当前位置:文档之家› 第十九章量子物理

第十九章量子物理

第十九章量子物理
第十九章量子物理

第十七 章量子物理

题17.1:天狼星的温度大约是11000℃。试由维思位移定律计算其辐射峰值的波长。 题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长

nm 257m 1057.27m =?==

-T

b

λ 属紫外区域,所以天狼星呈紫色

题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为

293 K 。若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?

题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为

4.484

=???

?

??=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ? 108 m 的球形黑体,试计算太阳的温度。设太阳射到地球

表面上的辐射能量为1.4 ? 103W ?m -

2,地球与太阳间的距离为1.5 ? 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某

一位置上。太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2

244)(R E

d T M ππ=

(1)

4)(T T M σ= (2)

由式(1)、(2)可得

K 5800122=?

??

?

??=σR E d T

题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。哪一

种金属可以用作可见光范围内的光电管阴极材料?

题17.4解:钨的截止频率 Hz 1009.1151

01?==

h

W ν 钡的截止频率

Hz 1063.0152

02?==

h

W ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大

于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

题17.5:钾的截止频率为4.62 ? 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子

的初速度。

题17.5解:根据光电效应的爱因斯坦方程

W mv h +=

2

2

1ν 其中

λνν/0c h W ==, 可得电子的初速度

152

10s m 1074.52-??=???

?????? ??-=νλ

c m h v

由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

题17.6:在康普顿效应中,入射光子的波长为 3.0 ? 10-

3 nm ,反冲电子的速度为光速的60%,

求散射光子的波长及散射角。

题17.6解:根据能量守恒,相对论质速关系以及散射公式有

2200mc c

h c m c h +=+λ

λ

(1) 2/1220)/1(--=c v m m

(2)

)cos 1(c 0θλλλ-=-

(3)

由式(1)和式(2)可得散射光子的波长

nm 1035.4443000

-?=-=c m h h λλλ 将入值代入式(3),得散射角

??

?

??

?

--

=c 01arccos λλλθ 题17.7:一具有l.0 ? 104eV 能量的光子,与一静止的自由电子相碰撞,碰撞后,光子的散射

角为60?。试问:(1)光子的波长、频率和能量各改变多少?(2)碰撞后,电子的动能、动量和运动方向又如何?

题17.7解:(1)入射光子的频率和波长分别为

nm 124.0Hz 1041.20

0180==?==

νλνc

h E , 散射前后光子波长、频率和能量的改变量分别为

nm 1022.1)cos 1(3c -?=-=?θλλ

式中负号表示散射光子的频率要减小,与此同时,光子也将失去部分能量。 (2)由能量守恒可知,反冲电子获得的动能,就是散射光子失去的能量

eV 3.950ke =?=-=E h h E νν

由相对论中粒子的能量动量关系式以及动量守恒定律在 Oy 轴上的分量式(图17-7)可得 22e 0e 22

e c p E E += (1) ke e 0e E E E +=

(2)

0sin sin e =-?θν

p c

h (3)

由式(1)和式(2)可得电子动量

124ke

e 0ke 2e s m kg 1027.52--???=+=

c

E E E p

将其代入(3)式可得电子运动方向

'

3259sin )(arcsin sin arcsin 0e 0e =??

?

????+=??

??

??=θννθν

?c p h c p h

题17.8:波长为0.10 nm 的辐射,射在碳上,从

而产生康普顿效应。从实验中测量到散射辐射的方向与入射辐射的方向相垂直。求:(1)散射辐射的波长;(2)反冲电子的动能和运动方向。

题17.8解:(1)由散射公式得

nm 1024.0)cos 1(C 0=-+=?+=θλλλλλ

(2)反冲电子的动能等于光子失去的能量,因

此有

J 1066.41117

00k -?=???

? ??-=-=λλννhc h h E

根据动量守恒的矢量关系,可确定反冲电子的方向

'1844arctg /arctg 0

00=???

? ??=?

??? ??=λλλλ?h h

题17.9:试求波长为下列数值的光子的能量、动量及质量:(1)波长为1500 nm 的红外线;

(2)波长为 500 nm 的可见光;(3)波长为 20 nm 的紫外线;(4)波长为 0. 15 nm 的X 射线;(5)波长为 1.0 ? 10-3 nm 的γ 射线。

题17.9解:由能量νh E =,动量λ

h

p =

以及质能关系式2/c E m =,可得 (1)当nm 1500

1=λ时,J 1033.1191

11-?===λνhc

h E

1281

1s m kg 1042.4--???==λh

p

kg 1047.1361

2

11-?===

λc h c

E m

(2)当nm 5002=λ时,因123

1

λλ= 故有 J 1099.331912-?==E E 12722s m kg 1033.13--???==P p

kg 1041.433612-?==m m

3)当nm 203=λ时,因1375

1λλ= 故有 J 1097.9751813-?==E E 12613s m kg 1031.375--???==P p

kg 1010.1753413-?==m m

4)当nm 15.04=λ时,因14410λλ-=,故有

J 1033.11015144-?==E E 124144s m kg 1022.410--???==P p

kg 1047.11032144-?==m m

(5)当nm 10135-?=λ时,J 1099.1135

55-?===λνhc

h E

1225

5s m kg 1023.6--???==λh

p

kg 1021.2305

2

55-?===

λc h c

E m

题17.10:计算氢原子光谱中莱曼系的最短和最长波长,并指出是否为可见光。

题17.10解:莱曼系的谱线满足

???? ??-=2i 2f 111

n n R λ 令 n i = 2,得该谱系中最长的波长nm 5.121max =λ 令∞→i n ,得该谱系中最短的波长nm 2.91min =λ

对照可见光波长范围(400~760 nm ),可知莱曼系中所有的谱线均不是可见光,它们处在紫外线部分。

题17.11:在玻尔氢原子理论中,当电子由量子数5i =n 的轨道跃迁到n f = 2的轨道上时,对外辐射光的波长为多少?若再将该电子从n f =2的轨道跃迁到游离状态,外界需要提供多少能量?

