当前位置:文档之家› 原子吸收光谱法在环境分析的应用及发展

原子吸收光谱法在环境分析的应用及发展

原子吸收光谱法在环境分析的应用及发展
原子吸收光谱法在环境分析的应用及发展

原子吸收光谱法在环境分析的应用及发展

所在学院生物与环境学院

专业班级生物工程123班

学生姓名赵家熙学号2012013424 指导教师张慧恩

完成日期2013 年10 月30 日

文献综述

原子吸收光谱法在环境分析的应用及发展

摘要:原子吸收光谱法以其设备简单、操作方便、灵敏度高,特效性好、快速准确等优点, 在地质、化工、农业、食品、生物医药、环境保护、材料科学等各个领域内获得广泛的应用。本文介绍了原子吸收光谱法在环境分析的应用及发展。

关键词:原子吸收光谱法:环境分析:应用:发展:

环境的好坏直接影响了人们的健康状况,环境质量监测已成为我国环境重点保护的一项内容。好的环境检测方法成为了研究人员追求的方向,而原子吸收光谱法也成为环境分析中的首选方法。

1、原子吸收光谱法的基本原理

利用空心阴极元素灯光源发出被测元素的特征辐射光,为火焰原子化器产生的样品蒸气中的待测元素基态原子所吸收。通过测定特征辐射光被吸收的大小,来计算出待测元素的含量。子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用。对于不同的元素都已有特定的阴极灯、波长范围、狭缝宽度、灯电流值等配合测定。若想测定达到较高的数量级或提高检测质量,其关键还在于样品的预处理和进样技术。

2、原子吸收光谱法的发展史

1955年澳大利亚物理学家沃尔什(A.Walsh)发表了原子吸收光谱分析的论文,开创了火焰原子吸收光谱法。1965年我国吴延照成功组装了实验型原子吸收分光度计。自此之后,原子吸收分析在全世界得到了迅速地发展和推广应用。1968年马斯曼在李沃夫(L’vov)电热石墨炉的基础上,发展和推广马斯炉商品仪器。1975年我国北京第二光学仪器厂,根据马怡载等研制的石墨炉原子器及控制电源生产出WFD-Y3型第一台带石墨炉的商品仪器。1990年美国PE公司首先推出横向加热石墨炉(PE-4100ZL)。1997年我国北京普析通用仪器公司生产出自动化程度最高、横向加热平台石墨炉(TAS-986型)。今天原子吸收光谱仪器已进入高水平发展的平台阶段,多元素同时测定,将是分析工作者与仪器公司今后关注的热门课

题。

3、AAS在环境形态分析中的应用

原子吸收光谱法在环境领域中的应用始于六十年代。AAS分析元素形态的方法, 大致可分为 2类: 化学法、氢化物发生法。

3. 1化学法

化学法分析元素形态, 是基于元素的不同形态有着不同的化学特性, 用适当的方法提取与分离元素的不同形态分别进行测定, 获得试样中元素不同形态的含量。在环境污染物 - 化学形态分析中, 使用的分离富集方法涉及了萃取、共沉淀、离子交换等, 它们与 AAS,AFS及 ICP- AES等原子光谱分析技术结合, 推动了化学形态分析的不断发展。总结了近 10年来萃取技术在有机汞、有机锡和有机砷化合物形态分析中的应用。用苯乙烯强碱型阴离子交换树脂对环境水样中 Cr 和总 Cr进行了测定。

3.2氢化物发生原子吸收法 (HG- AAS)

氢化物发生原子吸收光谱分法 ( hydridegenera2tion- atomic absorption spectrometry, HG- AAS)是测定Ge、Sn、Pb、As、Sb、Bi 、Se、Te等元素的重要方法。 1969年 W. H olak首次采用 Zn- HCl体系产生 AsH3, 空气- 乙炔火焰测定 As, 检出限为 0. 04Lg。1973年 E. J.Kundson等开发氢化物发生 - 石墨炉原子吸收光谱法 ( HG - GfAAS)。 2002 年 M. C. V illa - Lojo以K2S2O8为氧化剂微波消解样品, 用氢化物发生法测定鱼组织中的各种形态的砷, 检出限是 0. 3~ 1. 1ng。氢化物发生 SbH3是测定 Sb最灵敏的方法, 可分析 Sb的形态。

