当前位置:文档之家› 二次函数与一元二次方程教学讲义

二次函数与一元二次方程教学讲义

二次函数与一元二次方程教学讲义
二次函数与一元二次方程教学讲义

二次函数与一元二次方程教学讲义

第一讲:一元二次方程判别式及根与系数的关系

一、知识点总结

1、一元二次方程ax 2

+bx +c =0(a ≠0)的求根公式:

2、证明:设ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,

由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)

⑴、若一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1,x 2,则:x 1+x 2=-b/a ;x 1x 2=c/a ; ⑵、若x 1,x 2是某一元二次方程的两根,则该方程可以写成:x 2-(x 1+x 2)x+x 1x 2=0。 关于一元二次方程根的判别式:

3、一元二次方程 ax 2+bx+c=0 (a ≠0)根的判别式为:△=b 2-4ac

作用:不解方程,判断方程根的情况,解决与根的情况有关的问题。 主要内容:⑴、△>0:有两个不相等的实数根; ⑵、△=0:有两个相等的实数根; ⑶、△<0:没有实数根。 二、典型例题

关于根的判别式的应用:

1、对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;

2、对于字母系数的一元二次方程,若知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;

3、运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题。

例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2

-1=0, (1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.

解:∵△=(4m+1)2-4×2×(2m 2

-1)=8m+9

(1)当△=8m+9=0,即m= -

89

时,方程有两个相等的实根; (2)当△=8m+9>0,即m >-89

时,方程有两个不等的实根;

(3)当△=8m+9<0,即m < -8

9

时,方程没有实根。

例2 求证:关于x 的方程x 2

+(m+2)x+2m-1=0有两个不相等的实数根。

分析:(1)要证方程有两个不相等的实数根,就是证明其根的判别式要大于零.

(2)对于一个含有字母的代数式,要判断其正负,通常下面方法:通过配方变为“ 一

个完全平方式+正数”;或变为“ -( )2

–正数”。 解答过程略

关于根与系数的关系(韦达定理)的应用:

例3 (1)已知关于x 的方程3x 2

+6x-2=0的两根为x 1 ,x 2,求

2

11

1x x +

的值。 分析:已知方程,求两根组成代数式的值。这里主要说明解题格式,学生完成过程.

(2)已知关于x 的方程3x 2

-mx-2=0的两根为x 1 ,x 2,且

3112

1=+x x ,求 ①m 的值;②求x 12+x 22的值。 分析:第(1)题是已知方程,求两根组成代数式的值,而第(2)题的第一问就反来了,也就是已知代数式的值求方程。第②问,再进一步,已知代数式的值,求另一个代数式的值.但是,无论是哪一个问题,所要用到的都是根与系数的关系。

小结:求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式。

关于根的判别式和韦达定理的综合应用问题:

例4、已知1x 、2x 是一元二次方程01442

=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使2

3

)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使

21

2

21-+x x x x 的值为整数的实数k 的整数值。 通过此题,使学生明白解决这类问题,一般遵循“三步曲”,即假设存在——推理论证——得出结论(合理或矛盾两种情况)。

第二讲:二次函数的解析式与图象

一、复习引入

1、二次函数的三种表达式: ⑴、一般式:y=ax 2+bx+c (a ≠0),解题的关键在于:通过三个独立条件“确定”这三个参

数。当a >0时,图象开口向上;当a <0时,图象开口向上。对称轴为:x=-b/2a 。当△=b

2

-4ac >0时,图象与x 轴有两个交点(方程ax 2+bx+c=0有两个不相等的实数根);当△=b

2

-4ac=0时,图象与x 轴有且只有一个交点(方程ax 2

+bx+c=0有两个相等的实数根);当△

=b 2

-4ac <0时,图象与x 轴没有交点(方程ax 2

+bx+c=0没有实数根)。顶点坐标是:(-b/2a ,4ac-b 2

/4a )。

⑵、顶点式:y =a (x-h )2

+k (a ≠0)。其中,h= -b/2a ,k=4ac-b 2/4a 。 ⑶、零点式:y=a(x -x 1)(x -x 2)。利用了函数与方程根的关系。 2、二次函数的图象:

⑴、说出下列函数的开口方向、对称轴、顶点: y=(x+2)2

-1;(2) y=-(x-2)2

+2;(3) y=a(x+h)2

+k 。

⑵、①、二次函数y=ax 2

(a ≠0)的图像可由的y=x 2

图像各点纵坐标变为原来的a 倍得到;