题17.11解:根据氢原子辐射的波长公式,电子从5i =n 跃迁到n f = 2轨道状态时对外辐射光

的波长满足

??? ??-=22512

1

1

R λ 则 μm 4.43m 1034.47=?=-λ

而电子从n f = 2跃迁到游离态∞→i n 所需的能量为

eV 4.322

12-=∞

-

=

-=?∞E

E E E E 负号表示电子吸收能量。

题17.12:如用能量为12.6 eV 的电子轰击氢原子,将产生哪些谱线? 题17.12解: 根据跃迁假设和波数公式有

2

i

12

f

1f n E n E E E E i -

=

-=? (1)

???

?

??-=2

f 2i 111n n R λ 将eV 6.131-=E , n f = 1和eV 6.13=?E (这是受激氢原子可以吸收的最多能量)代入式(1),可得69.3i =n ,取整3i =n (想一想为什么?),即此时氢原子处于n = 3的状态。

由式(2)可得氢原子回到基态过程中的三种可能辐射,所对应的谱线波长分别为102.6nm 、657.9nm 和121.6nm 。

题17.13:试证在基态氢原子中,电子运动时的等效电流为1.05?10-3 A 在氢原子核处,这个

电流产生的磁场的磁感强度为多大?

题17.13解:基态时,电子绕核运动的等效电流为

A 1005.142321

2

11-?===

=mr eh

r ev ef I ππ 式中v 1为基态时电子绕核运动的速度,1

12mr h

v π= 该圆形电流在核处的磁感强度

T 5.1221

0r I

B μ= 上述过程中电子的速度v << c ,故式中m 取电子的静止质量。

题17.14:已知α粒子的静质量为6.68×10-27 kg ,求速率为5000 km/s 的α粒子的德布罗意波

长。

题17.14解:由于α粒子运动速率v << c ,故有 m = m 0,则其德布罗意波长为

nm 1099.150-?===

v

m h p h λ

题17.15:求动能为1.0 eV 的电子的德布罗高波的波长。

题17.15解:由于电子的静能 MeV 512.0200==c m E ,而电子动能0k E E <<,故有

2/1k 0)2(E m p =,则其德布罗意波长为

nm 23.1)2(2

/1k 0===

E m h p h λ 题17.16:求温度为27℃时,对应于方均很速率的氧气分子的德布罗意波的波长。 题17.16解:理想气体分子的方均根速率M

RT

v 32=

。对应的氧分子的德布罗意波长

nm 1058.232A 2

-?====

MRT

h N v m h p h λ

题17.17:若电子和光子的波长均为0.20 nm ,则它们的动量和动能各为多少? 题17.17解:由于光子与电子的波长相同,它们的动量均为

124s m kg 1022.3--???==

λ

h

p

光子的动能 )0,0(eV K 22.600k =====E m pc E E 对光子:

电子的动能

keV 8.3720

2

k ==m p E (此处电子动能用非相对论方法计算)

题17.18:用德布罗意波,仿照弦振动的驻波公式来求解一维无限深方势阱中自由粒子的能量

与动量表达式。

题17.18解:势阱的自由粒子来回运动,就相当于物质波在区间a 内形成了稳定的驻波,由两端固定弦驻波的条件可知,必有2/λn a =,即

),3,2,1(2 ==

n n

a λ

由德布罗意关系式λ

h

p =,可得自由粒子的动量表达式

),3,2,1(2 ==

=

n a

nh h

p λ

由非相对论的动量与动能表达式m

p E 22

=,可得自由粒子的能量表达式

),3,2,1(82

2

2 ==

n ma h n E

从上述结果可知,此时自由粒子的动量和能量都是量子化的。

题17.19:电子位置的不确定量为5.0 ? 10-2nm 时,其速率的不确定量为多少?

题17.19解:因电子位置的不确定量nm 1052-?=?x ,由不确定关系式以及x x v m p ?=?可得

电子速率的不确定量

17s m 1046.1-??=?=

?x

m h

v x 题17.20:铀核的线度为7.2 ? 10-5m 。求其中一个质子的动量和速度的不确定量。

题17.20解:对质子来说,其位置的不确定量m 106.3m 2

102.71515

--?=?=?r ,由不确定关系

式h p r ≥??以及v m p ?=?,可得质子动量和速度的不确定量分别为

120s m kg 1089.1--???=?=?r

h

p

17s m 1013.1-??=?=

?m

p

v 题17.21:一质量为40g 的子弹以1. 0 ? 103 m/s 的速率飞行,求:( 1)其德布罗意波的波长;

(2)若子弹位置的不确定量为0.10 μm ,求其速率的不确定量。

题17.21解:(1)子弹的德布罗意波长为

m 1066.135-?==

v

m h

λ (2)由不确定关系式以及x x v m p ?=?可得子弹速率的不确定量为

128x s m 1066.1--??=?=?=

?x

m h

m p v 由计算可知,由于h 值极小,其数量级为10-34

,故不确定关系式只对微观粒子才有实际

意义,对于宏观物体,其行为可以精确地预言。

题17.22:试证如果粒子位置的不确定量等于其德布罗意波长,则此粒子速度的不确定量大于

或等于其速度。

题17.22证:由题意知,位置不确定量λ=?x ,由不确定关系式可得λh x h p =?≥

?,而m

p

v ?=?,故速度的不确定量

v v m

p

m h v ≥?=≥

?,即λ

题17.23:已知一维运动粒子的波函数为

?

??=-0)(x Axe x λψ 00

<≥x x 式中0>λ,试求:(1)归一化常数A 和归一化波函数; (2)该粒子位置坐标的概率分布函数(又称概率密度);(3)在何处找到粒子的概率最大。

题17.23解:(l )由归一化条件

1d )(2

=?

∞∞

-x x ψ,有

14d d d 032

22

2

220

20

2

===+-∞

-∞

-???

λ

λλA x e

x A x e

x A x x

x

λλ2=A (注:利用积分公式3

20

2d b y e y by =

-∞?

