当前位置:文档之家› 高中数学函数解题技巧与方法

高中数学函数解题技巧与方法

高中数学函数解题技巧与方法
高中数学函数解题技巧与方法

专题1 函数(理科)

一、考点回顾

1.理解函数的概念,了解映射的概念.

2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.

3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.

4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.

5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.

6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

二、经典例题剖析

考点一:函数的性质与图象

函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.

3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。

1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.

2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.

以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.

运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.

例1设a >0,求函数)ln()(a x x x f +-=

(x ∈(0,+∞))的单调区间.

分析:欲求函数的单调区间,则须解不等式()0f x '≥(递增)及()0f x '<(递减)。 解:)0(1

21)(>+-

=

'x a

x x

x f . 当a >0,x >0时

f '(x )>0?x 2+(2a -4)x +a 2>0, f '(x )<0?x 2+(2a -4)x +a 2<0. (ⅰ)当a > 1时,对所有x > 0,有 x 2+(2a -4)x +a 2>0,

即f '(x )>0,此时f (x )在(0,+∞)内单调递增. (ⅱ)当a =1时,对x ≠1,有 x 2+(2a -4)x +a 2>0,

即f '(x )>0,此时f (x )在(0,1)内单调递增,在(1,+∞)内单调递增. 又知函数f (x )在x =1处连续,因此,函数f (x )在(0,+∞)内单调递增. (ⅲ)当0<a <1时,令f '(x )>0,即 x 2+(2a -4)x +a 2>0,

解得a a x ---<122,或a a x -+->122.

因此,函数f (x )在区间),a a ---1220(内单调递增,在区间),∞+-+-a a 122(内也单调递

增.

令f '(x )<0,即x 2+(2a -4)x +a 2 < 0, 解得 :a a x a a -+-<<---122122.

因此,函数f (x )在区间),a a a a -+----122122(内单调递减.

点评:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 例 2 已知0>a ,函数),0(,1)(+∞∈-=

x x ax x f 。设a

x 2

01<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。

(Ⅰ)求l 的方程;

(Ⅱ)设l 与x 轴交点为)0,(2x 。证明: ① a

x 1

02≤<; ② 若a x 11<

,则a

x x 121<< (Ⅰ)分析:欲求切线l 的方程,则须求出它的斜率,根据切线斜率的几何意义便不难发现,问题归结为求曲线)(x f y =在点))(,(11x f x M 的一阶导数值。 解:求)(x f 的导数:2'

1

)(x

x f -

=,由此得切线l 的方程: )(1)1(1211x x x

x ax y --=--。

(Ⅱ)分析:①要求2x 的变化范围,则须找到使2x 产生变化的原因,显然,2x 变化的根本原因可归结为1x 的变化,因此,找到2x 与1x 的等量关系式,就成;② 欲比较2x 与1x 的大小关系,判断它们的差的符号即可。

证:依题意,切线方程中令y =0,

a

x ax x x ax x x 2

0)2()1(1111112<

<-=+-=,其中. ① 由a a x a x x ax x x a x 1)1(,0),2(,2021221121+--=>-=<

<及有 a x a x a x 1

1,10212==≤∴时,当且仅当〈.

②a

x x ax x x ax a x 1

)2(112111211<>-=<<,且由①,,因此,时,当

a

x x 1

21<<所以。

点评:本小题主要考查利用导数求曲线切线的方法,考查不等式的基本性质,以及分析和解决问题的能力。

例3、 函数y =1-

1

1

-x 的图象是( )

解析一:该题考查对f (x )=

x 1图象以及对坐标平移公式的理解,将函数y =x 1的图形变形到y =1

1

-x ,即向右平移一个单位,再变形到y =-11-x 即将前面图形沿x 轴翻转,再变形到y =-1

1

-x +1,从而得到答案B .

