当前位置:文档之家› 水电站课程设计

水电站课程设计

水电站课程设计
水电站课程设计

一、水电站枢纽工程原始资料及设计条件

1、工程概况

某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。

该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。

2、工程等别和建筑物级别

本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。

3、水文气象资料

3.1洪水:各频率洪峰流量详见下表

表1-1 坝址洪峰流量表

3.2水位~流量关系曲线:

表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海

表1-4 厂址水位~流量关系曲线表 高程系统:85黄海

多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。

3.4气象

多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。

4、工程地质与水文地质

4.1工程地质资料

(1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标

上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪

f=0.8~0.9 ;'c=0.7~0.8MPa。

断指标:'

/岩

下坝址:饱和抗压强度:15~25MPa;抗剪指标:

f=0.6~0.62;抗剪

砼/

f=0.7~0.8 ;'c=0.70MPa。

断指标:'

/岩

4.2坝址工程地质条件

(1)上坝址工程地形、地质条件

上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m,左岸冲沟较发育,坝轴线上、下游分别分布2#及3#冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

坝址区除两岸均分布有宽度较窄,厚3~4m冲积阶地堆积及左岸分布厚1~3m残积堆积外,基岩大部分裸露,出露的主要岩性为砂质板岩、绢云母板岩夹长石砂岩、厚层长石砂岩、含砾砂岩、含砾砂质板岩。

坝区岩层走向与河流交角700~800,倾上游偏左岸,坝址区构造较简单,仅上游见F1断层及物探探测的F3断层,破碎带宽0.1~0.6m,延伸长度均小于50m。主要节理有四组。

坝区岩石风化受岩性与地形等因素影响,长石砂岩抗风化能力较强,风化较浅;板岩、绢云母板岩抗风化能力较弱,风化深度较大,两岸山顶受地形切割呈弧立小山包,则强风化深达25~36m。

据钻孔压水试验和地下水观测资料,坝区岩体透水性较差,地下水位坡降陡达40~50%,埋藏较浅,远高于设计正常蓄水位。坝基岩体透水率小于5lu占96.8%,基本属弱透水岩体;防渗帷幕下限(q<5lu)埋深,左岸5.2~20m,河床5~7m,右岸2.5~12m。

(2)下坝址工程地形、地质条件

下坝址位于上坝址下游660m,基本为“U”型横向谷,河流流向2650,河床大部分为冲积砂砾石覆盖,河床高程182~183.5m,河床宽202m,右河床

为浅滩,水深0.5~1.0m, 左河床为人工改造河槽,水深1.5~2.0m。当正常蓄水位192m时,河谷宽232m。两岸地形对称,边坡较陡峻。左岸坡角400~430,为崩坡积物所覆盖,山顶高程324.74m;右岸坡角420~450,基岩裸露,山顶高程315.25m。

坝区除少部分为第四系松散堆积物覆盖外,基岩大部分裸露,出露的主要岩性有绢云母板岩夹中薄层长石砂岩。

坝区地质构造较简单,断层未见。岩层产状N200~250E,SE<600~700,其走向与河流交角600~650,倾向上游偏左岸。

坝区岩石风化主要受岩性所控制,坝基及坝肩大部分为绢云母板岩,其抗风化能力较弱,两岸肩强风化相对较深。

据钻孔地下水位观测资料,左坝肩地下水位埋深9.5~40m(高程225m以上),右坝肩地下水位埋深3 ~23m(高程226m以上),远高于蓄水位。据钻孔压水试验资料表明,基岩的透水性与岩体风化程度密切相关,强风化带及弱风化带上部岩体节理裂隙较发育,岩体完整性较差,透水性较强,为中等透水带,弱风化带中下部和微风化岩体透水性较差,基本为弱透水或微透水带。坝基防渗帷幕下限(q<5lu)埋深,左岸10~28m,河床2~10m,右岸6~20m。

(3)坝基岩石物理力学指标

表1-5 坝基岩石物理力学指标建议值表

4.3 引水发电隧洞及厂房工程地质条件 (1)引水发电隧洞

下坝址引水隧洞进口位于坝线右岸上游,洞段穿越河间地块,出口位于河湾下游9#冲沟口附近。洞轴向N16?W 。

进口段(0~40m ):地形坡角28?~60?,上覆岩体厚6~18m ,围岩为Z aj 2-4

岩组灰绿色绢云母板岩,劈理发育,岩层产状N20?E ,SE ∠65?,倾向洞外偏右侧,与洞轴线交角36?,主要发育产状N70?W ,SE ∠78?,N50?W ,SW ∠87?及N10?E ,SE ∠85?三组节理,面多闭合平直,延伸长0.5~1.0m 。强风化带下限埋深8~12m ,岩体因节理裂隙发育较破碎,成洞条件差,建议采取明挖。开挖坡比5.0:1=永久i ,

75.0:1=永久i 。洞脸边坡由于受层面与多组节理组合切割稳定性较差,建议采取加固处理措施。

洞身段(40~110m ):上覆岩体厚18~66m ,围岩为Z aj 2-3岩组上部灰白色厚层状长石砂岩,围岩呈弱~微风化状态。岩层产状N22?E ,SE ∠64?,与洞轴线交角38?。主要发育N50?~60?W ,SW ∠85?~87?及N10?E ,SE ∠80?~85?两组节理,面紧密闭合,延伸长0.5~1.0m 。该段位于地下水位以下,岩体完整性较好,基本稳定,成洞条件较好。其中平距40~70m 段属Ⅲ类围岩,f =4~5,0K =35~40cm MPa /;平距70~110m 段属Ⅱ类围岩,f =6~7,0K =50~55cm MPa /。