) 经归一化后的波函数为

????

?=-0

2)(x

xe x λλλψ 00<≥x x (2)粒子的概率分布函数为

?

??=-04)(2232

x e x x λλψ 00

<≥x x

(3)令

,0d ])([d 2

=x

x ψ,有40)22(2223=---x x e x xe λλλλ,得λ

1

0=

=x x ,和∞→x 时,函数2

)

(x ψ有极值。由二阶导数[

]

0d )(d 1

2

2

2<=λ

ψx x

x 可知,在λ

1

=

x 处,2

)(x ψ有最大值,即粒子在该处出

现的概率最大。

题17.24:设有一电子在宽为0.20 nm 的一维无限深的方势阱中。(1)计算电子在最低能级的

能量;(2)当电子处于第一激发态(n = 2)时,在势阱中何处出现的概率最小,其值为多少?

题17.24解:(1)一维无限深势饼中粒子的可能能量2

2

2

8ma h n E n =,式中a 为势阱宽度,当

量子数n =1时,粒子处于基态,能量最低。因此,电子在最低能级的能量为

eV 43.9J 1051.18182

1=?==-ma

h E

(2)粒子在无限深方势阱中的波函数为

...,2,1,sin 2)(==

n x a n a x πψ 当它处于第一激发态(n = 2)时,波函数为

a x x a

a x ≤≤=

0,2sin 2)(πψ 相应的概率密度函数为

a x x a

a x ≤≤=

0,2sin 2)(22

πψ 令0d ])([d 2

=x

x ψ

得 02cos 2sin 82=a

x a x a πππ 在a x ≤≤0的范围内讨论可得,当x =0, 4a , 2a , a 4

3和a 时,函数2

)(x ψ取得极值。由0d ]

)([d 2

>x

x ψ可知,函数在x = 0, x = a /2和x = a (即 x = 0, 0.10nm, 0.20 nm )处概率最小,其值均为零。

题17.25:在线度为1.0 ? 10―5 m 的细胞中有许多质量为m = 1.0 ? 10―

7kg 的生物粒子,若将生

物粒子作为微观粒子处理,试估算该粒子的n = 100和n = 101的能级和能级差各是多大。

题17.25解:按一维无限深方势阱这一物理模型计算,可得

J 1049.58100372

2

2

1-?===ma

h n E n 时,

J 1060.58101372

2

2

2-?===ma

h n E n 时, 它们的能级差 J 1011.13812-?=-=?E E E

题17.26:一电子被限制在宽度为 1.0 ? 10-10 m 的一维无限深势阱中运动。(1)欲使电子从基

态跃迁到第一激发态,需给它多少能量?(2)在基态时,电子处于x 1 = 0.090×10-10 m 与x 2 = 0.110 ? 10-10 m 之间的概率为多少?(3)在第一激发态时,电子处于0'1=x 与m 1025.0'102-?=x 之间的概率为多少?

题17.26解:(l )电子从基态(n = 1)跃迁到第一激发态(n = 2)所需能量为

eV 112882

22

12222

12=-=-=?ma h n ma h n E E E

(2)当电子处于基态(n = 1)时,电子在势阱中的概率密度为x a

a x π

ψ22

sin 2)(=。所求区间宽度12x x x -=?,区间的中心位置2

2

1c x x x +=

,则电子在所求区间的概率近似为 3122122

12

21

1108.3))(2

(sin 2)(d )(-?=-+?=

?≈=?

x x x x a a x x x x P c x x πψψ (3)同理,电子在第一激发态(n = 2)的概率密度为x a

a x π

ψ2sin 2)(22

2=,则电子在所求区间的概率近似为

25.0)'')(2

'

'2(sin 2122122=-+?=

x x x x a a P π

题17.27:在描述原子内电子状态的量子数l m l n ,,中,(l )当n = 5时,l 的可能值是多少?

(2)当5=l 时,l m 的可能值为多少?(3)当4=l 时,n 的最小可能值是多少?(4)当n = 3时,电子可能状态数为多少?

题17.27解:(1)n = 5时,l 的可能值为5个,它们是l = 0,1,2,3,4;

(2) l = 5时,l m 的可能值为11个,它们是l m = 0,±1,±2,±3,±4,±5; (3)l = 4时,因为l 的最大可能值为(n - 1),所以n 的最小可能值为5; (4) n = 3时,电子的可能状态数为2n 2 = 18。

题17.28:氢原子中的电子处于n = 4、l = 3的状态。问:(1)该电子角动量L 的值为多少?

(2)这角动量L 在z 轴的分量有哪些可能的值?(3)角动量L 与z 轴的夹角的可能值为多少?

题17.28解:(1) n = 4, l = 3时,电子角动量

π

π2122)

1(h

h l l L =+= (2)轨道角动量在z 轴上的分量π

2z h

m L l =,对于 n = 4,l = 3的电子来说l m = 0,±1,±2,± 3,则L z 的可能取值为0, π

ππ23,22,2h

h h ±

±±

。 (3)角动量L 与z 轴的夹角)

1(arccos arccos

z

+==l l m L L l θ,如图所示,当l m 分别取3,2,1,0,-1,-2,-3时,相应夹角θ分别为30?,55?,73?,90?,107?,125?,150?。

题17.29: 氢介于原子是由一质子和一绕质子旋转的介子组成的。求介子处于第一轨道(n =

1)时离质子的距离。(介子的电量和电子电量相等,介子的质量为电子质量的210倍)