②、a 决定了图像的开口方向: a>0开口向上,a< 0开口向下;

③、a 决定了图像在同一直角坐标系中的开口大小: |a|越小图像开口就越大。

第三节:用二次函数的图象讨论二次方程根的分布

对一元二次方程)0(02

≠=++a c bx ax ,除了讨论其根的性质和符号外往往还要求我们讨论其根落在某个区间内或外的充要条件,这类问题,一般大都以二次函数的图象作为辅助工具。下面介绍借助二次函数图象讨论二次方程根的范围问题的一般方法。

对于方程)0(02

≠=++a c bx ax ,总可以化为与其同解的方程02

=++q px x 的形式。

1. 程02

=++q px x 的根与常数k 的关系

设0)(2

=++=q px x x f 的二根为

α、β,且βα≤,那么它们与常数

),(βα≠≠k k k ,在x 轴上的位置关系分别如下图:

α k α β k α β (1)两根均小于k ,即k <≤βα的充要条件是?????<->≥?k

p k f 2/0)(0

(2)一根小于k 而另一根大于k ,即βα<

k

β x

x x

一元二次方程应用一对一辅导讲义

课 题 一元二次方程的应用 授课时间: 2016-03-26 8:00——10:00 备课时间:2016-03-24 教学目标 1、综合运用一元二次方程和其他数学知识解决如面积、利润、增长率与降低 率等生活中的实际问题。 2、注意找准等量关系及检验根是否符合实际意义。 3、从现实问题中构建一元二次方程数学模型。 重点、难点 会运用一元二次方程解决简单的实际问题 考点及考试要求 1.一元二次方程的应用 2.一元二次方程实际问题 教 学 内 容 第一课时 一元二次方程的应用知识梳理 1.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.19 2.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________. 3.用适当的方法解下列一元二次方程. (1).22(3)5x x -+= (2).22330x x ++= 课前检测

1. 一元二次方程的实际应用????? ???????????????动点问题数字问题面积问题 利润问题增长率(降低率)问题常见类型、答步骤:设、列、解、验 2. 解题循环图: 3. 利用一元二次方程解决许多生活和生产实际中的相关问题,它的一般方法是: (1)根据题意找到等量关系,列出一元二次方程。 (2)特别要对方程的根注意检验,根据实际做出正确取舍,以保证结论的准确性。 第二课时 一元二次方程的应用典型例题 考点一:增长率(降低率)和利润问题 典型例题 知识梳理

(一)增长率(降低率)问题: 【例1】某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率. (二)利润问题: 【例2】商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降低1元,商场平均每天可多售出2件,求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)若要使商场平均每天赢利最多,请你帮助设计方案。

一元二次方程(全章共21课教案)人教版

第十二章一元二次方程 第1课一元二次方程 一、教学目的 1.使学生理解并能够掌握整式方程的定义. 2.使学生理解并能够掌握一元二次方程的定义. 3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式. 二、教学重点、难点 重点:一元二次方程的定义. 难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别. 三、教学过程 复习提问 1.什么叫做方程?什么叫做一元一次方程? 2.指出下面哪些方程是已学过的方程?分别叫做什么方程? (l)3x+4=l; (2)6x-5y=7; 3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”. 引入新课 1.方程的分类: 通过上面的复习,引导学生答出: 学过的几类方程是 没学过的方程是 x2-70x+825=0,x(x+5)=150. 这类“两边都是关于未知数的整式的方程,叫做整式方程.”而在整式方程中,“只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.” 据此得出复习中学生未学过的方程是 (4)一元二次方程:x2-70x+825=0,x(x+5)=150. 同时指导学生把学过的方程分为两大类:

2.一元二次方程的一般形式 注意引导学生考虑方程 x2-70x+825=0 和方程x(x+5)=150,即x2+5x=150, 可化为:x2+5x-150=0. 从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为 ax2+bx+c=0(a≠0) 的形式.并称之为一元二次方程的一般形式.强调,其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.要特别注意:二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项. 讲解例题 课堂练习 P5-6 1、2 课堂小结 1.方程分为两大类: 判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零. 作业:教材中相关习题. 第2课一元二次方程的解法(一) 一、教学目的 1.使学生掌握用直接开平方法解一元二次方程. 2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c <0)的方法. 二、教学重点、难点 重点:准确地求出方程的根. 难点:正确地表示方程的两个根. 三、教学过程 复习过程 回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据. 求下列各式中的x: 1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0. 回答解题过程中的依据. 解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.