洞身段(110~350m ):上覆岩体厚24~107m ,围岩为Z aj 2-3、Z aj 2-2岩组灰绿色绢云母板岩夹中厚层长石砂岩,围岩呈弱~微风化状态,岩层产状N22?E ,SE ∠64?,与洞轴线交角38?,板岩内产状N15?E ,NW ∠75?劈理较发育。主要发育N50?~60?W 及N10?E 两组高倾角节理,面平直闭合,延伸长0.5~1.0m 。该段位于地下水位以下,岩体完整至较完整,大部分洞段基本稳定,成洞条件较好,但局部洞段(310~350m )劈理、节理较发育,稳定性较差。其中平距110~310m 段属Ⅲ类围岩,f =4~5,0K =30~35cm MPa /;平距310~350m 段属Ⅳ类围岩,

f =3~4,0K =15~20cm MPa /。

出口段(350m 以后):地形坡角15?~45?,上覆岩体厚2~24m 。围岩为Z aj 2-2

岩组灰绿色绢云母板岩夹长石砂岩,板岩内劈理发育。岩层产状N15?E ,SE ∠65?~70?,倾向洞内偏右侧,与洞轴线交角31?。主要发育N30?E ,NW ∠35?,N85?W ,SW ∠86?,N15?W ,SW ∠79?及N80?E ,NW ∠36?四组节理,面多闭合,延伸长1~5m 。强风化带下限埋深5~16m 。该段位于地下水位以下,岩体因节理、劈理发育完整性差,成洞条件差,建议采取明挖,开挖坡比,5.0:1=永久i ,75.0:1=永久i 。由于N10?E 及N80?E ,倾向洞外的两组缓倾角节理较发育,加上与NWW 向、NNW 向高倾角节理组合形成不稳定块体,对洞脸边坡与开挖边坡稳定不利,建议采取锚固处理措施。

(2)厂房

下坝址厂房位于河弯下游9#冲沟出口的冲积堆积Ⅰ级阶地一带,阶地宽10~12m ,阶面高程183~184m ,后山坡坡角45?,基岩裸露。阶地上部为灰褐色粉质粘土,下部为砂砾石,厚1.0~1.8m ,基岩为Z aj 2-3、 Z aj 2-2岩组灰绿色绢云母板岩夹灰白色长石砂岩。岩层产状,N15?~20?E ,SE ∠65?~70?,板岩劈理发育,主要发育NE 向、NEE 向、NNW 向及NWW 向四组节理,面多闭合,延伸长1~5m 。强风化带下限埋深2~5m ,厂房基础持力层为弱风化岩体,其强度满足建筑物地基应力要求。但NE 及NEE 向两组缓倾角(35?~36?)节理较发育,且倾向坡外,对厂房开挖边坡稳定不利,建议采取加固处理措施。推荐的岩体物理力学指标建议值:弱风化长石砂岩MPa R g 5045-=,65.06.0/-=岩砼f ;弱风化绢云母板岩g R =15~20MPa ,

55.05.0/-=岩砼f ;开挖坡比5.0:13.0:1-=单i , 75.05.0:1-=永久i 。

4.4 天然建筑材料

本阶段勘察按普查精度要求进行,除对原规划料场进行复核外,重点对石料进行了勘测,共勘查储量:砂砾料180.85×410 3m ,土料77.5×410 3m ,石料988.22×410 3m ,储量基本能满足要求。

(1)土料:共调查了7个料场,总储量77.5×4103m ,均分布在团河Ⅱ级阶地,为黄褐色、红棕色粘土、土层较密实,呈可塑~硬塑状,中~低压缩性。料场分布面积大,有用层厚度3 ~4m ,无用层厚度仅0.5m 。除高标、若水两料场有少量农

田及柑桔林外,其他产地均为荒地,开采条件好。除若水料场运距为2.5km 较近外,其他料场运距较远达10~14km 。各料场距公路较近,运输方便,推荐料场土的物理力学指标:天然含水量26%,最优含水量22%,最大干密度1.56~1.603/cm g ,压缩系数V a1-2=0.321-MPa ,内摩擦角180,凝聚力23KPa 。

(2)砂砾料:共调查26个料场,总储量180.85×4103m ,其中砂约46.39×4

103m ,砾134.46×4103m ,水上66.56×4103m ,水下114.29×4103m ,主要分布

在团河、巫水、沅水等河流。团河的砂料场,砾石成分板岩较多,磨圆度较差,粗砾含量偏高,砂约占15~20%,砂砾石质量较差。巫水、沅水的砂砾料场,砾石成份主要为砂岩,石英砂岩等,磨园较好,含泥较少,砂约占20~40%。质量较好。团河、巫水河的料场单个储量较小,一般1~3×4103m 。水上可采厚度0.5~1.5m ,水下可采厚度1.5~2.0m 。无用层厚度0~0.8m ,最厚2m ,开采较为方便。沅水的料场单个储量较大,一般10~30×410,可采厚度水上:1.0~2.0m ,水下:1.5~2.0

m 。基本没有无用层,开采条件好。八宋、陈田、若水、胡家湾、上江西团、下江西团、红庙湾、陡滩料场,运距近,仅2~5km 。其他料场运距较远达9.5~28.5km 。除三洲、高椅料场不通公路,运输不便外,其他料场距公路均较近,运输较方便。

(3)石料:共调查5个料场,总储量988.24×4103m 。除独岩滩料场为估算储量外,其他四个料场均实测断面,用平行断面法计算储量。5个料场均位于库内两岸。为Z aj 2、Z aj 3的厚层砂岩、含砾砂质板岩、含砾砂岩等,弱风化岩石较坚硬,饱和抗压强度MPa R g 5025-=。表部无用层为风化破碎岩石,厚度0~20m 。靠近河岸边为弱风化岩石,山坡无用层厚度较大,开采条件较差。芦塘等四个料场运距近,小于1km ,应优先开采。独岩滩料场远距较远,达5.5km ,可作为备用料场。各料场均无公路相通,需修建简易公路。

5、设计基本数据

5.1工程开发的任务

该水电站工程开发的任务是以发电为主,兼顾防洪、旅游、生态治理等综合利用,它的兴建将促进会同县工农业生产的发展。

5.2主要技术规范及参考资料

《水利水电枢纽工程等级划分及洪水标准》SL252-2000;《混凝土重力坝设计规范》DL5108-1999;《水电站厂房设计规范》SD335-89;《水电站进水口设计规范》SD303-88《水利水电工程可行性研究报告编制规程》DL5020-93;《水工隧洞设计规范》SD134-84;《水电站调压室设计规范》DL/T5058-1996;《水利水电工程设计防火规范》SDJ278-90;《水工设计手册》第七册。

5.3水库特征水位、下泄流量及下游水位 (1)下坝址

正常蓄水位:192.00m ;设计洪水位(P=2%):193.75m ,下泄流量Q=5220m 3

/s ,相应下游水位193.3m ;校核洪水位(P=0.2%):199.4m ,下泄流量Q=8440m 3/s ,相应下游水位198.67m ;死水位:191.50m 。

