(指有无压边圈)、拉深次数、拉深速度、凸凹模圆角半径、润滑等。 有关拉深系数m的计算和选用原则是各种冲压手册中介绍的重点,有推算、查表、计算等许多方法,确定拉深系数m需严格按照选定的方法进行计算。 经验3:材料的相对厚度、拉深方式(指有无压边圈)、拉深次数是不好在修模时调整的,一定要慎重!!最好在选择拉深系数m时找同事校一遍。 四、润滑 一般浅拉深可以不用考虑,但碰到正好在极限位置时用招就很管用了,也可以改变拉深的质量,减小拉深的痕迹。同样拉深面贴膜也很有用,道理是一样的。 经验4:遇到拉深拉裂时,在凹模上涂润滑油(不要在凸模涂),工件靠凹模一面覆 0.013--0.018mm的塑料薄膜。 五、压边 在拉深模中,压边的均匀也很重要,尤其是矩形拉深件的四个拐角处一定要放顶杆,如果拐角处压边力不够,就很容易出现拐角处起皱,造成拐角拉深开裂。 经验5:拉深模中压边力要保持均匀,顶杆尽可能多排布,特别要注意矩形拉深模的拐角处顶出的平衡。 六、内外R角

塑料挤出常见缺陷

塑料挤出常见的质量缺陷: 1.塑料焦烧 塑料焦烧是塑料挤出过程中常见的质量缺陷,其主要表现为:温度显示超高;机头模口有大量烟雾、强烈刺激味,严重时有爆裂声;挤出塑料层有焦粒;合胶缝处有连续气泡;产生的主要原因有: 1)温度控制超高达到塑料热降解温度; 2)螺杆长期未清洗,积存的焦烧物随熔融塑料挤出; 3)加温或停机时间过长,使机筒内塑料长期受热而分解; 4)控温仪表失控或失准,造成高温分解; 5)挤出机冷却系统未打开,造成物料剪切摩擦过热。 因此在挤出过程中应加强检查加温、冷却系统工作是否正常;挤出温度的设定应根据工艺要求以及螺杆的转速而定;合理控制加温度时间,定期进行挤压系统的清洗。 2.挤出物塑化不良 在前面讲到温度控制要求中曾经提到过塑化问题,一般塑化不良主要表现为:挤包层有蛤蟆皮样;塑料表面发乌,无光泽,并有细小裂纹;挤包层在合胶处有明显的线缝;产生的主要原因有: 1)温度控制太低,特别是机头部位; 2)绝缘或护套料中混有不同性质的其它塑料粒子; 3)螺杆转塑太快,塑料未能完全塑化; 4)塑料本身存在质量问题。 针对上述原因,应该注意挤出温度控制的合理性;对领用材料的质量和品名应确认;不能一味追求产量而提高挤出速度;加强原材料保管,特别是在塑料干燥工序;合理配模,以增强挤出压力和螺杆回流。 3.挤包层断面有气孔或气泡,其主要产生的原因是: 1)温度控制过高(特别是进料段); 2)塑料受潮有水分; 3)长时间停车,分解塑料未排除干净; 4)自然环境湿度高; 5)缆芯内有水或气化物含量过高。 针对上述原因,应合理控制螺杆各段的温度;对所用物料提前预干燥;严格工艺操作要求,提高对塑料塑化程度的评判能力;注意生产环境以及物料保管仓储条件等。 4.挤包尺寸不合格,主要表现为偏芯;护套厚度或外径超差;其主要形成原因有: 1) 挤出和牵引速度不稳定; 2)缆芯外径变化太大; 3)挤出温度过高造成挤出量的减少; 4)塑料内杂质过多阻塞于过滤网使塑料流量降低; 5)收放线的张力不稳定; 6)模芯选择过大(挤压式)或模芯承线区长度太短而偏芯; 7)模间距选择不合适; 8)挤出机头的温度不均匀; 9)挤出模具的同心度未调整好; 10)进料口温度过高使进料困难影响料流; 针对上述原因,应经常测量护套外径及时调整;合理选配和调整挤出模具;注意收放线