初三数学-二次函数讲义-详细

二次函数 一、二次函数的解析式 1. 二次函数解析式有三种: (1)一般式:y ax bx c a =++≠2 0() (2)顶点式:()y a x h k =-+2 顶点为() h k , (3)交点式:()()y a x x x x =--12 ()()x x 12 0,,是图象与x 轴交点坐标。 2.根据不同的条件,运用不同的解析式形式求二次函数的解析式. 二、二次函数与一元二次方程 1. 二次函数()20y ax bx c a =++≠与一元二次方程 ()200ax bx c a ++=≠的关系。 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值 0y =时的特殊情况。 2.图像与x 轴的交点个数:

①当240b ac ?=->时,图像与x 轴交于两点 ()()()1212,0,,0A x B x x x ≠,其中12,x x 是一元二次方程 ()200ax bx c a ++=≠的两根; ②当0?=时,图像与x 轴只有一个交点; ③当0?<时,图像与x 轴没有交点。 1’ 当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y > 2’ 当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <。 板块一 二次函数解析式 1.(1)把函数232 12++=x x y 化成它的顶点式的形式为_______________________; (2)把函数6422++-=x x y 化成它的交点式形式为 ____________________________; (3)把函数()2 324y x =-+化为它的一般式的形式为 __________________________;

第二章一元二次方程培优奥赛讲义

九上第二章一元二次方程培优讲义一.填空题(共15小题) 1.已知a是方程x2﹣2013x+1=0一个根,求a2﹣2012a+的值为.2.附加题:已知m,n都是方程x2+2007x﹣2009=0的根,则(m2+2007m﹣2008)(n2+2007n﹣2010)的值为. 3.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是. 4.已知x=﹣1是方程ax2+bx+c=0根,那么的值是. 5.已知a,b是等腰三角形ABC的两边长,且a、b满足a2+b2+29=10a+4b,则这个等腰三角形的周长为. 6.若实数a、b、c满足a2+b2+c2+4≤ab+3b+2c,则200a+9b+c=. 7.已知关于x的方程x2+(a﹣6)x+a=0的两根都是整数,则a的值等于.8.若方程x2﹣4|x|+5=m有4个互不相等的实数根,则m应满足.9.已知:a2+b2=1,a+b=,且b<0,那么a:b=. 10.方程(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2的解是.11.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.12.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是. 13.α,β为关于x的一元二次方程x2﹣x+2=0的两个根,则代数式2α2+β2+β﹣3的值为. 14.中新网4月26日电,据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感).若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了人,若不加以控制,以这样的速度传播下去,经三轮传播,将有人被感染. 15.一个两位数,个位数字比十位数字的平方大3,而这个两位数字等于其数字之和的3倍,如果这个两位数的十位数字为x,则方程可列为.

讲义一元二次方程讲义

考点一、概念 (1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax (3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 考点二、方程的解 ⑴内容:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:①利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 说明:任何时候,都不能忽略对一元二次方程二次项系数的限制. 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。 例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a 变式:若0122=--a a ,0122=--b b ,则 a b b a +的值为 。 针对练习:

《一元二次方程》整章的教后反思

《一元二次方程》整章的教后反思 《一元二次方程》整章的教后反思 一、教学之前的思考 基于以上对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。 二、实施教学所遇到的难点 在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的`方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。 三、教学后的及时改进 为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生

潜意识已经认为公式法更简单 通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。 四、反思 1、备课应该更加务实。 在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。 2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。 五、教材的独到之处 教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