4.间接 AAS法在环境监测中的应用

4. 1测定原理

间接原子吸收光谱法是基于被测物与一种或几种其它物质 (其中之一应是易被原子吸收光谱法测定的金属元素 )进行定量的化学反应, 并在金属的原子吸收和被测物浓度之间建立起关系。其应用依赖于所采用的化学反应能否保证对被测物的选择性, 化学反应的选择性愈好, 方法对测定被测物的选择性也就愈好。

4. 2测定方法

4. 2. 1沉淀反应法

本法是将待测组分与一适当浓度的阳离子溶液反应生成沉淀, 测定沉淀溶解液中 (或滤液中 )的可测元素, 从而间接确定待测组分的含量。为使沉淀完全, 阳离子必须过量。在沉淀反应完成后吸取上层清液直接用 AAS测定溶液中过量的金属离子。该法简单快速, 较为常用, 缺点是样品中非被测物也发生沉淀反应而常引起干扰。该法可间接测定SO2-4 、Cl-及农药废水中的有机硫、磷等。

4. 2. 2络合反应法

本法是将样品中某些阴离子与一种或两种试剂反应, 形成一个带电荷的金属络合物或中性的离子络合物或离子对缔合物, 经过滤或液 -液萃取分离后, 用原子吸收光谱法测定络合物中的金属离子, 从而间接确定这些无机阴离子的含量。

4. 2. 3氧化还原反应法

本法是利用待测物与金属离子发生氧化还原反应生成金属沉淀物, 用硝酸溶解沉淀物后, 再用原子吸收光谱法测定, 或者测定未反应的过量金属离子。氧化还原反应法的选择性一般不是很好, 因为需要完全除去其它的氧化物或者还原剂非常困难。

4、结论与展望

原子吸收光谱法在环境分析中的应用取得了不少成果, 但在应用范围上还

有待扩大, 污染物的化学形态研究上尚待深入, 高灵敏度、高选择性、快速、准确、实用的分析方法探讨仍是需要的。总之, 原子吸收光谱法因具有其它方法所不能比拟的优势, 在环境样品分析中展现了广阔的前景。而且用可调谐激光代替空心阴极灯光源,用激光使样品原子化,高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意,这对生物、医药、环境、化学等这类只有少量样品供分析的领域将是特别有意义的。所有这些新的发展动向,都很值得引起我们的重视。微型电子计算机应用到原子吸收分光光度计后,使仪器的整机性能和自动化程度达到一个新的阶段。

参考文献

[ 1 ]中国期刊网

[ 2 ]百度百科原子吸收光谱法

[ 3 ]马亚军, 郎惠云, 董发昕. 间接原子吸收法测定葡萄籽提取物中的原花青素 1 J2. 分析化学, 2005, 33( 1): 120-122.

[ 4 ]陈耀祖等. AAS测定还原糖和脂肪仲胺1 J2. 化学学报, 1982, 40( 11): 1066.

[ 5 ]黄一石. 仪器分析1M2. 化学工业出版社, 2002

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

原子吸收常用分析方法(DOC)

原子吸收 常用分析方法撰稿:裴治世

原子吸收常用分析方法 原子吸收分析如果以原子化的手段来划分,可分为两大类,即火焰原子化及无焰原子化。在日常分析中火焰原子化应用最广。着重介绍利用火焰原子化进行分析方面的一些常识。 一、常用分析方法 1、标准曲线法(又称工作曲线法) 这是原子吸收光谱最常用的方法。此法是配制一系列不同浓度的,与试样溶液基体组成相近的标准溶液,分别测量其吸光度,绘制吸光度——浓度标准曲线。同时,在仪器相同的条件下测得试样溶液的吸光度后,在标准曲线上查得试样溶液中待测元素的浓度。 绘制标准曲线的步骤如下: 首先在坐标纸上确定一个坐标系,横坐标作为浓度轴,纵坐标作为吸光度轴,在坐标系内描出各标准溶液的浓度与测得吸光度的对应点,然后将各点连成一条直线。即是标准曲线。 由于测量误差使测量值不能完全落在一条直线上,采用描点法绘制标准曲线必然会引入人为误差,为了消除这种误差,可以利用一元线性回归方程计算分析结果。 根据光吸收定律,物质的浓度C (以x 表示)和吸光度A (以y 表示)呈线性关系,可表示为y=ax+b 。设由N 点构成曲线,通过实验可得N 组观测数据(x i ,y i ),其中y i 为三次测定值的平均值,用线性回归法求a ,b 值。 ()()()() 2 221()()1i i i xy x y x X y Y N a x X x x N ---==--∑∑∑∑∑∑∑ b Y aX =- 标准曲线方程为y=ax+b 例如:某元素由4点构成标准曲线,其浓度及测得的吸光度如下 C(x) μg ·m1-1 0.00 0.50 1.00 3.00 (P479) A(y) 0.000 0.053 0.106 0.303 则 Σx=4.50 (x 值之和,浓度值之和) X =1.125 (x 的平均值,浓度的平均值)