不锈钢拉伸过程中常见问题 一

不锈钢拉伸过程中常见问题一 不锈钢的延展率小、弹性模量E较大,硬化指数较高。不锈钢板拉深开裂有时发生在拉深变形之后,有时是在当拉深件由凹模内退出时立即发生;有时是在拉深变形后受撞击或振动时发生;也有时在拉深变形后经过一段时间的存放或在使用过程中才发生。 不锈钢拉伸过程中常见问题分析: 1开裂形成的原因 奥氏体不锈钢的冷作硬化指数高(不锈钢为0.34)。奥氏体不锈钢为亚稳定型,在变形时会发生相变,诱发马氏体相。马氏体相较脆,因此容易发生开裂。在塑性变形时,随着变形量的增大,诱发的马氏体含量也将随着变形量的增大而增高,残余应力也越大.残余应力与马氏体含量的关系:诱发的马氏体相含量越高,引起的残余应力也越大,在加工过程中也就越易开裂。 2表面划痕形成的原因: 不锈钢拉深件表面出现划痕主要是由于工件和模具表面存在相对移动,在一定压力的作用下,致使坯料与模具局部表面直接产生摩

擦,加之坯料的变形热使坯料及金属屑熔敷在模具表面上,使工件表面擦伤产生划痕。 不锈钢常见成形缺陷的预防措施: 1、选择合适的不锈钢材质:在奥氏体不锈钢中常用材料是1Cr18Ni9Ti和0Cr18Ni9Ti。在拉深过程中1Cr18Ni9Ti比0Cr18Ni9Ti稳定,抗开裂性好。因此应尽可能选择1Cr18Ni9Ti材料。 2、合理选择模具材料不锈钢在深拉深过程中硬化显著,产生许多硬金属点,造成粘附,使工件和模具表面容易划伤、磨损,因此不能采用一般模具用工具钢。实践证明:选择铜基合金模具能消除不锈钢件表面划痕、划伤,降低破损率。另一种材料为高铝铜基合金模具材料(含铝13Wt%~16Wt%),这种材料与SUS304不锈钢互溶性小,拉深件和模具之间不粘着,拉深件表面不易产生划痕划伤,产品抛光成本低,在不锈钢拉深成形领域已经获得成功应用。但是由于这种模具硬度偏低(40HRC~45HRC),常用于生产相对厚度t/D较小的产品。一般拉深1500件~2000件以后在凹模表面容易产生始于圆角R处呈放射状拉深棱。氮化硅陶瓷(Si3N4)已成为重要的工程材料,尤其是反应烧结氮化硅陶瓷,具有良好的高低温力学性能、耐热冲击性和化学稳定性,而且可以非常方便地制成形状复杂的零件。可利用陶瓷材料的高硬度、高耐磨性以及高化学稳定性,用反应烧结氮化硅材料模具

冲压件常见缺陷

冲压件常见缺陷及调整 一、拉深模的调整内容有哪些?如何进行? 1 进料阻力的调整 在拉深过程中,若拉深模进料阻力较大,则易使制品拉裂;进料阻力小,则又会起皱。因此,在试模时,关键是调整进料阻力的大小,即调整压边力的大小。 拉深阻力的调整方法是: (1)调节压力机滑块的压力,使其处于正常压力下进行工作; (2)调整拉延模的平衡块,以控制压料力的大小; (3)调整材料的定位,也可以控制压料力的大小; (4)调节拉深模的压边圈的压边面,使其与坯料有良好的配合; (5)修整凹模的圆角半径; (6)修整压边筋间隙; (7)采用合适的润滑剂。 2拉深深度及间隙的调整 (1)在调整时,可把拉深深度分成2~3段来进行调整。即先将较浅的一段调整后,再往下调深一段,直到调到所需的拉深深度为止; (2)在调整时,先将上模固紧在压力机滑块上,下模放在工作台上先不固紧,然后在凹模内放入样件,使上`下模吻合对中,调整各方向间隙,使之均匀一致后,再将模具处于闭合位置,拧紧螺栓,将下模固紧在工作台上,取出样件,即可试模。 二、试摸时,出现工件表面檫伤或壁部变薄现象的原因是什么?应怎么进行调整? 其主要原因如下:调整方法是: 1、凹模圆角太小或表面质量粗糙;1、加大凹模圆角半径,或进行凸、凹模抛光; 2、凸、凹模间隙太小,造成表面檫伤;2、应加大凸、凹模间隙; 3、压边力太大,3、分析材料的流动方向,设法减小压边力; 4、润滑不良或板料的金属微料附着在凹模上。4、将凹模表面抛光或镀铬,减小表面粗糙度值。 三、试模时,拉深件表面起皱应该如何调整? 1、调整压力边的大小 当折皱在制件四周均匀产生时,应判断为压料力不足,逐渐加大压料力即可使皱纹消除。如果增大压料力仍不能克服折皱时,则需增加压边圈的刚性。由于压边圈刚性不足,在拉深过程中,压边圈会产生局部挠曲而造成坯料凸缘起皱。 当拉深锥形件和半球形件时,拉深开始时大部分材料处于悬空状态,容易产生侧壁起皱,故除增大压边力外,还应采用拉深肋来增大板内径向拉应力,以消除皱纹。 2、调整凹模圆角半径 凹模圆角半径太大,增大了坯料悬空部位,减弱了控制起皱的能力,故若发生起皱时,可在调整时,适当减小凹模圆角半径。 3 调整间隙值 间隙过大,当坯料的相对厚度(坯料的厚度与直径之比)较小时,薄板抗失稳能力较差,容易产生折皱,因此适当调整冲模间隙,使其间隙调得小一些,也可以防皱。 四、拉深模在试模时,制品常会被拉裂,其调整冲模的方法是什么?