解析二:可利用特殊值法,取x =0,此时y =1,取x =2,此时y =0.因此选B . 答案:B

点评:1、选择题要注意利用特值排除法、估值排除法等。

2、处理函数图像的平移变换及伸缩变化等问题的一般方法为:先判断出函数的标准模型,并用换元法将问题复合、化归为所确定的标准模型。

考点二:二次函数

二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.

学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.

例4 设二次函数()()f x ax bx c a =++>2

0,方程()f x x -=0的两个根x x 12,满足

01

12<<<

x x a

. 当()x x ∈01,时,证明()x f x x <<1. 分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.

证明:由题意可知

))(()(21x x x x a x x f --=-.

a

x x x 1021<

<<< , ∴ 0))((21>--x x x x a , ∴ 当()

x x ∈01,时,x x f >)(.

又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,

综上可知,所给问题获证.

点评:本题主要利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=。 例 5 已知二次函数)0,,(1)(2

>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和

2x .

(1)如果4221<<x ; (2)如果21

分析:条件4221<<

解:设1)1()()(2

+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<

?><0

)4(0)2(g g ,即???>-+<-+034160

124b a b a ,即

???

????

<+?--<-?+,

043224,043233a a b a

a b

两式相加得

12

b

,所以,10->x ; (2)由a

a b x x 4)1()(22

21--=-, 可得 1)1(122+-=+b a .

又01

21>=a

x x ,所以21,x x 同号.

∴ 21

)1(120

22

12b a x x ,

即 ???????+-=+>>1)1(120)0(0)2(2b a g g 或???????+-=+>>-1

)1(120)0(0)2(2b a g g

解之得 41<

b 或4

7

>b . 点评:在处理一元二次方程根的问题时,考察该方程所对应的二次函数图像特征的充要条件是解决问题的关键。

考点三:抽象函数

抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难.但由于此类试题即能考查函数的概念和性质,又能考查学生的思维能力,所以备受命题者的青睐,那么,怎样求解抽象函数问题呢,我们可以利用特殊模型法,函数性质法,特殊化方法,联想类比转化法,等多种方法从多角度,多层面去分析研究抽象函数问题,

(一)函数性质法

函数的特征是通过其性质(如奇偶性,单调性周期性,特殊点等)反应出来的,抽象函数也是如此,只有充分挖掘和利用题设条件和隐含的性质,灵活进行等价转化,抽象函数问题才能转化,化难为易,常用的解题方法有:1,利用奇偶性整体思考;2,利用单调性等价转化;3,利用周期性回归已知4;利用对称性数形结合;5,借助特殊点,布列方程等.

(二)特殊化方法

1、在求解函数解析式或研究函数性质时,一般用代换的方法,将x 换成-x 等;

2、在求函数值时,可用特殊值代入;

3、研究抽象函数的具体模型,用具体模型解选择题,填空题,或由具体模型函数对综合题,的解答提供思路和方法.

总之,抽象函数问题求解,用常规方法一般很难凑效,但我们如果能通过对题目的信息分析与研究,采用特殊的方法和手段求解,往往会收到事半功倍之功效,真有些山穷水复疑无路,柳暗花明又一村的快感.

例6、 A 是由定义在]4,2[上且满足如下条件的函数)(x ?组成的集合:①对任意]2,1[∈x ,都有

)2,1()2(∈x ? ; ②存在常数)10(<

|||)2()2(|2121x x L x x -≤-??

(Ⅰ)设]4,2[,1)(3∈+=x x x ?,证明:A x ∈)(?

(Ⅱ)设A x ∈)(?,如果存在)2,1(0∈x ,使得)2(00x x ?=,那么这样的0x 是唯一的;

(Ⅲ)设A x ∈)(?,任取)2,1(∈l x ,令,,2,1),2(1???==+n x x n n ?证明:给定正整数k ,对任意的正整数p ,成立不等式||1||121

x x L

L x x k k l

k --≤-++

解:对任意]2,1[∈x ,]2,1[,21)2(3∈+=x x x ?,≤3

3)2(x ?35≤,253133<<<,所以

)2,1()2(∈x ?