一元二次函数辅导讲义

一元二次函数解法讲义 【知识梳理】 1.定义:一般地,如果)0,,(2≠++=a c b a c bx ax y 都是常数,,那么的二次函数是x y 2。二次函数c bx ax y ++=2 ()0≠a 配方得:()k h x a y +-=2 的形式,其中 a b a c k a b h 44,22 -=-= 3。抛物线的三要素:开口方向、对称轴、顶点. ①的符号决定抛物线的开口方向: (1)当 时,开口向上;顶点是抛物线的最低点,在对称轴的左侧,y 随x 的增大而增大,当 a b x 2-= ,y 值最小,最小值为 a b ac 442- (2)当 时,开口向下;顶点是抛物线的最高点,在对称轴左侧,y 随x的增大而减小,当 a b x 2-= ,y 值最大,最大值为 a b ac 442- (3)a 相等,抛物线的开口大小、形状相同。 ②平行于y 轴(或重合)的直线记作 .特别地,y轴记作直线 . 4.顶点决定抛物线的位置:几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、 开口大小完全相同,只是顶点的位置不同. 5.求抛物线的顶点、对称轴的方法 (1)公式法:a b a c a b x a c bx ax y 44)2(2 22 -++=++=, ∴顶点是)44,2(2a b ac a b --,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为k h x a y +-=2 )(的形式,得到顶点为),(k h , 对称轴是直线 . (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 6.抛物线的作用中,c b a c bx ax y ,,2 ++= (1)决定开口方向及开口大小,这与2 ax y =中的完全一样.

一元二次函数解法 辅导讲义

课题一元二次方程的解法 重点、难点熟练掌握一元二次方程的解法 教学内容 一元二次方程的解法: ①因式分解法: 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零. →因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 例题:用因式分解法解方程:3(x-3)=(x-3)2 练习:(2x+3)2=24x (2x-1)(3x+4)=x-4 1.2y-0.04=9y2 (2x-1)2+3(2x-1)=0 ②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0) 例题:3x2-27=0; 练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0 ③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 用配方法解一元二次方程的步骤: 1.变形:把二次项系数化为1 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 例题:x2-6x=-8

练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0 ④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0). 2.b 2-4ac ≥0. 例题:X 2+2x-3=0 练习: -2m 2+4=-3m 23a 2-a-4 1=0 8y 2-2y-15=0 △ 用三种方法解方程:2532=-x x (1)用因式分解法解: 解:移项,得 3x2-5x-2=0 ( 使方程右边为零) 方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式) 即 x-2=0或3x+1=0(A=0或B=0) 31 ,221-==∴x x (2)用配方法解: 解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2 )65( ,得: .3625323625352+=+-x x 即 .3649652=??? ? ?-x 开平方,得:.36496 5±=-x .31,221-==∴x x (3)用公式法解: 解:移项,得02532=--x x ( 这里a=3,b=-5,c=-2) ())2(34542 2-??--=-∴ac b =49 6753249)5(±=?±--=∴x () .04a c b .2a 4a c b b x 22≥--±-=

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案 一、填空题 1.一元二次方程x 2-2x +1=0的解是______. 2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______. 3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是 x =______. 4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______. 5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______. 6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______. 7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______. 8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化 简结果是______. 二、选择题 9.方程x 2-3x +2=0的解是( ). A .1和2 B .-1和-2 C .1和-2 D .-1和2 10.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定 11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ). A .没有实数根 B .可能有且只有一个实数根 C .有两个不相等的实数根 D .有两个不相等的实数根 12.如果关于x 的一元二次方程02 22=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .3 13.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ). A .m 不能为0,否则方程无解 B .m 为任何实数时,方程都有实数解 C .当2

九年级二次函数讲义

二次函数 一.知识梳理 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。

一、求二次函数的三种形式: 1. 一般式:y=ax 2 +bx+c ,(已知三个点) 顶点坐标(-2b a ,244ac b a -) 2.顶点式:y=a (x -h )2 +k ,(已知顶点坐标对称轴) 顶点坐标(h ,k ) 3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 二、a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=- 2b <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2b a >0, 即对称轴在y 轴右侧,c?的符号决定了抛物线与y 轴交点的位置, c=0c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.

二次函数与一元二次方程讲义

二次函数与一元二次方程 1?通过探索,理解二次函数与一元二次方程之间的联系. 2?能运用二次函数及其图象确定方程和不等式的解或解集. 3?根据函数图象与x轴的交点情况确定未知字母的值或取值范围. 、情境导入

如图,是二次函数y = ax2+ bx + c图象的一部分,你能通过观察图象得到一元二次方程ax2+ bx + c = 0的解集吗?不等式ax2+ bx + c<0的解集呢? 二、合作探究 探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x轴交点情况判断 F列函数的图象与x只有一个交点的 A. y= x2+ 2x —3 B. y = x2+ 2x + 3