题17.29解:由题意可知,氢介子原子在结构上与氢原子相似,故可采用玻尔氢原子理论的

有关公式求解。

氢介子原子第一轨道半径2

2

01''e m h r πε=,

与氢原子第一轨道半径m 10529.0102

2

01-?==me

h r πε相比较,可得

m 1052.2210

''13111-?===

r r m m

r 题17.30:已知氢原子基态的径向波函数为1

/2/131)4()(r r e r r R --=,式中1r 为玻尔第一轨道半径。

求电子处于玻尔第二轨道半径(124r r =)和玻尔第一轨道半径处的概率密度的比值。

题17.30解:电子在核外r 处的径向概率密度22

)()(r r R r =ρ,将不同的r 值代入后,可得电

子在相应r 处的径向概率密度。则电子处于玻尔第二轨道和玻尔第一轨道的概率密度的比值为

2621

22

1821122222121097.31616)()(1111----?====e r e r e r r R r r R p p r r r r

量子力学与激光

量子力学与激光 摘要 量子力学是关于微观粒子运动的一门科学,其核心内容是描述微观粒子的波粒二象性——微观粒子的运动规律类似于波的运动;而微观粒子在被一些实验手段测量时又体现经典粒子的性质,如,具有动量、质量、电荷——这看似矛盾的性质被统一于物质波的概念中。而量子力学中的光量子假说为激光的世界打开来一扇崭新的大门。本文以量子力学中的相关原理为引,介绍了量子力学原理在激光技术中的应用以及激光的产生的相关原理。 关键词:量子力学;光量子;激光原理与产生技术 1、引言 激光器的原理,是先冲击围绕原子旋转的电子,令其在重回低能量级别时迸发出光子。这些光子随后又会引发周围的原子发生同样的变化,即发射出光子。最终,在激光器的引导下,这些光子形成稳定的集中束流,即我们所看到的激光。当然,人们能够知晓这些,离不开理论物理学家马克斯·普朗克及其发现的量子力学原理。普朗克指出,原子的能量级别不是连续的,而是分散、不连贯的。当原子发射出能量时,是以在离散值上被称作量子的最小基本单位进行的。激光器工作的原理,实际上就是激发一个特定量子散发能量。 2、能量量子化的提出 1900年12月14日,在德国物理学会的一次会议上,普朗克宣读了他的论文《正常光谱的能量分布理论》。这篇开始几乎没人注意的文章因为使用内插法引入了普朗克常数h,漂亮的解决了20世纪物理学上空的两朵乌云中之一----黑体辐射的问题,从而开创了物理学的新纪元。人们也就把这篇文章发表的日期看作量子物理学的诞辰。这篇论文的功绩在于普朗克常数h的引入表明了黑体空腔壁中起辐射作用的电子的能量是量子化的。 1905年,爱因斯坦以勒纳总结出的光电效应性质作为光是粒子的依据,在普朗克的基础上注意到辐射在发射和吸收时所表现的粒子性,在《关于光的产生

大学物理(下)十五章作业与解答

第十五章量子物理基础 一. 选择题 1. 所谓“黑体”是指这样的一种物体: (A) 不能反射任何可见光的物体 (B) 不能发射任何电磁辐射的物体 (C) 能够全部吸收外来的所有电磁辐射的物体 (D) 完全不透明的物体 [ ] 2. 用两束频率、光强都相同的紫光照射到两种不同的金属上,产生光电效应,则 (A) 两种情况下的红限频率相同 (B) 逸出电子的初动能相同 (C) 单位时间内逸出的电子数相同 (D) 遏止电压相同 [ ] 3. 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,保持光频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图是 [ B ] 4. 光电效应和康普顿散射都包含有电子和光子的相互作用过程,以下几种解释正确的是 (A) 两种情况中电子与光子组成的系统都服从动量守恒定律和能量守恒定律 (B) 两种情况都相当于电子与光子的完全弹性碰撞过程 (C) 两种情况都属于电子吸收光子的过程 (D) 光电效应是电子吸收光子的过程,康普顿散射相当于光子与电子的完全弹性碰撞过程 [ ]

5.根据玻尔氢原子理论,巴尔末线系中最长波长和其次波长之比为 (A) 错误!未找到引用源。 (B) 错误!未找到引用源。 (C) 错误!未找到引用源。 (D) 错误!未找到引用源。 (-1/9+1/4)/(-1/16+1/4) = [ ] 6.两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相等 (B) 能量相等 (C) 速度相等 (D) 动能相等 [ ] 7. 关于不确定关系错误!未找到引用源。,有以下几种理解 (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的坐标和动量不可能同时准确地确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子 其中正确的是 (A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) [ ] 8. 波函数在空间各点的振幅同时增大D倍,则粒子在空间的概率分布将 (A) 增大D2倍 (B) 增大2D倍 (C) 增大D倍 (D) 不变 [ ] 二. 填空题 9. 普朗克的量子假说是为了解释__________________________ 的实验规律而提出的,它的基本思想是______________________________________________________________. (黑体辐射;略) 10. 已知某金属的逸出功为A,则光电效应的红限频率为_______________,对应的红限波长为_________________.(错误!未找到引用源。;错误!未找到引用源。)

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

探究量子力学在生活中的应用

龙源期刊网 https://www.doczj.com/doc/223322768.html, 探究量子力学在生活中的应用 作者:李晓雨 来源:《中文信息》2017年第10期 摘要:量子力学是现代物理学的重要的学科分支,它主要用于描述微观事物,许多物理 学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科,都是以其为基础。在许多现代技术装备中,量子效应起了重要的作用。本文将围绕量子力学的应用来进行详细阐述。 关键词:量子力学量子效应实际应用 中图分类号:G633.7 文献标识码:A 文章编号:1003-9082(2017)10-0-01 前言 量子力学是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。[1] 在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都极大地依靠了量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了关键的作用。 一、量子力学在晶体管中的应用 在日常生活中,人们所使用的大多数电子产品都会包含有二极管、三极管等半导体构成的电子元器件,而这些半导体的器件所使用到的原理都是基于量子力学。 1.二极管的应用 二极管是一种由半导体材料构成的电子元器件,它的特性是单向导通,也就是电流只可以从二极管的一个方向流过。具体来讲就是当电流正向流过二极管时,它相当于导线,电阻无限趋近于0;而当电流反向时,电路相当于断路,其电阻无限大。由于它的这种特性,人们经常将它用作开关,通过电流方向来控制电路的通断。举个最为常见的例子,发光二极管是一种特殊的二极管,被广泛应用于各种电子设备的指示灯、各种仪表的指示器以及照明。发光二极管具有的特点主要有:安全、高效率、环保、寿命长、响应快、体积小、结构牢固。因此,发光二极管是一种符合绿色照明要求的光源。