涨模处理措施

1#楼涨模剔凿处理方案 一、编制说明 经检查发现1#楼有局部涨模现象,为保证结构的安全性及观感效果,特编制此方案。 二、处理措施 2.1、施工准备 2.1.1拟修补墙、柱的砼蜂窝、麻面、胀模等缺陷部位,大小标记清晰。 2.1.2对施工过程中使用的架子、锤子、铁锤、吊锤、墨斗准备好。 2.1.3施工员对操作施工人员进行施工技术、安全的交底。 2.1.4施工员负责对施工人员进行技术指导和检查监督工作。 2.1.5要求待修补处的砼强度达到设计强度的85%后,才能进行修补工作。 2.2、劳动力准备 施工人员根据缺陷存在的数量,由施工员合理安排。2.3、施工方法 涨模部位处理方案:模板拆除后发现混凝土有涨模现象,技术质量人员应及时通知监理工程师到现场查看,监理工程师查看完成后作业人员对涨模部位混凝土进行剔凿,剔凿时

不得损坏结构钢筋,剔凿完成后,经项目部技术人员检查合格,通知监理工程师验收,验收合格后用清水将剔凿部位浇水湿润,用与原结构混凝土所使用的同样的水泥配置1:2~1:2.5的水泥砂浆,于修补前进行调试对比,调试好后将水泥砂浆放入小桶内搅拌均匀,依照漆工刮腻子的方法用刮刀将剔凿面刮平压光,随后按照混凝土养护方法进行养护。 2.3.1首先对待修补部位的松散混凝土进行凿除,做到小锤细凿,避免损伤结构钢筋。 2.3.2对凿除部位用毛刷刷干净,并用水冲洗,使其无松动石子及粉尘。 2.3.3进行支模,要求模板支设牢固,并留设浇筑口和清理口,确保支模时的垃圾能清理干净。清理后及时封堵清理口。 2.3.4对修补处涂刷一层用同砼相同的水泥做成水泥浆进行界面处理,以使新旧混凝土能结合良好。 2.3.5 采用与原混凝土设计强度相同的微膨胀混凝土进行浇筑修补,要求用¢12钢筋仔细捣实。 2.3.6 混凝土终凝后拆模,加强洒水养护,避免新旧混凝土结合处开裂。 2.3.7 对于较轻微的麻面现象,用毛刷刷干净,用水冲洗,使其无松动石子及粉尘后,修补前涂刷同砼标号水泥浆基层或用1:2水泥砂浆进行抹面处理即可,施工完毕终凝

拉深模的基本原理(一)