对任意的]2,1[,21∈x x ,

()

()()()

2

3

23

213

2

121211121212

|

||)2()2(|x x x x x x x x +++++

+-=-??,

<

3()()()()323213

2

1112121x x x x ++++++,

所以0<

()

()()()

2

3

23

213

2

11121212

x x x x +++++

+3

2<

, 令

()

()()()

2

3

23

213

2

11121212

x x x x +++++

+=L ,10<

|||)2()2(|2121x x L x x -≤-??

所以A x ∈)(?

反证法:设存在两个000

0),2,1(,x x x x '≠∈'使得)2(00x x ?=,)2(00x x '='?则 由|||)2()2(|/

00/

00x x L x x -≤-??,得||||/

00/00x x L x x -≤-,所以1≥L ,矛盾,故结论成立。

121223)2()2(x x L x x x x -≤-=-??,所以1211x x L x x n n n -≤--+

()()()||1||121

1211x x L L x x x x x x x x k k k p k p k p k p k k p k --≤-+-+-=--+-+-+-+++

k k p k p k p k p k x x x x x x -+-+-≤+-+-+-++1211 ≤123122x x L x x L p k p k -+--+-++…

121

x x L

k --121

1x x L

L K --≤-

点评:本题以高等数学知识为背景,与初等数学知识巧妙结合,考查了函数及其性质、不等式性质,考查了特殊与一般、化归与转化等数学思想。

考点四:函数的综合应用

函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.

例7设函数2

2

()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;

(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 解:(Ⅰ)2

3

()()1(0)f x t x t t t x t =+-+-∈>R ,,

∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,

即3

()1h t t t =-+-.

(Ⅱ)令3

()()(2)31g t h t t m t t m =--+=-+--,

由2

()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:

()g t ∴在(02),内有最大值(1)1g m =-.

()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,

即等价于10m -<, 所以m 的取值范围为1m >.

点评:本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.

例8甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 v (千米/时)的平方成正比,比例系数为b ;固定部分为a 元.

① 把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出函数的定义域;

②为了使全程运输成本最小,汽车应以多大速度行驶?

分析:几个变量(运输成本、速度、固定部分)有相互的关联,抽象出其中的函数关系,并求函数的最小值.

解:(读题)由主要关系:运输总成本=每小时运输成本×时间,

(建模)有y=(a+bv2)S v

(解题)所以全程运输成本y(元)表示为速度v(千米/时)的函数关系式是:

y=S(a

v

+bv),其中函数的定义域是v∈(0,c] .

整理函数有y=S(a

v

+bv)=S(v+

a

b

v

),

由函数y=x+k

x

(k>0)的单调性而得:

当a

b

<c时,则v=

a

b

时,y取最小值;

当a

b

≥c时,则v=c时,y取最小值.

综上所述,为使全程成本y最小,当a

b

<c时,行驶速度应为v=

a

b

;当

a

b

≥c时,行驶速度

应为v=c.

点评:1.对于实际应用问题,可以通过建立目标函数,然后运用解(证)不等式的方法求出函数的最大值或最小值,其中要特别注意蕴涵的制约关系,如本题中速度v的范围,一旦忽视,将出现解答不完整.此种应用问题既属于函数模型,也可属于不等式模型.

方法总结与2008年高考预测

(一)方法总结

本专题主要思想方法:

1. 数形结合

2. 分类讨论

3. 函数与方程

(二)2008年高考预测

1.考查有关函数单调性和奇偶性的试题,从试题上看,抽象函数和具体函数都有,有向抽象函数发展的趋势,另外试题注重对转化思想的考查,且都综合地考查单调性与奇偶性.

2.考查与函数图象有关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对

称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想来解题的能力.

3.考查与反函数有关的试题,大多是求函数的解析式,定义域、值域或函数图象等,一般不需求出反函数,只需将问题转化为与原函数有关的问题即可解决.