原子吸收光谱法在环境分析的应用及发展

原子吸收光谱法在环境分析的应用及发展 所在学院生物与环境学院 专业班级生物工程123班 学生姓名赵家熙学号2012013424 指导教师张慧恩 完成日期2013 年10 月30 日

文献综述 原子吸收光谱法在环境分析的应用及发展 摘要:原子吸收光谱法以其设备简单、操作方便、灵敏度高,特效性好、快速准确等优点, 在地质、化工、农业、食品、生物医药、环境保护、材料科学等各个领域内获得广泛的应用。本文介绍了原子吸收光谱法在环境分析的应用及发展。 关键词:原子吸收光谱法:环境分析:应用:发展: 环境的好坏直接影响了人们的健康状况,环境质量监测已成为我国环境重点保护的一项内容。好的环境检测方法成为了研究人员追求的方向,而原子吸收光谱法也成为环境分析中的首选方法。 1、原子吸收光谱法的基本原理 利用空心阴极元素灯光源发出被测元素的特征辐射光,为火焰原子化器产生的样品蒸气中的待测元素基态原子所吸收。通过测定特征辐射光被吸收的大小,来计算出待测元素的含量。子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用。对于不同的元素都已有特定的阴极灯、波长范围、狭缝宽度、灯电流值等配合测定。若想测定达到较高的数量级或提高检测质量,其关键还在于样品的预处理和进样技术。 2、原子吸收光谱法的发展史 1955年澳大利亚物理学家沃尔什(A.Walsh)发表了原子吸收光谱分析的论文,开创了火焰原子吸收光谱法。1965年我国吴延照成功组装了实验型原子吸收分光度计。自此之后,原子吸收分析在全世界得到了迅速地发展和推广应用。1968年马斯曼在李沃夫(L’vov)电热石墨炉的基础上,发展和推广马斯炉商品仪器。1975年我国北京第二光学仪器厂,根据马怡载等研制的石墨炉原子器及控制电源生产出WFD-Y3型第一台带石墨炉的商品仪器。1990年美国PE公司首先推出横向加热石墨炉(PE-4100ZL)。1997年我国北京普析通用仪器公司生产出自动化程度最高、横向加热平台石墨炉(TAS-986型)。今天原子吸收光谱仪器已进入高水平发展的平台阶段,多元素同时测定,将是分析工作者与仪器公司今后关注的热门课

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

分析化学习题参考答案原子吸收光谱法

第六章原子吸收光谱法 基本要求:掌握以下基本概念:共振线、特征谱线、锐线光源、吸收线轮廓、通带、积分吸收、峰值吸收、灵敏度和检出限,掌握原子吸收的测量、AAS的定量关系及定量方法,了解AAS中的干扰及火焰法的条件选择,通过和火焰法比较,了解石墨炉法的特点。 重点:有关方法和仪器的基本术语。 难点:AAS的定量原理,火焰法的条件选择。 参考学时:4学时 部分习题解答 1、何谓原子吸收光谱法?它有什么特点? 答:原子吸收光谱法是利用待测元素的基态原子对其共振辐射光(共振线)的吸收进行分析的方法。 它的特点是:(1)准确度高;(2)灵敏度高;(3)测定元素范围广;(4)可对微量试样进行测定;(5)操作简便,分析速度快。 2、何谓共振发射线?何谓共振吸收线?在原子吸收分光光度计上哪一部分产生共振发射线?哪一部 分产生共振吸收线? 答:电子从基态激发到能量最低的激发态(第一激发态),为共振激发,产生的谱线称为共振吸收线。当电子从共振激发态跃迁回基态,称为共振跃迁,所发射的谱线称为共振发射线。在原子吸收分光光度计上,光源产生共振发射线、原子化器产生共振吸收线。 3、在原子吸收光谱法中为什么常常选择共振线作分析线? 答:(1)共振线是元素的特征谱线。(2)共振线是元素所有谱线中最灵敏的谱线。 4、何谓积分吸收?何谓峰值吸收系数?为什么原子吸收光谱法常采用峰值吸收而不应用积分吸收? 答:原子吸收光谱法中,将光源发射的电磁辐射通过原子蒸汽时,被吸收的能量称为积分吸收,即吸收线下面所包围的整个面积。中心频率处的吸收系数称为峰值吸收系数。 原子吸收谱线很窄,要准确测定积分吸收值需要用高分辨率的分光仪器,目前还难以达到。 而,峰值吸收系数的测定只要使用锐线光源而不必使用高分辨率的分光仪器就可办到。 5、原子分光光度计主要由哪几部分组成?每部分的作用是什么? 答:原子分光光度计主要由四部分组成:光源、原子化系统、分光系统和检测系统。 光源:发出待测元素特征谱线,为锐线光源。