(2)上坝址

正常蓄水位:192.00m ;设计洪水位(P=2%):194.78m ,下泄流量Q=5220m 3/s ,相应下游水位194.15m ;校核洪水位(P=0.2%):200.24m ,下泄流量Q=8440m 3/s ,相应下游水位199.34m ;死水位:191.50m 。

5.4设计控制标准 (1)稳定控制标准

①大坝 基本组合(设计情况):Kc ≥1.05,k '≥3.0 特殊组合(校核情况):Kc ≥1.00, k '≥2.5

②厂房 抗浮安全系数 :Kf ≥1.10 (2)应力控制标准

①基础面不出现垂直拉应力

②最大垂直压应力小于地基允许承载力(地基承载力安全系数取2) (3)防渗设计标准

①相对隔水层控制线:3~5lu

②坝基设帷幕、排水,5.01=a ,3.02=a 。

二、机电设备选择

1、水轮机的选型

1.1水轮机选择的基本资料

装机容量16z N MW =,m H m H m H m H av r 3.12,5.9,9.12,5.11min max ==== 1.2水轮机型号的选择

根据设计水头m H r 5.11=,从水轮机系列型谱参数表中查的,可以有310HL 型和560ZZ 型两种选型方案。本设计中选用310HL 型水轮机,不再作机型方案的比较。

1.3单机容量的选择

水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案。综合考虑机组台数与机电设备制造、水电站投资、水电站运行效率、水电站运行维护工作等的关系,采用两台机组,单机容量为MW N gr 8=。

kW W N Nr gr

gr

366

1033.81033.8%

96108?=?=?==

η 式中 Nr ——水轮机的额定出力

gr N ——发电机的额定出力

gr η——发电机效率,大中型发电机取96%~98%,中小型发电机取95%~96%

1.4水轮机主要参数的确定 (1)转轮直径的计算

η

Hr Hr

Q 81.9'

11Nr D =

式中:kW Nr 31033.8?=;r H =11.5m

由教材查得该型水轮机在限制工况下的s m s L Q M /4.1/14003'1==,M η =82.6%。由此可初步假定原型水轮机在该工况下的单位流量s m Q Q M /4.13'1'1==,效率=η85%。将以上各值代入公式得: m D 28.4%

8511.55.114.181.91033.83

1=?????=

选用与之接近而偏大的标准直径1D =4.5m 。

(2)转速n 的计算

1'10/D H n n av = 查得该型水轮机在最优工况下单位转速'

10M n =88.3min /r ,初步假定'

10'10M n n =,将相应数据代入,可得n =68.8

min /r ,选用与之接近而偏大的同步转速min /4.71r n =。

(3)效率及单位参数修正

查得310HL 型水轮机在最优工况下模型的最高效率max M η=89.6%,模型转轮的直径M D 1=0.39m ,则原型水轮机的最高效率

()511max max /11D D M M ?--=ηη()55.4/39.0896.011?--==93.6% 考虑到制造工艺质量上的差异,取ξ=1.0%,则效率修正值为: ξηηη--=?max max M =0.936-0.896-0.01=0.03

由此可得原型水轮机在最优工况和限制工况下的效率应为:

max max M ηηη+?==89.6%+3%=92.6%

ηηη?+=M =82.6%+3%=85.6%(与原来假定的数值相近)

单位转速的修正值按下式计算

1896.0/926.01/max max '

10'

1

-=-=?M M

n n ηη=0.017﹤0.03 按规定单位转速可不加修正,同时,单位流量也可不加修正,原假定及相应计算结果是正确的。

(4)工作范围的检验

在选定的1D =4.5m ,min /4.71r n =的情况下,水轮机在最大的'max 1Q 和各特征水头下相应的'1n 值即可计算。

在设计水头r H =11.5m 以额定出力Nr 工作时,其相应的最大单位流量为:

85

.05.115.115.481.98000

Hr Hr D 81.92

21'

max 1????==

ηNr Q =1.215﹤1.4s m /3

则水轮机的最大引用流量为:Hr D Q Q 2

1

'max 1max ==1.215×5

.115.42?=83.43s m /3

与特征水头r H 、max H 、min H 相应的单位转速为

min /7.945

.115

.44.711'1r Hr nD n r =?==

min /5.899.125

.44.71max 1'min 1r H nD n =?== min /2.1045

.95

.44.71min 1'max 1r H nD n =?==

在310HL 型水轮机的模型综合特性曲线图上分别绘出'max 1Q =1215s L /,

min /2.104'max 1r n =,min /5.89'min 1r n =的直线,由图可见,由这三根直线所围成的水轮机工作范围基本上包含了该特性曲线的高效率区,所以对于310HL 型水轮机方案,所选定参数1D =4.5m ,n =94.7min /r 是合理的。

(5)吸出高的计算

可知,对于310HL 转轮,其吸出高可按下式计算:

H H z s σ-?

-

≤900

10 式中z σ为电站装置气蚀系数,查得360.0=z σ。 水电站的海拔高度?可由表1-4中的厂址水位与流量关系采用内插法得出,即

12

.1791801803026343.83263-?

-=-- 得?=179.32m

因此:m H H z s 7.55.11360.0900

32.1791090010-=?--=-?-≤σ,取最大值m H s 7.5-=。

根据实际工程经验,需将计算的吸出高度s H 减1m 作为采用的吸出高度,汽蚀较轻微,故s H 取为-6.7m . 1.5水轮机安装高程的确定

对立轴混流式水轮机,安装高程式: 2

b H Z s w s +

+?=

式中 ()()m b H m s w 导叶高度

吸出高度;;尾水位——————0? 查表知,

m b D b 755.15.4390.0,390.001

=?==故,取m b 76.10= m b H Z s w s 5.1732

76.17.632.17920=+-=+

+?=,故机组安装高程为173.5m 。

2、水轮机结构与外型尺寸估算

混流式水轮机主要由以下几部分组成:埋入部分,包括蜗壳、座环、尾水管等;导水机构,包括顶盖、底环、导叶和导叶操作机构等;转动部分,包括转轮、主轴等;导轴承、密封装置及其他附属装置。

2.1 蜗壳 (1)断面形式

由r H ﹤40m 知,应选择混凝土蜗壳。它的断面为梯形,便于施工和减小其径向

尺寸。

图2-1 蜗壳断面图 其中n m >,5.1=-a n

b ,?=30δ,?=15γ,a r =3.45m ,b r =3.00m 。蜗壳顶角点和底角点的变化形式有直线和抛物线两种,直线变化规律对设计及施工比较方便,而抛物线变化规律水利条件较好。为便于设计与施工,选用直线变化规律。

(2)蜗壳的水力计算

根据水轮机设计水头r H 在蜗壳进口断面平均流速经验曲线上查得进口断面流速c V =2.9m /s ,取包角0?=180?,故所需的进口断面面积为:

20max 038.149

.236018043.83360m V Q F c =???