4.考查与指数函数和对数函数有关的试题.对指数函数与对数函数的考查,大多以基本函数的性质为依托,结合运算推理来解决.

5加强函数思想、转化思想的考查是高考的一个重点.善于转化命题,引进变量建立函数,运用变化的方法、观点解决数学试题以提高数学意识,发展能力.

6注意与导数结合考查函数的性质. 一、强化训练

(一) 选择题(12个) 1.函数1

()x y e

x R +=∈的反函数是( )

A .1ln (0)y x x =+>

B .1ln (0)y x x =->

C .1ln (0)y x x =-->

D .1ln (0)y x x =-+>

2.已知(31)4,1()log ,1a a x a x f x x x -+

>?

是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1

(0,)3 (C )11[,)73

(D )1[,1)7

3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A )1

()f x x

=

(B )()||f x x = (C )()2x

f x =

(D )2

()f x x =

4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2

c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5.

函数2()lg(31)f x x +的定义域是

A .1(,)3-+∞

B . 1(,1)3-

C . 11(,)33-

D . 1(,)3

-∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是

A .3 ,y x x R =-∈

B . sin ,y x x R =∈

C . ,y x x R =∈

7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点

(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =

A .4

B .3

C . 2

D .1

)

8、设()f x 是R 上的任意函数,则下列叙述正确的是

(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数

9、已知函数x

y e =的图象与函数()y f x =的图象关于直线y x =对称,则

A .()22()x

f x e x R =∈ B .()2ln 2ln (0)f x x x =>

C .()22()x

f x e x R =∈ D .()2ln ln 2(0)f x x x =+>

10、设1

2

32,2()((2))log (1) 2.

x e x f x f f x x -??=?-≥??<,

则的值为, (A )0 (B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=??

?≥b

a b b

a a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是

(A )0 (B )

12 (C ) 3

2

(D )3 12、关于x 的方程222

(1)10x x k ---+=,给出下列四个命题:

①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.

命题的个数是 A .0 B .1 C .2 D .3 (二) 填空题(4个) 1.函数

()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则

()()5f f =_______________。

2设,0.(),0.

x e x g x lnx x ?≤=?>?则1

(())2g g =__________

3.已知函数()1

,21

x f x a =-

+,若()f x 为奇函数,则a =________。 4. 设0,1a a >≠,函数2

()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集

为 。

(三) 解答题(6个) 1. 设函数54)(2--=x x x f .

(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出

证明;

(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方.

2、设f(x)=3ax 0.2=++++c b a c bx b

若,f (0)>0,f (1)>0,求证:

(Ⅰ)a >0且-2<

b

a

<-1; (Ⅱ)方程f (x )=0在(0,1)内有两个实根.

3. 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

4.设函数f (x )=,2

2

a

ax x c ++其中a 为实数. (Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间. 5. 已知定义在正实数集上的函数2

1()22

f x x ax =

+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同.

(I )用a 表示b ,并求b 的最大值; (II )求证:()()f x g x ≥(0x >).

6. 已知函数2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设11a =,1()

'()

n n n n f a a a f a +=-

(n =1,2,……) (1)求,αβ的值;

(2)证明:对任意的正整数n ,都有n a >a ; (3)记ln

n n n a b a a

β

-=-(n =1,2,……),求数列{b n }的前n 项和S n 。

(四) 创新试题

1. 下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段

的机动车辆数(假设:单位时间内,

在上述路段中,同一路段上驶入与驶出的车辆数相等),则

(A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >>

2. 设函数f (x )=3sinx +2cosx +1。若实数a 、b 、c 使得af (x )+bf (x ?c )=1对任意实数x 恒成立,则a

c

b cos 的值等于( ) A . 2

1- B .