原子吸收光谱法的应用

原子吸收光谱法的应用 直接原子吸收光谱法 1、第一族元素 第一族元素主要测定条件 石墨炉法火焰法 分析线/nm 灰化温 度原子化 温度 特征质 量/pg 线性范围/μ火焰类型特征浓度 μ 检出限μ线性范围/μ Li 1000 2600 4 空气-乙炔 Na 1500 2700 4 空气-乙炔 K 1000 2200 4 空气-乙炔 Rb 800 1900 3 空气-乙炔 Cs 900 1900 空气-乙炔 Cu 900 2200 4 空气-乙炔 Ag 500 2200 2 空气-乙炔 Au 600 1800 5 空气-乙炔 碱金属是AAS易于测定的一类元素。碱金属盐的沸点较低,解离能较高,易于以分子形式蒸发,产生背景吸收。碱金属元素的电离电位和激发电位低,易于电离,测定时需要加入消电离剂,宜用低温火焰测定。空心阴极灯光源宜用较低的灯电流,测定Ru和Cs,多使用无极放电灯作光源。 铜、银和金化合物易于解离和原子化,宜用贫燃火焰测定,有很高的测定灵敏度,一般不受到其他元素的化学干扰。采用阶梯升温原子化和峰面积方式可提高石墨炉原子吸收光谱法(GFAAS)测定Ag的灵敏度。银化合物溶液应保存在避光的地方。金易被塑料表面吸附,溶液不能储存于塑料容器内。 测定Na宜用窄光谱通带,测定Li,K,Rb,Cs,Cu,Ag和Au宜用或更宽一些的光谱通带。GSAAS测定这些元素需校正背景。 2、第二族元素 第二族元素主要测定条件 石墨炉法火焰法 分析线/nm 灰化温 度原子化 温度 特征质 量/pg 线性范围/μ火焰类型特征浓度 μ 检出限μ线性范围/μ Be 1000 2600 乙炔 Mg 1000 2200 空气-乙炔 1200 2400 1 空气-乙炔 1000 2700 5 空气-乙炔 1500 2500 4 乙炔 400 2200 2 空气-乙炔 250 1000 空气-乙炔 250 2000 40 40-1000 空气-乙炔 加入消电离剂。氧化物的解离能较高,易生成MO和MOH,宜用富燃火焰测定。自由原子分布随火焰高度明显变化。铍的原子化效率很低,不能有效的测定铍。碱土金属与磷酸根、

仪器分析报告笔记 《原子吸收光谱法》

第四章原子吸收光谱法 ——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ?灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达10—9 g /mL (某些元素可更高) ?几乎不受温度影响:由波兹曼分布公式 00 q E q q KT N g e N g - =知,激发态原子浓度与基态原子浓度的比 值 q N N 随T↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1% q N N =。也就是说, q N随温度而强烈变化,而 N却式中保持不变,其浓度几乎完全等于原子的 总浓度。 ?较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。RSD 1~2%,相对误差0.1~0.5%。 ?选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ?应用围广:可测定70多种元素(各种样品中)。 ?缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 ?确定待测元素。 ?选择该元素相应锐线光源,发射出特征谱线。 ?试样在原子化器中被蒸发、解离成气态基态原子。 ?特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 ?根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子吸收分光光度计的原理及应用