?=??=

?。根据选定的进口断面形状,通过试

算即可求出蜗壳进口断面的具体尺寸如下图示:(单位:米)

图2-2 蜗壳进口尺寸图

中间断面的尺寸此处不做详细计算,根据以上值近似画出蜗壳平面单线如图示:

图2-3 蜗壳平面单线图

2.2尾水管

(1)确定尾水管的基本尺寸

根据本电站的总装机容量(16MW )为中型水电站,为了减少尾水管的开挖深度,采用弯肘型尾水管。弯肘形尾水管是由进口直锥段、肘管和出口扩散段三

部分组成,其大致形状如图示:

由推荐的尾水管尺寸表查得,310HL 水轮机各尺寸如下:

表2-1 尾水管标准型式与实际计算表

尾水管高度h ,指从水轮底环平面到尾水管底板的高度,是决定尾水管性能

的主要参数。对低水头混流式水轮机()21D D <,16.2D h ≥,最低不得小于13.2D ,此处为11.7m 。

3D 可近似取为转轮出口直径,此处取为3D =4.8m .进口锥管单边扩散角θ的最优

值,对混流式水轮机,取??=9~7θ。此处取为9o。

尾水管的水平长度L 是指机组中心线至尾水管出口断面的距离,此处取20.25m 。

(2)尾水管其他细部尺寸不做设计。 2.3水轮机重量估算

图2-4 混流式水轮机尾水管

(1)水轮机总重量估算

水轮机总重量指不包括调速器、油压装置和其他辅助设备的水轮机整体重量。查《水电站机电设计手册》可知,t G 430=

(2)转轮重量估算

查《水电站机电设计手册》可知,t G 650=

2、调速系统的选择

水轮机调速系统的基本任务是:使水轮发电机组稳定地以额定转速运行,在机组负荷变化工其他外扰作用下,保证机组的转速变化不超过一定的范围,并能迅速地稳定于新的工况,从而保证发电机输出的交流电频率满足用电设备的要求。水轮机调节是通过调速系统根据机组转速的变化不断地改变水轮机过流量来实现的。

调速系统的主要设备有:调速器、油压装置和漏油装置。 2.1调速器的型式及工作容量的选择

综合考虑调速器型式及工作容量的合理性,在反击式水轮机调速器系列型谱表中本水电站可选择DT-100。可知其基本资料下所示:

表2-2 DT-100基本资料表

2.2油压装置的选择

油压装置是向水轮发电机制调速系统供给压力油的能源设备,是调速系统的重要组成部分。同时也可作为进水阀、调压阀以及液压操作元件的压力油源。油压装置有分离式和组合式两种。分离式油压装置的压力油罐与回油箱分开;组合式油压装置的压力油罐装在回油箱上面的框架上。前者容量范围较大,适用于大中型水轮机。后者结构紧凑,但容量较小,仅适用于中小型水轮机。

本电站采用组合式油压装置。为了满足机组调节和安全运行的要求,通常每台水轮机装设一台油压装置。油压装置的工作能力是以压力油箱的总容积和额定油压为表征的。压力油箱的总容积k V 可按下列经验公式估算

()s k V V 2018-=; 取328.106.01818m V V s k =?==

HYZ-,查知其基本尺寸如下所示:查油压装置系型谱表,本水电站可选 1.6

表2-3 油压装置基本尺寸表

图2-5 油压装置简图(单位:mm)

3、发电机的选择

3.1水轮发电机的型式选择

本设计为中型电站,故选用大中型机组,采用立式布置SF10-42/940,已知发电机主要参数如示:

表2-4 发电机主要参数表

3.2水轮发电机的通风冷却方式及其选择

大中型水轮发电机常采用密闭式空气循环冷却和水内冷两种冷却方式。密闭式空气循环冷却的冷却方式是借助转子风扇或轮副的风扇作用合空气在发电机内部循环流通,热空气通过冷却器用水冷却。本电站采用密闭式空气循环冷却。

3.3水轮发电机外形尺寸估算 (1)主要尺寸估算

①极距τ:4

2p

S K f j =τ

810~8)42(,此处取系数,一般取;磁极对数发电机额定容量;---j f K p S

所以cm 4.2642

210000

84

=??=τ ②定子内径i D cm p D i 70614

.34

.264222=??=

=

π

τ

③定子铁芯长度t l e

i f t n CD S l 2

=

式中 e n —额定转速;C —系数66105.6~104--??,此处取为6104-?。

cm

l t 2.704.7170610410000

26=???=

-

05.014.04

.712.70706>=?=n l D t i ,故采用伞式发电机。 ④定子铁芯外径a D (机座号)

e n ﹤166.7min /r ,cm D D i a 4.7324.267062.1=+=+=τ (2)外形尺寸估算

①平面尺寸估算

定子机座外径cm D D a 8354.73214.114.11=?== (e n ﹤136.4min /r ) 风罩内径m m D D 35.100.235.80.212=+=+= (kVA S f 20000≤) 转子外径()忽略不计δδcm D D i 70623=-=

下机座最大跨度m D D 6.054+= (kVA S f 10000010000<<)

5D —水轮机机坑直径(6300mm )

4D =6.3+0.6=6.9m

推力轴承外径6D 和励磁机外径7D

查得 6D =2000~2600,取为2000; 7D =1400~1600,取为1400

②轴向尺寸计算

定子机座高度mm mm l h t 1830600264270260021=+?+=++=τ (e n ﹤88.2min /r )