第十二章-量子物理学

第十二章 量子物理学 §12.1 实物粒子的波粒二象性 一、 德布罗意物质波假设 νλ h E h P == h E P h = = νλ 二、 德布罗意物质波假设的实验证明 1、 戴维森——革未实验 2、 电子单缝实验 例1、运动速度等于300K 时均方根速率的氢原子的德布罗意波长是 1.45A 0 。质量M=1Kg ,以速率v=1cm/s 运动的小球的德布罗意波长是 6.63×10-14A 0 。(h=6.63×10-34J.s 、K=1.38×10-23J.K 、m H =1.67×10-27kg ) 解:(1) m k T v 32= 045.13A k Tm h mv h p h ==== λ (2)0191063.6A Mv h p h -?=== λ 例2、若电子的动能等于其静止能量,则其德布罗意波长是康谱 顿波长的几倍? 解:电子的康谱顿波长为c m h e c =λ,罗意波长为p h = λ 由题知:c v c m c m E k 2 32)1(2020= ?=?=-=γγ c m h v m h p h e e 2 3 2=== γλ,故 3 1= c λλ 三、 德布罗意物质波假设的意义 四、 电子显微镜 例子、若α粒子(电量为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则α粒子的德布罗意波长是:[A] (A )h/(2eRB) . (B )h/(eRB) .

(C)1/(2eRBh).(D)1/(eRBh).例2、如图所示,一束动量为p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,屏上衍射图样中央最大的宽度d等于:[D] (A)2a2/R.] (B)2ha/p. (C)2ha/(Rp). (D)2Rh/(ap).

量子物理

量子物理 量子物理学是物理学的一个分支,研究物质世界中微观粒子的运动定律。它主要研究原子,分子,凝聚态物质,核和基本粒子的结构和性质的基本理论。它与相对论一起构成了现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且还广泛应用于化学和许多现代技术中。 在20世纪,量子力学为我们提供了物质和场论,这改变了我们的世界。展望21世纪,量子力学将继续为所有科学提供基本概念和重要工具。 新量子理论 尽管创建了量子力学来描述远离我们日常生活的抽象原子世界,但它对我们的日常生活影响巨大。没有量子力学作为工具,化学,生物学,医学以及其他所有关键学科都不会有令人着迷的进步。没有量子力学,就没有全球经济可言,因为作为量子力学的产物的电子革命已经使我们进入了计算机时代[2]。同时,光子学的革命也将我们带入了信息时代。量子物理学的杰作改变了我们的世界。科学革命给世界带来了好消息和潜在威胁。 量子的概念是如此令人困惑,以至于自从引入量子物理学以来,

一小群物理学家花费了三年的时间,在这20年中几乎没有根本的进展。这些科学家痴迷于自己所做的事情,有时他们对自己所做的事情感到失望。以下观察也许最好地描述了这一至关重要但难以捉摸的理论的独特位置:量子理论是科学史上最准确的理论,也是科学史上最成功的理论。量子力学深深迷惑了其创始人。然而,在本质上以普遍形式表达了75年之后,尽管科学界的一些精英们承认其强大的功能,但他们仍然对其基础和基本解释不满意。 1918年诺贝尔物理学奖得主马克斯·普朗克(Max Planck)在1900年提出了普朗克辐射定律,量子论由此诞生。在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间的结晶。 通过量子学理论诞生前后物理学领域的对比,我们可以体会到量子物理对物理学产生了革命性影响。1890年到1900年间的物理期刊论文基本上是关于原子光谱和物质其他一些基本的可以测量的属性的文章,如粘性、弹性、电导率、热导率、膨胀系数、折射系数以及热弹性系数等。由于维多利亚型的工作机制和精巧的实验方法的发展的刺激,知识以巨大的速度累积。然而,在同时代人看来最显著的事情是对于物质属性的简明描述基本上是经验性的。成千上万页的光

第15章量子物理指导

第15章 量子物理基础 内容提要 1.黑体辐射基本定律和普朗克量子假设 黑体:能完全吸收入射辐射的物体,有最大的发射本领。 黑体辐射的两条实验规律: (1) 斯忒藩一玻尔兹曼定律:4 )(T T M σ= 式中4 2 8 1067.5---???=k m W σ称为斯忒藩一玻尔兹曼常数。 (2) 维思位移定律: b T m =λ 式中k m b ??=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动 (3) 普朗克量子假设 黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。νεh =称为能量子,s J h ??=-34 1063.6称 为普朗克常量。 2.光电效应的实验规律 实验发现,光电效应表现出四条规律: (1) 入射光的频率一定时,饱和光电流与光强成正比; (2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。 3.光量子假设与爱因斯坦方程 (1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量

νεh = 光子的静质量为零,动量为 λ h p = (2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。即 A mv h m +=2 2 1ν 4.康普顿效应 康普顿效应的实验规律 (1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。 (2) 波长差0λλλ-=?随散射角θ的增大而增加。其增加量为 2 sin 2200θλλλc m h = -=? (3) 0λλλ-=?与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数 增加而增大,而λ的光强则相对减小。 利用光量子理论对康普顿效应能给予很好的解释。康普顿效应进一步证实了光的量子性。 4.光的波粒二象性 光既具有波动性又具有粒子性。光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为: 光子能量νεh = 光子动量 λ h P = 光子质量 2 c h m ν = 光子的静质量为零。 5.玻尔的氢原子理论 (1) 氢原子光谱的实验规律 实验发现,氢原子光谱系的波数可以写成 )1 1( 1 ~22n m R -==λ ν