陕西理工学院学年论文 原子吸收分光光度计的原理及应用 作者:张慧 (陕理工生物科学与工程学院生物科学专业041班,陕西汉中 723000) 指导教师:秦公伟 [摘要]:本文综述了原子吸收光谱法的使用方法及各使用方法的测定技术、优缺点、应用及与其它技术的联用,并对其发展趋势作了讨论。 [关键词]:火焰原子吸收光谱法石墨炉原子吸收光谱法氢化物原子吸收光谱法 引言:原子吸收光谱法自1955年作为一种分析方法问世以来,先后经历了初始的序幕期、爆发性的成长期、相对的稳定期和智能化飞跃期这个不同的发展时期,由此原子吸收光谱法得以迅速发展与普及,如今已成为一种倍受人们青睐的定量分析方法[1]。 二十世纪二十年代,Dymond首先将导数测量技术应用于仪器分析领域,用一阶导数技术来提高质谱检测气体激发电位的灵敏度。在随后的几十年中,导数技术本身日趋完善,在分光光度法、荧光法等领域得到越来越广泛的应用。导数技术的引进,使得这些分析方法的灵敏度、检出限得到了不同程度的改善,并且在提高方法的分辨能力和进行光谱校正方面也显示出一定的优越性。1953年,Hammond和Price 首次提出导数技术在分光光度法中的应用。六十年代末期,Morney和Butter等许多科学工作者开始将注意力转移到计算机导数技术上,低噪音运算放大器应运而生,并成功地应用于早期的导数发光光谱和导数红外光谱中。1974年,导数技术开始被应用于荧光分析领域。由于导数荧光技术能有效地解决测定过程中的背景干扰和谱带重叠问题,因而得到广泛的应用。近年来,有关利用导数光谱法校正高纯物质的ICP-AES分析中的光谱干扰的报道相继出现。导数光谱法只要求在分析线附近的一段较窄的波长范围内,干扰线强度在仪器动态范围内,因而比传统的干扰系数法和离峰分析法有更大的适用性,能有效地消除各种背景干扰[2]。 本文针对其原理、测定技术、特点、联用、应用及其进展进行综述。 1 原子吸收分光光度计使用方法 1.1 原子吸收光谱法原子化法 原子吸收光谱法作为分析化学领域应用最为广泛的定量分析方法之一,是测量物质所产生的蒸气中原子对电磁辐射的吸收强度的一种仪器分析方法。原子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用,原子化效率的高低直接影响到测量的准确度和灵敏度。无论是传统的原子化法,还是近些年才有的原子化法,都为不同元素的测定提供了较为高效的原子化方式,以下将对不同的原子化法分别讨论。 1.1.1 火焰原子化法(FAAS) 适用于测定易原子化的元素,是原子吸收光谱法应用最为普遍的一种,对大多数元素有较高的灵敏度和检测极限,且重现性好,易于操作[3]。 1.1.2 石墨炉原子化法 石墨炉原子吸收也称无火焰原子吸收,简称CFAAS。火焰原子化虽好,但缺点在于仅有10%的试液被原子化,而90%由废液管排出,这样低的原子化效率成为提高灵敏度的主要障碍,而石墨炉原子化装

原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01?g?mL -1 /1%A ,为使测量误差最小,需要得到的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带, 和 nm 为标度,其所对应的狭缝宽度分别为, 和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪焦面上的波长差为mm ,