上机架高度 mm D h i 70670601.010.02=?==(伞式非承载机架) 推力轴承高度3h ,励磁机高度4h , 副励磁机高度5h 和永磁机高度6h 查表3-8,当kVA S f 20000≤时, 3h =1000mm ;4h =1500~1800,此处取为1500

mm ,其中机架高500~700,此处取为500mm ;5h =600mm ;6h =500mm

下机架高度 mm D h i 1778832.020.07=?== (伞式承载机架) 定子支座支承面至下机座支承面或下挡风板之间的距离8h

8h =0.25i D =0.25×7060=1765mm (伞式承载机架)

下机座支承面至主轴法兰底面之间的距离

mm mm h 700,15007009此处取为-=

转子磁轭轴向高度()mm mm l h t 120250070260050010=+=-+= (无风扇) 发电机主轴高度()H h 9.07.011-=

H —发电机总高度,即由主轴法兰盘底面至发电机顶部的高度

mm h h h h h h h H 76017001765183070615006005009812456=++++++=++++++=

110.70.776015321h H mm ==?=

定子铁芯水平中心线至主轴法兰盘底面至发电机顶部的高度

mm h h h 20321202183046.046.010112=+?=+= 3.4水轮发电机重量估算 (1)发电机总重量f G

3

/21???

? ??=e f

f n

S k G f G —发电机总重量(t );1k —系数,对悬式发电机取8~10,此

处取为8。

t

G f 2101.741000083

/2=?

?

?

???=

(2)发电机转子重量一般可按发电机总重量的1/2估算

t

G G f 1052==

发电机外形尺寸如下所示:

图2-6 发电机外表尺寸示意图 (单位:米)

4、起重设备

水电站起重设备一般采用桥式起重机或门式起重机。桥式起重机有单小车和双小车两种。双小车桥式起重机与单小车起重机不同之处是在桥架上设有两台可以单独或联合运行的小车,每台小车只有一个起重吊钩,藉手动变速作主钩或副钩使用,当吊运最重件(如发电机转子)时,两台小车借助平衡梁联合起吊。

4.1吊车形式的选择

最重吊运件的重量为105吨,且机组台数小于4台,故可选用一台单小车桥式起重机。

4.2主要工作参数的选择

(1)起重量查得额定起重量为110吨。

(2)跨度起重机大车轨道中心线之间的垂直距离(或起重机大车两端车轮中心线之间的垂直距离)称为跨度,以米表示。根据厂房宽度起重机跨度定为22米。

(3)起升高度双小车起重机每台小车只有一套起重机构,其吊钩的下极限位置应保证发电机转子或水轮机转轮从机坑吊出,同时还应满足吊运进水阀及水轮机埋设部件及安装的要求。

(4)主要附属装置

①吊钩

主厂房每台单小车桥式起重机一般都设置主、副钩各一个。主钩一般应满足起吊额定起重量的要求,副钩则按产品标准配置。

图2-7 吊钩装置图

②平衡梁

平衡梁基本尺寸如下所示:

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

水电站课程设计

该枢纽工程位西北某省A河上游干流上,其布置和工程参数如附件所示, 该水电站拟定主要设计参数 序号项目单位数值 1 最大水头m 125 2 最小水头m 86 3 多年平均水头m 92.5 4 设计水头m 88 5 总装机容量MW 360 (一)水轮机型号选型 1 根据该水电站的水头变化范围86~125m,在水轮机系列谱表3-3,表3-4中查出适合的机型有HL180和HL200两种。 2 主要参数选择 2.1 选取4台机组 2.2 转轮直径D1计算 单机容量:36万kw/4=9万kw (一)HL180水轮机 2.2.1查文献HL180转轮综合特性曲线可知机组效率M=90%;g =96%

Nr=Ny/zg=360000/4*0.96=93750kw 查表3-6可得HL180型水轮机在限制工况下的单位流量'1M Q =860L/s=0.86m 3/S ,效率m=89.5%,由此可 初步假定原型水轮机在该工况下的单位流量'1 Q =' 1M Q =0.86m 3/S ,效率=92%。 上述的Q1’,和Nr=单机容量:36万kw/4=9万kw ;g=96% Nr=Py/zg=360000/4*0.96=93750kw ,Hr=88m 带入式 η r r 11'81.9r H H Q N D = 可得=3.83m ,选用与之接近而偏大的 标称直径=3.9m 。 2.2.2转速n 计算 查表3-4可得HL180型水轮机在最优工况下单位转速10M n'=67r/min,初步假定M 1010'n ' n = ,将已知的和av H =92.5m ,1 D =3.9m 代入式1 1 ' n n D H =可得n=165.2r/min , 选用与之接近而偏大的同步转速n=166.7r/min 。(上式中'n 选用原型最优单位转速10 'n ,H 选用加权平均水头 Hav ) 2.2.3 效率级单位参数修正 ηηη1 D 1 D 10 'n ? ? ? ???--=-=?)5/1()^(1)1(11Mmax Mmax max D D K K M ηηηη)(

水电站厂房课程设计

2015年秋水利水电工程专业水电站厂房课程设计 1.课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算,制图和应用技术资料的技能。 2.工程枢纽概况 水库库区跨越S、N两河,地处MY县城以北20km,两条河在MY县城以南约10km 处汇合成SN河。 水库是以防洪及工农业供水为主要任务,兼有发电效益的综合利用水利工程。 水库各特征水位如下: 死水位:▽126.0m 正常高水位:▽157.50m 设计洪水位:▽158.20m 校核洪水位:▽159.50m 坝顶高程:▽160.00m 主要建筑物包括: (1)挡水建筑物 有N、S主坝两座及副坝五处,为碾压式粘土斜墙土坝,最大坝高为N河主坝,高66.4m,S河主坝高56m,各副坝15.7m~39m不等。 (2)泄水建筑物 ①溢洪道:有S河左岸第一、第二溢洪道。第一溢洪道为正常溢洪道,底部高程▽140m,宣泄超过100年一遇的洪水,为5孔带胸墙式河岸溢洪道。 第二溢洪道为非常溢洪道,与第一溢洪道配合,宣泄1000年洪水,底部高程▽148.5m,为5孔开敞式河岸溢洪道。 ②隧洞: a. N河左岸发电隧洞,用作发电供水和下游工农业供水,并在调压井上游设泄水支洞,用以宣泄10000年一遇特大洪水。进水塔进口底部高程为▽116.0m,洞径6m,洞长416m,底坡i=1/400,调压室为园筒式,内径17.14m,调压室后接2根埋藏式压力钢管,管径5.5m,管长125m。

b. S河发电泄水隧洞,任务是施工导流,发电、灌溉、供水和泄水。 见图1所示。 ③坝下廊道: 为施工期的临时建筑物,施工导流采取S、N两河分别导流的方式,故设N河导流廊道、 210 180 150 图一:枢纽布置图(1:3000) S河导流廊道,可宣泄20年一遇洪水,另有南石骆驼输水廊道,用以泄放3个流量的