量子论100年

量子论100年 1.中国科学家纪念量子论创立百年[新华网] 2.踏在跨世纪的台阶上[中国科学院院长路甬祥] 3.量子物理百年回顾[D. Kleppner & R. Jackiw ] 新华网北京12月14日专电(记者江国成)中国著名核物理学家、纳米专家、半导体专家等科技界权威人士今天聚会,纪念100年前创立、对本世纪经济、科技、军事和社会进程产生重大影响的量子论。 应用量子论,参与研制中国第一颗原子弹的物理学家、中国科学协会主席周光召在纪念大会上说,量子论和量子力学对人类社会的科学、哲学、技术和经济带来了巨大的影响。“没有量子论就不可能有半导体、集成电路、激光器和信息科学”。 周光召说,由于人类能够操纵单个原子,在21世纪,人类按照量子力学将会设计出越来越多符合人们要求的,具有特殊功能的微结构。 中国科学院院长路甬祥在开幕式上说,量子论和相对论的诞生堪称本世纪最伟大的科学革命。从1982年开始的新一轮量子力学研究将深化对这一学科基本概念的认识,“有可能对当代电子学、光学、信息科学、材料科学”等产生革命性的影响。 路甬祥说,量子论和相对论已共同成为20世纪人类科技文明的基石,从哲学上根本改变了人们关于时间、空间、物质和运动的概念。 他说,100年前的今天,德国的理论物理学教授普郎克在柏林宣读了他的论文《论正常光谱能量分布规律》,这一天标志着量子论的诞生。 中国科学院在过去两年特别安排了有关量子物理与信息研究的项目。(完) 踏在跨世纪的台阶上-- 中国科学院院长路甬祥 1900年12月14日,普朗克在柏林德国物理学会宣读了他的划时代论文《论正常光谱能量分布定律》。这一天便标志着量子论的诞生,它同1905年由爱因斯坦创立的相对论已共同成为20世纪人类科技文明的基石,也从哲学上根本改变了人们关于时间、空间、物质和运动的概念。正如江泽民主席今年5月在接受美国《科学》杂志独家专访时强调指出的:“可以说,如果没有量子理论,就不会有微电子技术。如果没有相对论,就没有原子弹,也不会有核电站。” 我曾在中国科学院《2000年科学发展报告》的序言中提到过,量子论和相对论的诞生堪称本世纪最伟大的科学革命,使物理学和化学乃至天文学和地质学可以统一在物质科学的名义之下。爱因斯坦统一引力相互作用与电磁相互作用的思想,由于相对论和量子论结合所导致的原子核和亚核层次强相互作用和弱相互作用的发展,而形成了关于四种基本相互作用统一的研究纲领。这一研究纲领的第一个重大成果是在强子结构的夸克模型基础上完成的弱相互作用与电磁相互作用统一的理论。但包括强相互作用在内的大统一理论和包含引力于其中的超统一理论还在探索之中。相对论宇宙学的大爆炸模型把物质的微观结构研究和宇宙起源的研究融合在了一起。 据考证,普朗克是历史上第一个被冠名为理论物理学教授的,量子论的发现与他天才的理论思维分不开。同时,正如周光召院士在去年10月的一次报告中所指出的,量子论之所以会在德国产生,主要得益于他们理论和实验密切结合的传统。1923年,普朗克在纪念把黑体辐射测量从维恩的近红外到紫光区结果做到远红外的鲁本斯的演讲中指出:“倘若没有鲁本斯的介入,辐射定律的表述以及量子论的建立也许会是另一种样子,有可能根本就不会

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

第二章 量子物理学基础

第二章 量子物理学基础 思 考 题 2.1 什么是光的波粒二象性? 2.2 有人认为微观客体的波动性表示粒子运动的轨迹是一条正弦或余弦的曲线,这种看法对吗? 2.3 对于运动着的宏观实物粒子,德布罗意关系式也适用,为什么我们不考虑它们的波动性? 2.4 有哪些实验证实了微观粒子的波动性? 2.5 德布罗意波和经典波有何区别? 2.6 汤姆孙原子模型有什么缺点? 2.9 从经典物理看来,卢瑟福原子的核式模型遇到些什么困难? 2.8 在玻尔的氢原子理论中,势能为负值,而且在数值上比动能大,这个结果有什么含义? 2.9 试根据玻尔的氢原子能级公式,说明当量子数n 增大时,能级怎么变化.能级间的距离怎样变化? 2.10 若氢原于和氦离子都是从4=n 的轨道跃迁到2=n 的轨道,问两个原子发出的光的波长是否相同? 2.11 对应原理的内容是什么? 2.12 试从原子核运动引起的修正这一角度解释里德伯常数的理论值与实验值的区别。 2.13 弗兰克—赫兹实验证明了什么? 1.14 为什么说玻尔理论是半经典半量子的混合?它有什么局限性? 2.15 为什么说波函数是描述粒子的统计行为的一个物理量? 2.16 若) (t z y x ,,,ψ表示波函数,则dxdydz t z y x 2)(,,,ψ和1)(2=???dxdydz t z y x ,,,ψ各表示什么物理意义? 2.17 波函数的标准条件是什么? 2.18 波函数为什么要归一化? 2.19 薛定谔方程在量子力学中的地位怎样?试写出定态薛定谔方程. 2.20 什么是隧道效应? 2.21 描写氢原子中电子的状态需要几个量子数? 习 题 2.1 试求出质量为0.01kg 、速度为s m 10的一个小球的德布罗意波长. 2.2 一个质子从静止开始,通过lkV 的电压受到加速,试求它的德布罗意波长.(质子的质量为 kg 1067.127-?) 2.3 电子和光子的波长都是 A 2,它们的动量和总能量都相等否? 2.4 设卢瑟福散射用的α粒子动能为eV 1068.76?,散射物质是原子序数79=Z 的金箔.试求散射角尹 150=φ所对应的瞄准距离b 多大? 2.5 试计算氢原子帕邢系第二条谱线的波长. 2.6 已知氢原子莱曼系的最长波长是 A 1216,里德伯常量是多少? 2.7 用巴耳末公式计算巴耳末系中三条最长的波长. 2.8 将氢原子从1=n 激发到4=n 的能级. (1)计算氢原子所吸收的能量; (2)当它从4=n 的能级向低能级跃迁时,可能发出哪些波长的光子(17m 10097.1-?取R )?画出能级跃迁图.