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

原子吸收光谱法的原理和环境检测中的应用

原子吸收光谱法的原理和环境检测中的应用 环科113 叶俊2011013243 摘要:本文综述原子吸收光谱分析法的原理和在环境检测中的应用,主要包括大气、水体、土壤、底泥和固体物分析。 关键词:原子吸收光谱法、原理、环境检测 前言:原子吸收光谱分析法,简称原子吸收法。自1955年问世至今,已成为普及程度最高的仪器分析方法之一。而目前原子吸收光谱分析仪器几乎能分析所有的金属元素和类金属元素,具有有灵敏度高,重复性和选择性好,操作简便、快速,结果准确可靠等优点[1]。 1、原子吸收光谱法的原理 原子吸收光谱法是基于从光源辐射出具有待测元素特征谱线的光(从空心阴极灯发射出来的锐线光源),通过试样蒸气时被蒸气中待测元素基态原子所吸收,每种物质的原子都具有特定的原子结构和外层电子排列,因此不同的原子被激发后,其电子具有不同的跃迁,能辐射出不同波长光,即每种元素都有其特征的光谱线[2]。由辐射特征谱线光被减弱的程度来测定试样中待测元素含量的方法。锐线光源辐射的共振线强度被吸收的程度与待测元素吸收辐射的原子数总数成正比[3]。即: A=KNL 式中:A为吸收率;K为常数;N为待测元素吸收辐射原子数总数;L为原子蒸气厚度(即吸收光程)[4]。 在实际分析中,要求测定的是试样中待测元素的浓度,而此浓度与待测元素吸收辐射的原子数总数成正比[5]。所以在一定的吸收光程下,待测元素的吸光度(A)与其浓度(C),在一定浓度范围内遵守比尔定律[6]。即A=KC。因此测定吸光度就可求出待测元素的浓度[7]。 某种元素被激发后,核外电子从基态激发到最接近基态的最低激发态E。为共振激发。当其又回到时,发出的辐射光线即为共振线[8]。基态原子吸收共振线辐射也可以从基态上升至最低激发态,由于各种元素的共振线不相同,并具有一

原子吸收光谱

实验原子吸收光谱法测定自来水中钙、镁的含量 ——标准曲线法 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1. 原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。 2. 标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer 定律:A=εcl(式中ε为被测组分对某一波长光的吸收系数,l为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2. 试剂

Thermo SOLAAR原子吸收光谱仪操作及软件应用126181110

SOLAAR原子吸收光谱仪基本操作及软件应用 1.SOLAAR 软件及启动 1.1.概要 SOLAAR 数据工作站应用于SOLAAR系列原子吸收光谱仪及其附件,用于执行原子吸收分析并产生样品分析结果。 1.2.启动软件 打开光谱仪电源(热电的技术工程师已在安装时连接好光谱仪和计算机)、计算机电源,进入WINDOWS桌面,双击WINDOWS桌面的SOLAAR图标,即出现SOLAAR-登录对话框。 用户名键入:ADMINISTRATOR,口令键入:SOLAAR。点击确定即进入SOLAAR软件。用户名和口令可根据用户需要进行更改,详见附录6.3.安全设置。 进入软件后,出现SOLAAR AA 系统操作界面,并会立即出现启动向导平台对话框。 启动向导平台对话框提供了包括建立一个新的方法、运行分析、运行PQ分析等等操作的逐

步的向导,提示你怎样逐步的来完成每项工作。怎样进行操作,该向导给出了详细逐步的指导说明,请按向导提示进行操作。 点击关闭,关闭启动向导平台对话框,即出现SOLAAR AA 系统操作界面,所有的编辑、操作、应用都在该操作界面下展开和完成。 SOLAAR AA 系统操作界面主菜单包括文件、编辑、浏览、校正、安全、停止、窗口和帮助等,这些菜单中仪器常用的操作都以快捷方式列出,其功能分别为: 自动调零 自动光路调整,自动波长选择 火焰法燃烧头参数设定/自动优化火焰参数,燃气比高/低, 燃烧头位置高/低 空心阴极灯自动准直,灯位置左/右/前/后自动调整 石墨炉自动进样器进样针清洗/毛细管清洗 石墨管高温清洗/自动进样器进样针头位置调整 执行分析/暂停分析/继续分析/插入单个样品分析 设置运行双分析时火焰/石墨炉自动切换 GFTV可视系统开关