拉深模的基本原理(一) 拉深是利用模具将平板毛坯或半成品毛坯拉深成开口空心件的一种冷冲压工艺。 拉深工艺可制成的制品形状有:圆筒形、阶梯形、球形、锥形、矩形及其它各种不规则的开口空心零件。 拉深工艺与其它冲压工艺结合,可制造形状复杂的零件,如落料工艺与拉深工艺组合在一起的落料拉深复合模。 日常生活中常见的拉深制品有: 旋转体零件:如搪瓷脸盆,铝锅。 方形零件:如饭盒,汽车油箱 复杂零件:如汽车覆盖件。 圆形拉深的基本原理 一、拉深的变形过程 用座标网格试验法分析。 拉深时压边圈先把中板毛坯压紧,凸模下行,强迫位于压边圈下的材料(凸缘部分)产生塑性变形而流入凸凹模间隙形成圆筒侧壁。 观察拉深后的网格发现:底部网格基本保持不变,筒壁部分发生较大变化。 1.原间格相等的同心圆成了长度相等,间距增大的圆周线,越接近筒口,间距增大。 2.原分度相等的辐射线变成垂直的平行线,而且间距相等。 3.凸缘材料发生径向伸长变形和切向压缩变形。 总结:拉深材料的变形主要发生在凸缘部分,拉深变形的过程实质上是凸缘处的材料在径向拉应力和切向压应力的作用下产生塑性变形,凸缘不断收缩而转化为筒壁的过程,这种变形程度在凸缘的最外缘为最大。 二、各种拉深现象 由于拉深时各部分的应力(受力情况)和变形情况不一样,使拉深工艺出现了一些特有的现象: 1.起皱: A.拉深时凸缘部分的切向压应力大到超出材料的抗失稳能力,凸缘部分材料会失稳而发生隆起现象,这种现象称起皱.起皱首先在切向压应力最大的外边缘发生,起皱严重时会引起拉度. B.起皱是拉深工艺产生废品的主要原因之一,正常的拉深工艺中是不允许的.常采用压力圈的压力压住凸缘部分材料来防止起皱. C.起皱的影响因素: a). 相对厚度:t/D 其中t----毛坯厚度,D----毛坯直径 判断是否起皱的条件:D-d<=2Zt, d ----工件直径. b). 拉深变形程度的大小 但是在拉深变形过程中,切向压应力及凸缘的抗失稳能力都是随着拉深进行,切向压应力

拉伸模的一小常识

拉伸模的一小常识 模具*技术管理类2008-08-23 13:09:40 阅读242 评论2 字号:大中小订阅 一.深压延成形常见的缺陷 1. 壁厚不均:(成品的边厚和凸缘部分不对称) ①冲子与凹模的同心度互相偏离,导致间隙不均匀:重新调校冲子与凹模 ②冲子与凹模的中心不垂直:安装导柱及导套 ③毛胚料与凹模的中心互偏离:改善毛胚料的定位 ④压边圈加在毛胚料上的力不均:调校压边圈的弹弓 ⑤凹模壁高度不一致:统一凹模壁高度 2. 顶底爆裂:(成品近凸缘的半径圆弧区和近壁底附近有爆裂现象) ①材质太脆硬,晶粒过粗或中途退火不正:退回供应商或进行调质处理,改善压延特性 ②冲子与凹模的同心度偏离:重新调校冲子与凹模 ③冲子与凹模有倾斜,形成不均匀壁厚:重新调校模具或冲床 ④压边圈加在毛胚料上的压力太大:调整压边圈的压力 ⑤冲子与凹模的间隙不够:改善冲子与凹模的间隙 ⑥凹模模肩圆弧半径太小:加大模肩圆弧半径 3. 桶状皱摺:(成品近壁顶部产生群摺现象) ①毛胚厚度不够:计算改善冲子与凹模的间隙毛胚料尺寸 ②毛胚料尺寸过小,其凸缘面积不足,发挥不到压边效果:重新设计毛胚料尺寸 ③成品高度小于图纸高度和开口部分有波浪形状皱摺,成因是冲子与凹模的间隙太大:改善冲子与凹模的间隙(缩小) ④成品高度过高与图纸高度,成因是冲子与凹模的间隙偏小:改善冲子与凹模的间隙(加大) ⑤压边力太大和凹模模肩圆弧半径太小:改善加大圆弧半径,调校压边力 ⑥压边力不足和凹模模肩圆弧半径太大:修细模肩的圆弧半径,调校压边力 4. 抓痕:(成品外壁有线性直纹现象) ①愿材料表面已有伤痕:更换材料 ②原材料表面附有尘埃杂物污垢:更换材料或使用软布及清洁剂除去表面污垢 ③因润滑剂不洁:选择清洁或经过滤之润滑剂 ④模具受损,尤以凹模模口圆弧半径范围:应估计模具的寿命,要设定某生产数量后,模具应要重新抛光 5. 状压痕(成品在壁身面上有多个环状形压痕) ①冲子与凹模不同心:重新调校冲子与凹模 ②帽子形的半成品不能稳定安放在下模上,造成倾斜:可考虑冲子在下,凹模在上,令帽子形的半成品套在冲子上 ③退火程序不正确使机械性能不均匀:退回供应商或进行调质处理,改善压延特性 ④在薄化压延中因壁厚不均匀:毛胚料和模具的润滑不平均 ⑤薄化系数太小(程度大):调节冲子直径(缩小) ⑥冲子前端的圆弧半径和凹模模肩圆弧半径偏小:圆弧半径不可小于材料许可的最小圆弧半径值 6. 橙皮纹:(成品外壁有如橙皮状纹的不良现象) ①原材料的性质偏向韧性:更换材料 ②原材料的晶粒偏大或表面被腐蚀:更换材料或进行调质处理 ③压延深度偏高:可加道次令压延深度渐次增加