C. y = X2—2x + 3 D . y= x2—2x + 1 解析:选项 A 中b2—4ac= 22—4X1 x(—3) = 16 >0 ,选项B 中b2—4ac = 22—4x i x 3= —8 v 0,选项C 中b2—4 ac= (—2)2—4 x i x3 = —8 v 0,选项D 中b2—4 ac = (—2)2— 4x i x i = 0 ,所以选项D的函数图象与X轴只有一个交点,故选 D. 【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴 如图,对称轴平行于y轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为___________

解析:???点(1 , 0)与(3 , 0)是一对对称点,其对称中心是(2 , 0) ,???对称轴的方程是x = 2. 方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程. 【类型三】利用函数图象与x轴交点情况确定字母取值范围 1 若函数y = mx2+ (m + 2)xm + 1 的图象与x轴只有一个交点,那么m的值为() A. 0 B . 0 或2 C. 2 或—2 D. 0, 2 或—2 解析:若m丸,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式 1 为零来求解;若m = 0,原函数是一次函数,图象与x轴也有一个交点.由(m + 2)2—4m$ m + 1)= 0,解得m = 2或一2,当m = 0时原函数是一次函数,图象与x轴有一个交点, 所以当m = 0, 2或一2时,图象与x轴只有一个交点. 方法总结:二次函数y = ax2+ bx + c,当b2—4ac >0时,图象与x轴有两个交点;当 b2—4ac= 0时,图象与x轴有一个交点;当b2—4ac v0时,图象与x轴没有交点.

一元二次方程讲义-绝对经典实用教案.doc

一元二次方程 ●夯实基础 例1 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围_________. 例2 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. ●能力提升 1、已知方程2240a b x x x --+=是关于x 的一元二次方程,求a =______、b =______. 2、若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数 ●培优训练 例3 m 为何值时,关于x 的方程2 ((3)4m m x m x m --+=是一元二次方程. 例4已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值. ●练习 1、m 为何值时,关于x 的方程2 ((3)4m m x m x m -+=是一元二次方程. 2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围. 4、若 2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________ ●夯实基础 (1)2269(52)x x x -+=- 21)x -= (3) 211 063 x x +-= (4) 231y += 板块一 一元二次方程的定义 板块二 一元二次方程的解与解法

[初中数学]一元二次方程全章教案 人教版

《一元二次方程》全章教案 第一课时 1 设计思路 通过探究实际问题中的数量关系极其变化规律,经历由具体问题抽象出一元二次方程的过程。从而引出一元二次方程的一般式,并能识别各项的系数。培养学生的观察能力和思维能力。 3 教学目标 1. 通过探究实际问题中的数量关系极其变化规律,2. 经历由具体问题抽象出一元 二次方程的过程。 2.解一元二次方程的概念;正确掌握一元二次方程的一般形式。 教学重点:正确掌握一元二次方程的概念和一般形式。 教学难点:正确理解和掌握一般形式中的a ≠0 ,“项”和“系数”。 三、教学过程 1 1) 会根据实际问题中的数量关系列出方程。 1.方形桌面的面积是2m 2,求它的边长? 2.矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。 如果花圃的面积是24m 2,求花圃的长和宽? 3. 我校图书馆的藏书在两年内从5万册增加到7.2万册, 平均每年增长的百分率是多少? 4. 长5米的梯子斜靠在墙上,梯子的底端与墙 的距离是3米。如果梯子底端向右滑动的距离与 梯子顶端向下滑动的距离相等,求梯子滑动的距离。 根据题意列出方程 22=x 2225)3()4(=++-x x 2.7)1(52=+x 24)219(=-x x

(二)观察以上四个方程它们有什么共同特点 1 都是整式方程; ②只含一个未知数; ③未知数的最高次数是2. (三)一元二次方程的概念: 像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程 (四) 例1:判断下列方程是否为一元二次方程: )0(0).7(0 ).6()2)(1(3).5(023).4(1).3(1 ).2(1).1(222222的常数为不等于m mx c bx ax x x x y x x x x x x x ==+++-=-=+-= ==+ (五)一元二次方程的一般形式: ax 2+ bx +c=0(a 、b 、c 为常数且a ≠ 0) 注意:为什么要限制a ≠0,b ,c 可以为零吗? 并指出一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数(六) 例2:一元二次方程的二次项系数、一次项系数和常数项. 2(2)510 2.20x x +-= 2(1)109000x x --= 2(4)30x x += 2(3)2150x -= (5) 3)2(2 =+x (6)0)3)(3(=-+x x 四、归纳小结 (一)小组讨论学习成果,并总结本节课的知识点,提出疑点,由同学解答或老师解答. (二)教师讲解、板演例题、小结(突出重难点)