原子吸收光谱在水环境监测中的应用

原子吸收光谱法在水质分析中的应用 王丹阳 (黑龙江大学电子工程学院 20123949) 摘要:文章讨论了原子吸收光谱法的基本定义,并强调了在水质分析中的重要性,还点出了他的突出之处,选择性好,准确度高,有较强的灵敏性,操作迅速。 关键词:原子吸收光谱法;应用;水质分析 随着人们生活水平的提高和科学技术的发展,复杂样品的准确分析越来越受到人们的关注。在复杂生物样品中,无机离子的含量与人们健康息息相关,微量元素的准确检测对指导人们如何合理安排营养的摄入、养成健康的生活习惯起着重要的作用。目前所用的检测无机离子的方法中有原子吸收光谱、原子发射光谱、原子荧光光谱法、离子色谱法、高效液相色谱法、电化学方法、紫外可见分光光度法、毛细管电泳分析法等,而原子吸收光谱法基于对痕量金属元素的高灵敏度、低检出限、线性好等优势,成为金属离子分析检测领域中不可或缺的重要方法和手段。火焰原子吸收法因结构简单、操作方便、速率高、低排耗、选择性好、精密度高等优势在冶金、地质、化学工程、医药、刑侦、生物和食品分析中广泛使用[1]。 1.1原子吸收光谱法的发展史: 第一阶段——原子吸收现象的发现与科学解释 早在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中出现的暗线。1817年,弗劳霍费(J.Fraunhofer)在研究太阳连续光谱时,再次发现了这些暗线,由于当时尚不了解产生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。1859年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果 第二阶段——原子吸收光谱仪器的产生 原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文“原子吸收光谱在化学分析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger, Varian Techtron 及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。 第三阶段——电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g,使原子吸收光谱法向前发展了一步。塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸收测定。基体改进技术的应用、平台及探针技术的应用以及在此基础上发展起来的稳定温度平台石墨炉技术(STPF)的应用,可以对许多复杂组成的试样有效地实现原子吸收测定。

PE原子吸收光谱仪原理

原子吸收光譜儀原理 一、 背景 現代科技包括自然科學、醫學、生物科技、環境及工業技術等發展,對物質成份分析的需求較之過去有明顯的改變。對於低濃度金屬的分析,除了所使用的分析儀器是否具有足夠的偵測靈敏度外,若無法有效的控制樣品基質所產生的干擾效應,將造成嚴重的分析誤差。本文將針對原子吸收光譜儀基本原理及PerkinElmer AAnalyst 800型單機多功能的設計(含火焰式及石墨爐式),是具高精準性及方便性的分析儀器。 二、 原理 原子吸收的過程是當基態原子吸收某些特定波長的能量由基態到激發態。根據Beer 定律,吸收值與濃度成正比關係,從標準溶液作出校正曲線後,再讀出未知溶液的濃度。而原子吸收光譜儀即是利用原子化器將樣品(A)原子化器後,吸收某一特定波長光,此光來自(B)燈管,再經過(C)光學系統分光經由單光器過濾僅有要測的波長光進入(D)偵測器,原子收光譜儀的基本構造如圖一所示。 A. 原子化器:原子化器有三種設計,有火焰式、石墨爐式及汞蒸氣氫化裝置。 (1) 火焰式燃燒系統之剖示圖,如圖二所示,在預混系 統內,樣品溶液被吸經霧化器霧化成小水滴進入混 合腔與燃料及氧化用氣體混合後,帶入燃燒頭,而樣品原子化即產生。在燃燒系統內有些重要因素須在霧化器部份考慮,為了提供最有效之霧化,以各種不同之樣品溶液,霧化器須為可調式的,而不鏽鋼為最常用的一種材質,但其缺點是樣品若含有高濃度之酸或其它腐蝕性氣體則會被腐蝕,若須為抗腐蝕之材質可用惰性塑料材質或Pt/Ir 之合金為宜。燃燒頭用鈦金屬組成可提供極高之熱阻抗及防腐蝕性。不之火焰或樣品條件須使用不同之燃燒頭,10公分長是用來做空氣乙炔之燃燒,而5公分長的用手作較高溫的笑氣乙炔燃燒。 (2) 石墨爐原子化器其基本構造如圖三所示,基本構造包含有金屬室、石墨爐及石墨管三部份。金屬室的功能在於提供高電流加熱裝置,石墨爐的功能為固定石墨管,而石墨管則為樣品的原子化裝置。石墨材質具有高電阻的特性,當瞬間通入大量電流時,藉由電熱的原理使得石墨管溫度迅速提昇,達到使樣品中待測元素原子化的高溫。為避免原子化器在加熱升溫的過程中,石墨材質與空氣中氧氣起氧化 Monochromator Detector Reference Beam Sample Beam Hollow Cathode Lamp Burner Rotating Chopper 圖一 原子吸收光譜儀的基本構造 預混式混合腔 霧化器 燃燒頭 Flow Spoiler Impack Bead 圖二 火焰式燃燒系統

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100?l。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10?l 即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,就是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性与谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光与可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)就是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都就是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就就是原子吸收光谱法进行定量分析的理论基础 由于原子能级就是量子化的,因此,在所有的情况下,原子对辐射的吸收都就是有选择性的。由于各元素的原子结构与外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。

相关主题
文本预览
相关文档 最新文档