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

量子物理的小故事

量子物理的小故事 原来量子力学是这么搞出来的(献给学习固体物理的苦主们) 来源:宋飞Leon的日志 一 故事发生在二十世纪初的法国。 巴黎。 一样延续着千百年的灯红酒绿,香榭丽舍大道上散发着繁华和暧昧,红磨坊里弥漫着躁动与彷徨。 路上走着一个年轻人,名叫德布罗意(De Broglie)。在当时,这名字屌得就跟你说你姓爱新觉罗一样。事实上德布罗意的爸正是法国的一个伯爵奸内阁部长,德布罗意正是一个典型的富二代。 这样一个不愁吃穿不愁房只是成天愁着如何打发时光的纨绔子弟自然要找一个能消耗精力的东西来度过那些寂寞的日子。这一点至今未变。 而他选择了……研究中世纪欧洲史,据说这倒也不仅是为了装B——中世纪史中有着很多神奇的东西吸引着他,据说。 时间转眼到了1919,这个科学界骚动的年代。

比如,就在这一年,德布罗意突然萌生了转系的念头。他发现,原来物理学中有着更多神奇的东西吸引着他,尤其是感兴趣于当时正流行的: 量子论。 简言之,他就是迷恋于当时一个很潮的观点:光是粒子。 按说这本该不值个烂钱,因为几百年前一个大牛牛顿就曰过:光是粒子。不过后来这个观点被菲涅尔、泊松一群做光学的搞得很久不流行了。几百年来,科学界正统的观点是:光是波。十几年前的一天,某君普朗克突然说:原来光还是粒子啊~~!大家本来不想鸟他,结果爱因斯坦用他的理论做着做着就做出了光电效应!这本来是物理学里的一朵乌云,现在突然没了,于是学界就哗然了。 当年的德布罗意倒并不见得对这一观点的物理思想有多么深刻的见地,按他的理解,光是粒子就是在说原来牛顿是对的我们被后人忽悠了。 或许一时冲动,年轻人告别了中世纪欧洲史,告别了奢侈糜烂的生活,来到了一派宗师朗之万门下,说:请您收我念PhD吧。 二

2020年高中物理竞赛名校冲刺讲义设计—第十二章 量子物理:光的量子性

2020高中物理竞赛 江苏省苏州高级中学竞赛讲义 第十二章 量子物理 §12-2 光的粒子性 一、光电效应的实验规律 1 光电效应(photoelectric effect) 光电效应:当光照射到金属表面上时,电子从金属表面逸出的现象叫光电效应现象。 逸出的电子称光电子(photoelectron)。 2 实验装置 GD 为光电管; 当A 接正极、K 接负极,光通过石英 窗口照射阴极K ,光电子从阴极表面逸出。 光电子在电场加速下向阳极A 运动,形成 光电流。 当K 接正极、A 接负极,光电子离开K 后, 将受反向电场阻碍作用,当反向电压为U 0时, 从K kmax 逸出的最大动能的电子刚好不能到达A, 电路中没有电流。此时U 0称为截止电压。有 3 实验规律 1) 饱和光电流强度 I S ∝ 入射光强 当光电流达到饱和时,阴极 K 上 逸出的光电子全部飞到了阳极A 上。 单位时间内从金属表面逸出的光电子数与入射光强成正比。 2)光电子的最大初动能随入射光频率的增加而增加,与入射光强无关。 c max 0 k E eU =

当电压U = 0 时,光电流并不为零; 只有当两极间加了反向电压 U = -U c < 0时,光电流才为零。 U c :截止电压(cutoff voltage) 表明:从阴极逸出的光电子必有初动能。 设u m 为光电子的最大初速度,则有最大初动能 其中m 和e 分别为电子的质量和电量。 显然,光电子的最大初动能与入射光强无关。 3) 截止电压U c 与入射光频率 ν 呈线性关系 U c =K ν - U 0 K :普适常数 (即直线斜率) 代入得 4)只有当入射光频率 ν 大于一定的红限频率时,才会产生光电效应。 令 代入可得 当 ν = ν0 时,光电子的最大初动能为零 若 ν < ν0 时,则无论光强多大都没有光电子产生,不发生光电效应。 ν0 称截止频率(cutoff frequency)或红限频率。 5)光电效应是瞬时发生的 只要入射光频率 ν > ν0,无论光多微弱,从光照射阴极到光电子逸出,驰豫时间不超过10- 9 s 。 二、经典物理学所遇到的困难 按照光的经典电磁理论:光波的能量与频率无关,电子吸收的能量也与频率无关,更不存在截止频率;光波的能量分布在波面上,电子积累能量需要一段时间,光电效应不可能瞬时发生! 1/2(m υm 2 )= eU c U -2 01()2 m mv e k U ν=-00U k ν= 2 000 1()2m eU mv ννν=-

量子力学在现实中的十大应用

数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途,譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种虽缓慢、成效却十分积极的积累过程中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界才变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书的引言中所述:“量子力学在哪?你不正沉浸于其中吗。” 陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息

大学物理习题答案 第17章 量子物理学基础

第17章 量子物理学基础 参考答案 一、选择题 1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/ 1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续. 1d d d 2 =???z y x ψ (9). 2, 2×(2l +1), 2n 2 . (10). 泡利不相容, 能量最小. 三 计算题 1. 用辐射高温计测得炼钢炉口的辐射出射度为2 2.8 W ·cm -2,试求炉内温度. (斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) ) 解:炼钢炉口可视作绝对黑体,其辐射出射度为 M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2 由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K 2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2 . (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度. (地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4 )) 解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W (2) 太阳的辐射出射度 =π= 2 04S r E E 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 4 0T E σ= 可得 5872/4 0== σE T K 3.图中所示为在一次光电效应实验中得出的曲线 (1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) 解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν |U 14 Hz)