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

水电站课程设计水电站厂房设计

课程设计:水电站厂房设计 专业班级:12级水利水电工程卓越班姓名: 学号: 指导教师: 南昌工程学院水利与生态工程学院印制 2015——2016学年第一学期

南 昌 工 程 学 院 课程设计(论文)任务书 I 、课程设计(论文)题目:某水电站厂房课程设计 II 、课程设计(论文)使用的原始资料(数据)及设计技术要求: 一、设计原始资料 (一)工程概况 图1为某水电站的厂房布置图,它是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3 810783.2m ?,属多年调节。 图1 厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等

多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 (二)水电站厂房主要设备 1、水轮机和发电机 电站最大水头m H 3.64max =,加权平均水头m H cp 63.59=,最小水头m H 02.38min =。按水头范围及装机容量,套用3台现有机组。水轮机型号为140220--LJ HL ,单机额定 出力为KW 8333,该机组适用m H 65max =,m H 38min =m H p 58=,额定流量35.16m /s , 和电站水头范围比较匹配。发电机型号为3300/168000-SF ,单机额定出力KW 8000(悬式),采用密封式通风,可控硅励磁。水轮机导叶0b 为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用3500-YDT 型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀 4、桥式起重机:本电站的最重部件为发电机转子带轴重37.5t ,结合厂房布置要求。选用起重机跨度m L k 12=,主副钩最大起升高度分别为20m 和22m ,主钩最高位置至轨顶距离为0.911m ,小车高度2.723m 。厂房屋顶结构厚度为2.456 m 。 二、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定。设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺、整洁。 III 、课程设计(论文)工作内容及完成时间: 一、工作内容 水电站厂房课程设计要求学生根据所给任务书,利用所给的资料,完成下列工作: 1、用简略的方法选择厂房的主要和辅助设备。 2、进行厂区和厂房内部布置,决定厂房的轮廓尺寸。 3、绘制设计图纸(至少要有一平一立两张图纸)和编写设计计算书和说明书。 二、完成时间 本课程设计2周,具体安排大致如下(供参考): 1、设计布置,了解设计任务书及熟悉原始资料 1天 2、进行厂房布置设计,并布置草图 6天 3、绘厂房布置图(可用计算机绘制)及整理编写计算书和说明书 3天 Ⅳ 主 要参考资料: 《水电站厂房设计规范 SL 266-2014 替代SL266-2001 中华人民共和国水利部 编 中国水利水电出版社 2014》 《DLT5186-2004水力发电厂机电设计规范》 《水力机械(第2版)金钟元 编 中国水利水电出版社 1992》

某水电站设计课程设计 精品

第一章原始资料及设计条件 1.1 概述 1.1.1 工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。 1.2 水文气象资料 1.2.1 洪水 各频率洪峰流量详见下表 表1-1 坝址洪峰流量表 1.2.2 水位~流量关系曲线: 表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海 表1-4 厂址水位~流量关系曲线表 高程系统:85黄海 多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。 1.2.4 气象 多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。 1.3 工程地质与水文地质 1.3.1 工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标 上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:

水力发电机组辅助设备课程设计报告

xx工程大学 水力发电机组辅助设备 课程设计 设计说明书 学院: 班级: 姓名: 学号: 指导老师:

目录 第一部分设计原始资料 (3) 第二部课程设计的任务和要求 (5) 第三部计算书和说明书 (7) 一、主阀 (7) 二、油系统 (7) 三、压缩空气系统 (14) 四、技术供水系统 (20) 五、排水系统 (22) 六、结束语 (25) 七、参考文献 (26)

第一部分:设计原始资料 一、水电站概况: 该水电厂位于海河流域,布置形式为坝后式水电站,坝型为土石坝,坝顶高程60.0m,水库调节库容2.6×108m3,属于不完全年调节水库。安装有1?~6?共6台轴流转桨式机组,其中1?机组在系统中承担调相任务。 二、水电站主要参数 1、电站水头H max=37.30m,H min=31.20m;H pj=34.50m 2、正常高水位:54.00m;正常尾水位:20.50m;最高尾水位20.9m;最低尾水位20.0m 3、装机容量N=6*17000KW 4、电站采用岔管引水方式,布置有三条引水总管,引水总管长度210m 三、水轮机和发电机技术资料

机型: ZZ440-LJ-330 SF17-28/550 额定出力: N r=17750KW; P r=17000KW 额定转速: n r=214.3r/min 水轮机安装安程:18.6m 水轮机导叶中心线D0=3.85m;导叶高度1.20m; 转轮标称直径D1=3.3m;尾水管直锥段上端直径3.5m,下端直径4.2m,直锥段高度6.6m;转轮占用体积6.76 m3;弯肘及扩散段体积27.52m3;检修时最低尾水位蜗壳残余水量15.0 m3 机组采用机械制动,制动耗气流量q z=65L/s 空气冷却器压力降△h=3-5m水柱 空气冷却器Q空=120m3/h 推力轴承及导轴承冷却器耗水量:26m3/h 四、调速器及油压装置 调速器型号: SDT-100 油压装置型号: YZ-2.5 -推力、上导轴承油槽的充油量3.0m3; 下导轴承油槽充油量1.5 m3 导水机构接力器充油量2×1.6 m3 水轮机转轮浆叶接力器充油量2.0 m3 主阀接力器充油量1.5m3 五、配电装置 主变: 3*40000KVA,冷却方式:风冷