2

1 C . ?1 D . 1

解答: 一、选择题 1解:由1

x y e

+=得:1ln ,x y +=即x=-1+lny ,所以1ln (0)y x x =-+>为所求,故选D 。

2解:依题意,有0

3

,又当x <1时,(3a -1)x +4a >7a -1,当x >1时,log a x <0,所以7a -1≥0解得x ≥1

7

故选C 3解:2112121212x x 111|

||||x x x x x x |x x |--==-|12x x 12∈ ,(,)12x x ∴>1121x x ∴<1∴ 12

11

|x x -|<|x 1-

x 2|故选A

4解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设6

44()()()555

a f f f ==-=-,

311()()()222b f f f ==-=-,51

()()22

c f f ==<0,∴c a b <<,选D .

5解:由131

1301<<-???

?>+>-x x x ,故选B

.

6解:B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A .

7解:0)(=x f 的根是=x 2,故选C

8解:A 中()()()F x f x f x =-则()()()()F x f x f x F x -=-=,

即函数()()()F x f x f x =-为偶函数,B 中()()()F x f x f x =-,()()()F x f x f x -=-此时()F x 与

()F x -的关系不能确定,即函数()()()F x f x f x =-的奇偶性不确定,

C 中()()()F x f x f x =--,()()()()F x f x f x F x -=--=-,即函数()()()F x f x f x =--为奇函数,

D 中

()()()F x f x f x =+-,()()()()F x f x f x F x -=-+=,即函数()()()F x f x f x =+-为偶函数,故选

择答案D 。

9解:函数x

y e =的图象与函数()y f x =的图象关于直线y x =对称,所以

()f x 是x y e =的反函数,

()f x =ln x ,∴ ()2ln 2ln ln 2(0)f x x x x ==+>,选D .

10解:f (f (2))=f (1)=2,选C

11解:当x <-1时,|x +1|=-x -1,|x -2|=2-x ,因为(-x -1)-(2-x )=-3<0,所以2-x >-x -1;当-1≤x <

12时,|x +1|=x +1,|x -2|=2-x ,因为(x +1)-(2-x )=2x -1<0,x +1<2-x ;当1

2

≤x <2时,x +1≥2-x ;当x ≥2时,|x +1|=x +1,|x -2|=x -2,显然x +1>x -2;

故2((,1)12([1,))

2

()11([,2))

2

1([2,))x x x x f x x x x x -∈-∞-??

?-∈-?=??+∈??+∈+∞?

据此求得最小值为32。选C

12解:关于x 的方程()

01122

2=+---k x x 可化为()

2

2

211011x x k x x --

+=≥≤(-)(或-)…(1) 或()

2

22

11

0x x k -+=+(-)(-1

(2)无解,原方程恰有2个不同的实根

② 当k =

1

4

时,方程(1)有两个不同的实根

方程(2)有两个不同的实根

±2,即原方程恰有4个不

同的实根

③ 当k =0时,方程(1)的解为-1,+1,

(2)的解为x =0,原方程恰有5个不同的实根

④ 当k =

2

9

时,方程(1)的解为(2)的解为,,即原方程恰有8个不同的

实根 选A

二、填空题。 1解:由()()12f x f x +=

得()()

1

4()2f x f x f x +=

=+,所以(5)(1)5f f ==-,则()()11

5(5)(1)(12)5

f f f f f =-=-=

=--+。

2解:1ln 2111

(())(ln )222

g g g e ===.

3解:函数1().21x f x a =-

+若()f x 为奇函数,则(0)0f =,即0

1021a -=+,a =2

1

. 4解:由0,1a a >≠,函数2

()log (23)a f x x x =-+有最小值可知a >1,所以不等式log (1)0a x ->可化为x -1>1,即x >2. 三、解答题

1解:(1)

(2)方程5)(=x f 的解分别是4,0,142-和142+,由于)(x f 在]1,(-∞-和]5,2[上单调递减,在]2,1[-和),5[∞+上单调递增,因此

(][)

∞++-∞-=,142]4,0[142, A .

由于A B ?∴->-<+,2142,6142.

(3)[解法一] 当]5,1[-∈x 时,54)(2++-=x x x f . )54()3()(2++--+=x x x k x g )53()4(2-+-+=k x k x

436202422

+--

??