第十五章量子物理

第十五章 量子物理 班号 学号 姓名 日期 一、选择题 1.按照爱因斯坦光子理论,下列说法正确的是 (A) 光的强度越大,光子的能量就越大; (B) 光的波长越大,光子的能量就越大; (C) 光的频率越大,光子的能量就越大; (D) 光波的振幅越大,光子的能量就越大。 ( ) 2.钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光的强度,则 (A) 单位时间内逸出的光电子数增加; (B) 逸出的光电子初动能增大; (C) 光电效应的红限频率增大; (D) 发射光电子所需的时间增长。 ( ) 3.要使处于基态的氢原子受激发后能发射赖曼系的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5eV ; (B) 3.4eV ; (C) 10.2eV ; (D) 13.6eV 。 ( ) 4.一初速为150s m 106-??=v 的电子进入电场强度为1C N 400-?=E 的均匀电场,朝着 阳极方向加速行进。则电子在电场中经历位移为cm 20=s 时的德布罗意波长为 (A) 12nm ; (B) 0.14nm ; (C)340nm ; (D) 4200nm 。 ( ) 5.关于不确定关系2 ≥??p x 有以下几种理解: (1)粒子的动量不可能确定; (2)粒子的坐标不可能确定; (3)粒子的动量和坐标不可能同时确定; (4)不确定关系不仅适用于电子和光子,也适用于其它粒子。 (A) (1)、(2); (B) (2)、(4); (C) (3)、(4); (D) (4)、(1)。 ( ) 6.如图所示,一频率为ν的入射光子与初始静止的电子(其静止质量为m )发生散射。如果散射光子的频率为'ν,反冲电子的动量为p ,则在与入射光平行的方向上动量守恒定律的分量形式为 (A) p h h +='νν; (B) 422'c m p h h ++=νν; (C) φθννcos cos 'p h h +=; (D) p c h c h +='νν; (E) φθννcos cos 'p c h c h += 。 ( ) 选择题6图

大学物理量子物理作业答案

No.6 量子物理 (运输) 一 选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足 (A )λ≤ 0eU hc (B )λ≥0 eU hc (C )λ≤hc eU 0 (D )λ≥hc eU 0 [ A ] 2. 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的动能为 0.1 MeV ,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A ) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ B ] 3.氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为-10.19eV 的状态时,所发射的光子的能量为 (A )2.56 eV (B )3.41 eV (C )4.26 eV (D )9.34 eV [ A ] 4. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh . [ A ] 5. 关于不确定关系 ≥??x p x ()2/(π=h ),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 6.描述氢原子中处于2p 状态的电子的量子态的四个量子数(n ,l ,m l ,m s )可能取值为 (A )(3,2,1,-21) (B )(2,0,0,21 ) (C )(2,1,-1,-21) (D )(1,0,0,2 1 )

量子力学之父普朗克的故事

量子力学之父普朗克的故事 人物传记来源:精品学习网2015-03-03 15:49 历史上最有影响的人当然是说法不一,仁者见仁,智者见智,美国学者迈克尔·哈特进行的历史上最具影响力100人排名,他分别细心挑选一百个人物评功论过,排名定位,让我们来看看普朗克的故事。 量子力学之父普朗克的故事 1900年德国科学家马克斯·普朗克提出了一个大胆的假说,在科学界一鸣惊人。这一假说认为幅射能(即光波能)不是一种连续不断的流的形式,而是由小微粒组成的。他把这种小微粒叫做量子。普朗克的假说与经典的光学说和电磁学说相对立,使物理学发生了一场革命,使人们对物质性和放射性有了更为深刻的了解。 普朗克于1858年出生在德国的基尔市。他先后就读于柏林大学和慕尼黑大学,二十一岁时在慕尼黑大学获得物理学博士学位。他一时曾在慕尼黑大学和基尔大学任教,1889年任柏林大学教授,直到1928年70岁退休为止。 和其他几位科学家一样,普朗克对黑体幅射问题也很感兴趣,黑体幅射是描述给绝对黑体加热来做电磁幅射的术语(绝对黑体是不反射任何光而完全吸收所遇见光的物体)。实验物理学家们甚至在普朗克着手研究这个问题之前就对这样的物体幅射做过认真的测量。普朗克取得的第一项成就是提出了一个用来正确描绘黑体幅射的相当复杂的代数公式。这个代数式完美地概述了实验数据,在今天理论物理学上仍常常使用。但是却有一个问题:公认的物理学定律预示存在着一个完全不同的公式。 普朗克对这个问题沉思默想,终于提出了一个崭新的学说:幅射能只能以普朗克称为量子这个基本单位的整倍数形式幅射出来。根据普朗克学说,一个光量子的大小取决于光的频率(即颜色)且与一个物理量成正比。普朗克把这个物理量缩写为h,现在被称为普朗克常数。普朗克假说与当时流行的物理概念完全对立,但是他却利用这一假说在理论上准确地推导了正确的黑体幅射公式。 普朗克假说具有彻底的革命性。因此若不是他以顽固保守的物理学家而著称,他的假说无疑会被当作一种荒诞的思想而弃之一边。虽然这一假说听起来很离奇,但是在这种特殊情况下却推导出了正确的公式。 当初大多数物理学家(包括普朗克本人在内)都认为这一假说不过是适应面很窄的一个数学假设。但是几年以后表明普朗克的概念还能应用于除黑体幅射以外的许多各种不同的物理现象。1905年爱因斯坦用这一概念解释光电效应,1913年尼尔斯·玻尔在他的原子结构学说中也使用了这一概念。1918年普朗克获得诺贝尔奖。他的学说基本正确而且在物理学理论方面具有根本重要的意义。 普朗克坚决反对纳粹分子,这使他在希特勒时代的处境十分危险。他的次子有一次参与一伙军官暗杀希特勒的密谋,但因刺杀未遂于1945年初被处以死刑。普朗克于1947年去世,终

相关主题
文本预览
相关文档 最新文档