水电站厂房课程设计任务说明书

水电站厂房课程设计说明书 张文奇 1.蜗壳的型式 电站设计水头H p=95.5m>40m (且>80m ),根据《水力机械》第二版第96页的蜗壳型式选择金属蜗壳。 2.蜗壳的主要参数 2.1金属蜗壳的断面形状为圆形。 2.2对于圆形断面金属蜗壳为了获得良好的水力性能一般采用蜗壳的包角为 0?=345°。 2.3根据《水力机械》第二版第99页图4-30查得,当设计水头为95.5m 时,蜗壳的进口断面的平均流速c V =7.5m/s ; 2.4己知水轮机的型号HL200-LJ-275,根据《水力机械》第二版附表5查得:1D =2750mm ,H=95.5m 时,蜗壳的座环内径b D =3650mm ,外径a D = 4550 mm ,所以蜗壳座环的内、外半径分别: 3. 金属蜗壳的水力计算 电站设计水头H P =95.5m ,进口平均流速c V =7.5m/s ,包角为0?=345°,每台机组过水能力:max Q =62.69m 3/s 。 3650 182522b b D r mm = ==4550 227522a a D r mm = = =

3.1对于蜗壳进口断面: 断面的面积: 断面的半径: 从轴中心线到蜗壳外缘的半径: 3.2对于中间任一断面: 设为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处的 其中max Q =62.69m 3/s 。,c V =7.5m/s ,a r =2.275m 计算成果见表1: 2max 062.69345==8m 3603607.5C C C C Q Q F V V ???= =???max 1.6m ρ= ==max a max 2 2.2752 1.6 5.475R r m ρ=+=+?=i ?max 360i i Q Q ?= ? i ρ= a 2i i R r ρ=+

水电站厂房课程设计西华精选文档

水电站厂房课程设计西 华精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

课程设计报告 (理工类) 课程名称: 水电站建筑物课程设计 课程代码: 8511961 学院(直属系): 能源与环境学院 年级/专业/班: 2010级/水利水电工程/2班 学生姓名: 学号: 3320 实验总成绩:

任课教师: 杨耀 开课学院: 能源与环境学院 水电站厂房课程设计任务书 西华大学能源与环境学院 2012年5月 一、课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算、制图和应用技术资料的技能。 二、课程设计的内容与要求 设计的内容概括地说,就是在给定工程枢纽布置和厂区位置的前提下,利用现有资料进行厂房布置设计。 具体内容包括: 1.确定主厂房的轮廓尺寸;

确定厂房轮廓尺寸时有关机组和设备的尺寸可由给定的基本数据查找或查阅有关的工具书。 2.绘出蜗壳与尾水管单线图,拟定转轮流道、座环等尺寸; 3.选择厂房起重设备; 4.进行厂区布置; 厂区布置可在地形图上绘出,要求至少拟定两个方案进行比较后,确定一个方案。 5.进行厂房布置; 厂房布置的具体内容包括主、副厂房的布置和对厂房结构布置的考虑,说明如下: ①在布置主、副厂房的同时,对厂房的结构布置一定要有考虑,包括: a.主厂房的分缝 b.一、二期混凝土的划分 c.止水的设置 d.下部块体结构的布置,包括机墩、蜗壳混凝土、尾水管的结构型式、尾水闸墩、上下游墙等的结构布置,在下部块体中要设哪些工作孔道,在什么位置等。

水电站课程设计1

水电站课程设计 一:计算水轮机安装高程 参考教材,立轴混流式水轮机的安装高程Z s 的计算方法如下: 0/2s s Z H b ω=?++ 式中ω?为设计尾水位,取正常高尾水位1581.20m ;0b 为导叶高度,1.5m ; s H 为吸出高度,m 。 其中,10.0()900 s m H H σσ? =- -+? 式中,?为水轮机安装位置的海拔高程,在初始计算时可取为下游平均水位的海拔高程,设计取1580m ; m σ为模型气蚀系数,从该型号水轮机模型综合特性曲线(教材P69)查得m σ=0.20, σ?为气蚀系数的修正值,可在教材P52页图2-26中查得σ?=0.029; H 为水轮机水头,一般取为设计水头,本设计取H=38m 。水头H max 及其对应工况的m σ进行校核计算。 10.0()900 s m H H σσ? =- -+?=10.0-1580900-(0.2+0.029)?38=-0.458 0/2s s Z H b ω=?++=1581.20-0.458+1.5/2=1581.49m 。 二:绘制水轮机、蜗壳、尾水管和发电机图 2.1水轮机的计算

图1.1 转轮布置图 如图所示,可得HL240具体尺寸: 表1.11 转轮参数表 D 1 D 2 D 3 D 4 D 5 D 6 b 0 h 1 h 2 h 3 h 4 1.0 1.078 0.928 0.725 0.483 0.128 0.365 0.054 0.16 0.593 0.283 4.1 4.420 3.805 2.973 1.980 0.525 1.497 0.221 0.656 2.431 1.160 2.2 蜗壳计算 进口断面尺寸计算 (1)进口断面流量的确定 由资料,该水电站初步设计时确定该电站装机17.6×410kW ,电站共设计装4台机组,故每台机组的单机容量为17.6×410kW ÷4=4.4×410kW 。 由水轮机出力公式:9.81N QH QH ωγ===4.4×410kW 式中:Q 为水轮机设计流量(3/m s ); H 为设计水头,m ;由设计资料得H=38.0m 。 所以,4×10//=118.039.81 4.4Q N H ω=?=(9.8138.0)(3/m s )

水电站课程设计

. . 水电站课程设计 ——水轮机选型设计说明书 学校: 专业: 班级: : 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

《水电站》课程设计水轮机的选型设计 专业:XXX 班级: XX 姓名:XXX 学号:XXX 指导教师:XXX

【摘要】 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 【关键词】 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【Abstract】 Curriculum project of hydro station is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of in adaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method, when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydro station, the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydro station; guarding method ; mode of thinking ; methodology; design step.