? ??

--=k k k x , ∴

>,2k 124<-k

. 又51≤≤-x , ① 当1241<-≤-k ,即62≤

x -=

, m i n )(x g ()[]

6410

4

1

4362022---=+--=k k k . 064)10(,64)10(1622<--∴<-≤k k , 则0)(m i n >x g . ② 当

12

4-<-k

,即6>k 时,取1-=x , m i n )(x g =02>k . 由 ①、②可知,当2>k 时,0)(>x g ,]5,1[-∈x .

因此,在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方. [解法二] 当]5,1[-∈x 时,54)(2++-=x x x f .

由???++-=+=,

54),3(2

x x y x k y 得0)53()4(2=-+-+k x k x , 令 0)53(4)4(2=---=?k k ,解得 2=k 或18=k ,

在区间]5,1[-上,当2=k 时,)3(2+=x y 的图像与函数)(x f 的图像只交于一点)8,1(; 当18=k 时,)3(18+=x y 的图像与函数)(x f 的图像没有交点.

如图可知,由于直线)3(+=x k y 过点)0,3(-,当2>k 时,直线)3(+=x k y 是由直线)3(2+=x y 绕点)0,3(-逆时针方向旋转得到. 因此,在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方. 2(I )证明:因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c >>;

由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21b

a

-<

<-. (II )抛物线2

()32f x ax bx c =++的顶点坐标为2

3(,)33b ac b a a

--,

在21b a -<

<-的两边乘以13-,得12333

b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b a

c ac

f a a

+--=-<

所以方程()0f x =在区间(0,)3b a -

与(,1)3b

a

-内分别有一实根。 故方程()0f x =在(0,1)内有两个实根.

3解:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即1

11201()22x

x b b f x a a +--=?=∴=

++ 又由f (1)= -f (-1)知1

112

2 2.41

a a a -

-=-?=++

(Ⅱ)解法一:由(Ⅰ)知11211

()22221

x x x

f x +-==-+++,易知()f x 在(,)-∞+∞上 为减函数。又因()f x 是奇函数,从而不等式: 2

2

(2)(2)0f t t f t k -+-< 等价于2

2

2

(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:

2222t t k t ->-.即对一切t R ∈有:2320t t k -->,

从而判别式14120.3

k k ?=+

解法

二:由(

Ⅰ)知

1

12()22x

x f x +-=

+.又由题设条件得:

2

2

222221

21

1212022

22

t t

t k

t t t k ---+-+--=

<++, 即 :22

2

2

21

221

2(22)(12)(22)(12)0t k t

t t

t t

k

-+--+-+-++-<,

整理得 2322

1,t t k

-->因底数2>1,故:2320t t k -->

上式对一切t R ∈均成立,从而判别式14120.3

k k ?=+

4解:(Ⅰ)()f x 的定义域为R ,2

0x ax a ∴++≠恒成立,2

40a a ∴?=-<,

04a ∴<<,即当04a <<时()f x 的定义域为R .

(Ⅱ)22

(2)e ()()

x

x x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤. 由()0f x '=,得0x =或2x a =-,又04a << ,

02a ∴<<时,由()0f x '<得02x a <<-;

当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<, 即当02a <<时,()f x 的单调减区间为(02)a -,;

当24a <<时,()f x 的单调减区间为(20)a -,.

5解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.

()2f x x a '=+∵,2

3()a g x x '=,由题意00()()f x g x =,00()()f x g x ''=. 即22

0002

00123ln 232x ax a x b a x a x ?+=+????+=??

,,

由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有2222215

23ln 3ln 22b a a a a a a a =

+-=-. 令22

5()3ln (0)2

h t t t t t =->,则()2(13ln )h t t t '=-.于是

当(13ln )0t t ->,即13

0t e <<时,()0h t '>; 当(13ln )0t t -<,即13

t e >时,()0h t '<.