二次函数讲义 详细

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 第一讲 二次函数的定义 知识点归纳:二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数, )0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式 例1、 函数y=(m +2)x 2 2-m +2x -1是二次函数,则m= . 例2、 下列函数中是二次函数的有( ) ①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2 ;④y=21 x +x . A .1个 B .2个 C .3个 D .4个 例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式. 例4 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,

如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y . 训练题: 1、已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2、若函数y=(m 2 +2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 3、已知函数y=(m -1)x 2m +1 +5x -3是二次函数,求m 的值。 4、已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系. 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2 为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限 6.下列不是二次函数的是( ) A .y=3x 2+4 B .y=-31 x 2 C .y=52-x D .y=(x +1)(x -2) 7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0 D .m 、n 可以为任何常数

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

初中一对一精品辅导讲义:一元二次方程应用



一元二次方程的应用
1、综合运用一元二次方程和其他数学知识解决如面积、利润、增长率与降低 率等生活中的实际问题。 2、注意找准等量关系及检验根是否符合实际意义。 3、从现实问题中构建一元二次方程数学模型。
教学目标
重点、难点 考点及考试要求
会运用一元二次方程解决简单的实际问题 1.一元二次方程的应用 2.一元二次方程实际问题

第一课时



一元二次方程的应用知识梳理
课前检测
1.已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x2-14x+48=0 的一根, 则这个三角形的周 长为( A.11 ) B.17 C.17 或 19 D.19
2.已知两数的积是 12,这两数的平方和是 25, 以这两数为根的一元二次方程是___________. 3.用适当的方法解下列一元二次方程. (1). (3 ? x)2 ? x2 ? 5 (2). x2 ? 2 3x ? 3 ? 0
4.若方程(m-2)xm2-5m+8+(m+3)x+5=0 是一元二次方程,求 m 的值

5.已知关于 x 的一元二次方程 x2-2kx+
1 2 k -2=0. 求证:不论 k 为何值,方程总有两不相等实数根. 2
知识梳理
、答 ?步骤:设、列、解、验 ? ?增长率(降低率)问题 ? ? ? ? ?利润问题 1. 一元二次方程的实际应用 ? ? ?常见类型?面积问题 ?数字问题 ? ? ? ? ? ?动点问题 ?
2. 解题循环图:
3. 利用一元二次方程解决许多生活和生产实际中的相关问题,它的一般方法是: (1)根据题意找到等量关系,列出一元二次方程。 (2)特别要对方程的根注意检验,根据实际做出正确取舍,以保证结论的准确性。
第二课时
一元二次方程的应用典型例题

人教版21章一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

三种类型:(1)()02≥=a a x 的解是a x ±=; (2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

二次函数讲义

第1页共12页 二次函数 【知识点1】二次函数的图象和性质1.二次函数的定义与解析式 (1)二次函数的定义:形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式 ①一般式:f (x )=___ax 2+bx +c (a ≠0)___. 已知三个点的坐标时,宜用一般式. ②顶点式:f (x )=__a (x -m )2+n (a ≠0)____.已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③零点式:f (x )=___a (x -x 1)(x -x 2)(a ≠0)__.已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.2.二次函数的图象和性质 图象函数性质 a >0 定义域 x ∈R (个别题目有限制的,由解析式确定) 值域 a >0 a <0 y ∈[4ac -b 24a ,+∞) y ∈(-∞,4ac -b 2 4a ] a <0 奇偶性 b =0时为偶函数,b ≠0时既非奇函数也非偶函数 单调性 x ∈(-∞,- b 2a ]时递减,x ∈[-b 2a ,+∞)时递增 x ∈(-∞,- b 2a ]时递增, x ∈[-b 2a ,+∞) 时递减 图象特点 ①对称轴:x =- b 2a ;②顶点:(-b 2a ,4ac -b 2 4a ) 3.二次函数f (x )=ax 2 +bx +c (a ≠0),当Δ=b 2 -4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、

一元二次方程全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式: 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想 一元二次方程???→ 降次一元一次方程

2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程 )0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42 -=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解 决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;

相关主题
文本预览
相关文档 最新文档