施工中胀模和爆模产生原因和处理措施

施工中胀模和爆模产生原因和处理措施 一、胀模和爆模主要发生在以下几种情况: 1) 地下层墙体浇筑时,支撑及围檩间距过大,特别在模板刚度差时,产生爆模。 2) 墙模板对拉螺栓间距过大,螺栓规格过小时,产生胀模和爆模。 3) 模板拉杆数量不足,混凝土振捣拉杆螺丝崩掉,致使模板爆开。 4) 梁、柱模板卡具间距过大,未夹紧模板或拉杆螺栓配备数量不足,以致局部模 板无法承受混凝土振捣时产生的侧向压力,产生局部爆模。 5) 浇筑楼梯间及电梯间墙体时,混凝土浇筑速度过快、一次浇灌高度过高,造成了胀模或爆模。 6) 工程中多次爆模原因都是因为振动部位过深或已振部位再次振动,振捣过度产生爆模。 7) 操作人员的责任问题。多次出现模板绑扎不牢、支撑不牢而产生的爆模, 这种现象在工程初期出现较多。 8) 门窗洞口内模间对撑不牢固,振捣时模板被挤,偏离正确位置,出现爆模。 9) 柱截面与模板材质选择不匹配的问题。因木模板强度不够,所以柱截面大时不能采用木模板。 10) 木模板反复使用造成模板变形,引起胀模、爆模。本工程中木工班组前期在拆除模板过程中违反规定拆除模板,修复模板时对模板的处理不够,使得随后某些施工部位模板变形严重,虽然管理人员及时发现并进行了处理,但仍有少量部 位有由于模板问题出现胀模等现象。 二、胀模、爆模现象产生原因汇总分析 1 模板方面 模板问题,包括模板本身质量差、强度不够或者模板材质选用不当等。模板支撑问题,包括支撑不牢、支撑点数量不够、支撑方式选用不当等。模板连接问题,包括对拉连接螺栓数量和间距不当等。 2 施工人员问题 包括施工人员操作不当、操作不认真、责任心不强、技术不过关等。 3 管理方面

冲压拉深模的设计..

《冲压工艺及冲压模设计》课程设计 设计说明书 起止日期:2011 年 1 月3 日至2011 年1月16 日 学生姓名 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2010年01 月16 日

目录 第一章拉深件工艺分析 (4) 1.1 制件介绍 (4) 1.2 产品结构及形状分析 (4) 1.3 产品尺寸精度、粗糙度、断面质量分析 (4) 1.3.1尺寸精度 (4) 1.3.2冲裁件断面质量 (4) 1.3.3 产品材料分析 (4) 1.3.4 生产批量 (5) 第二章零件冲压工艺计算 (5) 2.1 翻孔工序的计算 (5) 2.2 零件毛坯尺寸计算 (6) 2.2.1确定修边余量a (6) 2.2.2 确定坯料直径 (6) 2.2.3 确定工艺方案 (6) 2.2.4排样、计算条料宽度及确定步距 (6) 2.3 冲裁力的计算 (7) 2.4 确定拉深工序件尺寸 (7) 2.4.1 判断能否一次拉深成形 (7) 2.4.2 确定首次拉深件尺寸 (8) 2.4.3 计算第二次拉深工序件的尺寸 (8) 2.5 计算拉深工序的力 (9) 2.6 工作部分尺寸计算 (9) 2.6.1 拉深间隙的计算 (9) 2.6.2 拉深凸、凹模尺寸的计算 (9) 第三章设计选用模具零件、部件 (10) 3.1 拉深凹模的设计 (10)

3.2 拉深凸模的设计 (10) 3.3 压边、卸料及出件装置设计 (11) 3.3.1 压边圈 (11) 3.3.2 推出与顶出装置 (12) 第四章模架的选择 (13) 4.1 模架的选用 (13) 4.2导柱与导套 (14) 4.3 模柄的选用 (14) 第五章模具材料和热处理 (15) 第六章模具的总装配图 (16) 第七章填写冲压工艺卡 (17) 设计总结 (19) 参考文献 (20)

相关主题
相关文档 最新文档