故()h t 在1

3

0e ?? ???,为增函数,在13e ??+ ???,

∞为减函数, 于是()h t 在(0)+,∞的最大值为12

333

2

h e e ??= ???.

(Ⅱ)设2

21()()()23ln (0)2

F x f x g x x ax a x b x =-=

+-->, 则()F x '23()(3)

2(0)a x a x a x a x x x

-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,

于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥. 6解析:(1)∵2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,

∴αβ=

(2)'()21f x x =+,21

115(21)(21)12442121

n n n n

n n n n n n a a a a a a a a a a ++++-

+-=-=-++ =511

4

(21)4212n n a a ++-+,∵11a =

,∴有基本不等式可知20a ≥

>(

当且仅当1a =时取等号)

,∴20a >

>

同,样3a >

,……,n a α>=(n =1,2,……),

(3)1()()(1)2121

n n n n n n n n a a a a a a a a αββ

ββα+----=--=++++,而1αβ+=-,即1αβ+=-,

21()21n n n a a a ββ+--=+,同理21()21n n n a a a αα+--=+,12n n b b +=

,又11ln 1b βα-===-

2(2n n S =- 四、 创新试题

1解:依题意,有x 1=50+x 3-55=x 3-5,∴x 1

2解:令c =π,则对任意的x ∈R ,都有f (x )+f (x ?c )=2,于是取2

1

==b a ,c =π,则对任意的x ∈R ,af (x )+bf (x ?c )=1,由此得

1cos -=a

c

b 。选C。 二、复习建议

基本函数:一次函数、二次函数、反比例函数、指数函数与对数函数,它们的图象与性质是函数的基石.求反函数,判断、证明与应用函数的三大特性(单调性、奇偶性、周期性)是高考命题的切入点,有单一考查,也有综合考查.函数的图象、图象的变换是高考热点,应用函数知识解其他问题,特别是解应用题能很好地考查学生分析问题、解决问题的能力,这类问题在高考中具有较强的生存力.配方法、待定系数法、数形结合法、分类讨论等,这些方法构成了函数这一章应用的广泛性、解法的多样性和思维的创造性,这均符合高考试题改革的发展趋势.

特别在“函数”这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.

复习本章要注意:

1.深刻理解一些基本函数,如二次函数、指数函数、对数函数的图象与性质,对数与形的基本关系能相互转化.

2.掌握函数图象的基本变换,如平移、翻转、对称等.

3.二次函数是初中、高中的结合点,应引起重视,复习时要适当加深加宽.二次函数与二次方程、二次不等式有着密切的联系,要沟通这些知识之间的内在联系,灵活运用它们去解决有关问题.

4.含参数函数的讨论是函数问题中的难点及重点,复习时应适当加强这方面的训练,做到条理清楚、分类明确、不重不漏.

5.利用函数知识解应用题是高考重点,应引起重视.

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学解题的21个典型方法和技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ①零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ①两边平方法:适用于两边非负的方程或不等式。 ①几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2 222a ab b a b ±+=± ①()2 222222a b c ab bc ca a b c +++++=++ ①()()()22222212 a b c ab bc ca a b b c c a ??+++++=+++++?? ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设①列①解①写

6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ①配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8的基本思路:把m 化成完全平方式。 即 2 m a a a =???=??????→按的情况分类讨论结果 9()2 a x y ±=±其中220xy x y a x y =+=>>且。 10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。 11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。 12、恒等成立的条件: ①0ax b +=对于任意x 都成立?关于x 的方程0ax b +=有无数个解?00a b ==且。 ①20ax bx c ++=对于任意x 都成立?关于x 的方程20ax bx c ++=有无数个解?

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

高中数学解题方法与技巧.doc

高中数学解题方法与技巧 高中数学解题方法与技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a 0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 有关高中数学学习的注意事项的推荐 1、注意化归转化思想学习。 人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。 2、学会数学教材的数学思想方法。 数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关主题
文本预览
相关文档 最新文档