2017水电实习报告4篇

2017水电实习报告4篇 *目录2017水电实习报告水利水电工程认识实习报告水电公司实习报告暑期水电工实习报告一、实习目的 生产实习是教学与生产实际相结合的重要实习性教学环节。在生产实习过程中,学校也以培养学生观察问题、解决问题和向生产实际学习的能力和方法为目标。培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。 通过这次生产实习,使我在生产实际中学习到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实习知识。在向工人学习时,培养了我们艰苦朴素的优良作风。在生产实习中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。 我们在实习中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,为小区电力网设计、建筑供配电系统课程设计奠定基础。通过参观四川第一化工集团自动化系统,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。

通过生产实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。 二、实习内容 桥水电站位于云南省大理白族自治州云龙县大栗树西侧,以发电为主,是澜沧江中下游河段“两库八级”梯级开发的最上游一级电站,也是云南省“云电外送”、“西电东送”战略的骨干工程之一。电站正常蓄水高程1307米,坝址控制流域面积9.71万平方公里,总装机容量90万千瓦,年均发电量40.41亿千瓦时。枢纽建筑物主要由拦河坝、电站进水口、地下厂房系统、泄洪表孔以及冲沙泄洪底孔等组成。拦河坝为碾压混凝土重力坝,坝顶高程1310米,最大坝高105米,坝顶长度356米。 桥水电站大坝施工于xx年8月份开工,xx年11月22日大江截流顺利合龙,xx年5月10日基坑开挖达到1205米设计高程,同年5月22日首仓混凝土开盘浇筑。xx年7月18日,大坝混凝土浇筑全线封顶,实际施工进度比中标合同工期要求均提前完成,取得了安全、质量、进度的全面丰收。工程建设方在下闸当日致函水电四局,对百米高坝16个月全线封顶、45天完成3扇表孔弧门安装及按期实现下闸蓄水成绩的取得给予高度赞誉。

水电站课程设计

《水电站建筑物》课程设计BL电站计算说明书 姓名: 学号: 指导教师: 年月日

一、基本资料 1.1工程概况 根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。 水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。采用混合坝型,拟建一座坝后式水电站。电站尾水泄入灌溉渠道,结合工农业用水进行发电。 水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。 1.2设计的目的与任务 目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。 任务:进行水轮机选型与厂房布置设计。 1.3BL电站设计资料 气象资料: 该地区多年平均气温9.3℃,最低气温-35.8℃。最大风速北风21m/s。最大冰厚0.37m。地面冻结深度一般在1.1m左右。 水文资料: (1)水库特征水位与溢洪道泄量特征: (2 电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠

道设计流量48.0m 3/s 。渠道加大流量53.0m 3/s 。 电站尾水渠水位流量关系表(Z ~Q ): (3)厂房地质资料 水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房范围内有一小断层通过。 本地区地震基本烈度为Ⅶ度。厂房设计烈度为7度。 (4)水轮机选型的基本资料: 经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ; 4.电站正常运转时的最小水头H min =14.0m 。 5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。发电机效率ηf =0.91。 二、 水轮机的选型 本水电站的最大水头H max =27.8m ,正常运转时最小水头H min =14.0m ,加权平均水头H a =22.1m ,设计水头H r =21.3m 。水电站总装机容量N f =6400kW ,设计装机台数2台,单机容量N y1=3200kW 。 2.1水轮机型号选择 根据该水电站的水头变化范围14.0~27.8m ,查《水电站(第三版)》,河海大学,刘启钊主编P 73表3-4水轮机系列型谱中查出合适的机型有HL240、HL310。选择HL240。 2.2 转轮直径的计算 转轮直径D 1按下式计算: m H H Q N D r 63.1%6.893.213.2140.181.93200 81.9r '1r 1=????= =η (2-1) 式中 N r ——水轮机的额定出力,3200kW ; H r ——水轮机的设计水头,21.3m ; '1Q ——原型水轮机单位流量,初步假定s /40.13'1'1m Q Q M ==; η ——与'1Q 相应的原型效率,假设为89.6%。 根据计算结果,D 1=1.63m ,应选择与之相近且偏大的轮转标称直径,但D 1=1.8m 相差太大,可近似取为D 1=1.6m 。

水电站 课程设计

《某水电站厂房初步设计》 课程设计 学生姓名: 学号: 专业班级:水利水电(2)班 指导教师: 二○一三年九月二十七日

目录 第一章工程概况 (1) 第二章有关设计资料 (2) 2.1 厂区地形和地质条件 (2) 2.2 水电站尾水位 (2) 2.3 对外交通 (2) 2.4 地震烈度 (2) 第三章水轮机型号及主要参数选择 (3) 3.1 水轮机型号选择 (3) 3.2 主轴及蜗壳形式选择 (3) 3.3 HL220型水轮机方案的主要参数选择 (3) 3.4 两种方案的比较分析 (6) 第四章机电设备 (7) 4.1 水轮机 (7) 4.2 调速器(自动调速器) (7) 4.3 发电机 (8) 4.4 蝶阀 (8) 4.5 桥式起重机 (9) 第五章电气主结线及电气设备布置: (10) 第六章主要控制高程的确定 (11) 6.1 水轮机的吸出高度和安装高程 (11) 6.2 水轮机层的地面高程 (11) 6.3 尾水设计及相关高程 (11) 6.4 吊车轨顶高程 (12) 6.5 厂房天花板高程和厂房顶高程 (13) 第七章主厂房的布置设计 (14) 7.1 机组的布置方式 (14) 7.2 厂房下部结构的构造和布置 (14) 7.3 主厂房的长度和宽度 (14) 7.4 安装间的布置 (16)

7.5 主厂房内机电设备布置及交通运输 (16) 第八章副厂房的布置设计 (17) 8.1 中央控制室 (17) 8.2 高压开关室 (17) 8.3 厂用设备的布置 (18) 8.4 楼梯 (18) 8.5 厂变和工具间 (18) 8.6 值班室和休息室 (18) 8.7 调度室和通讯室 (18) 8.8 卫生间 (18) 第九章水电站枢纽布置 (19) 9.1 厂房 (19) 9.2 主变压器场 (19) 9.3 引水道 (19) 9.4 压力钢管 (19) 9.5 尾水道 (19) 9.6 对外交通 (19) 第十章开挖量的计算 (20) 第十一章分析与总结 (23) 11.1 问题分析 (23) 11.2 课设感受 (24) 参考文献 (25) 附图1:水轮机机组平面示意图 (26) 附图2:水轮发电机组剖面图B-B (27) 附图3:水轮发电机组横剖面图A-A (28) 附图4:HL220型水轮机综合特性曲线图 (29)

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

水轮机课程设计报告

- - - 目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20)

第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标

第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 2.1机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

2.2机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 2.3机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显著。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 2.4机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 2.5机组台数与其他因素的关系 2.5.1机组台数与电网的关系

相关主题
文本预览
相关文档 最新文档