当前位置:文档之家› 产品级参数化设计

产品级参数化设计

产品级参数化设计
产品级参数化设计

第三章产品级参数化设计

本章所研究的是关于产品级的参数化设计问题,为此,拟订“产品模块化、模块参数化”的技术思路来对小型热风微波耦合干燥设备模块化设计进行研究。

3.1参数化设计概述

传统的CAD设计主要针对零件级别的建模,对产品设计本身缺乏有效的支撑,只有最后的结果,不注重整个设计过程,有输入数据量大,操作难度大,无参数设计功能,不能自动更新现有模型,设计周期长,效率低,工作量重复等缺点。

参数化设计过程中,Revit Building是一中重要思想,它在保证参数化模型约束不变的的条件下,通过修改模型的基本尺寸参数来驱动参数化模型,完成模型更新从而获得新模型的现代化设计方法。模型的设计不是一蹴而就的,往往经过一个复杂的过程,在设计初期,设计人员对产品的认识较浅,不能完全确定设计其边界条件,并不能一次性设计出满足产品要求的所有条件。随着时间的推移,研究的深入,设计人员通过不断的修改模型的尺寸和造型,摸索研究之后,一步一步设计出满足所有条件的产品。由此可知,设计是一个不断修改,不断更新数据并且不断满足模型约束条件的过程,这种精益求精,追求完美的过程促进了CAD系统中参数化设计的产生华和发展。参数化设计大大提高了设计的效率,缩短了设计周期的同时大大减少了设计人员的工作强度和工作压力。

目前,参数化设计已经实际运用并且不断的发展壮大,已经成为现代设计与制造,机械设计系统等方向的研究热点,与之相关的各种CAD软件系统也不断的设计完善自己的参数化设计系统和功能,满足未来设计发展的需要。另外,对于标准化,系列化产品,参数化设计尤为重要,对于此次热风微波耦合干燥系列产品,采用参数化设计技术是非常好的选择。

3.1.1 参数化设计定义

参数化设计是机械CAD系统的一项非常关键技术,从最初的概念设计到详细设计,到最后形成产品,它贯穿产品设计的全过程。参数化设计是将参数化的产品模型用数学中一一对应关系来表示,而不是确定其数值,当某些参数变化时,与之相关的其他参数也将随之改变,达到几何更改控制几何形状的目的。这种快速反应的尺寸驱动,高效的图形修改功能,为产品设计、产品造型、产品更新修改,产品系列化设计等提供了有效的手段。其核心是通过产品约束的表达方式,使用设计好的一组尺寸参数和约束来描述产品模型的几个图形,能够充分满足相同或者相近几何拓扑关系的设计需求,充分体现设计者的设计思想。

根据参数化设计对象不同,可以将参数化设计分成两种:零件级参数化设计和产品级参数化设计。目前,广泛应用于实践的是零件级参数化设计方法,主要是指在单个零部件的内部通过尺寸参数和约束控制零件的参数化模型,当尺寸参数和约束发生变化时,参数化零件模型自动更新。相对于零件级参数化设计,产品级参数化设计是一种更加高级的参数化设计方法,它更加注重零部件之间的相互关联关系,当某一个零件的参数修改后,与该零件相关的其他零部件也将完成同步更新,这种更新包括形状的更新和尺寸的更新。由此可知,产品

级参数化设计技术更加适合产品的设计和开发,在产品设计过程中占有更重要的地位,不仅能减少对零部件的更改次数,提高产品设计效率的同时节约了人力成本,也可避免设计过程中不必要的失误。

产品级三维参数化技术能够实现自顶向下(Top Down)的驱动设计,这种驱动设计包括产品的几何形状和尺寸参数的关联驱动。目前,世面上使用各种商用CAD软件,如UG、Solid Works、Pro/Engineer等都能方便快捷地实现零件级参数化设计,但对于产品级参数化设计并不能直接实现。由于产品是不同的零件或部件通过装配组建而成,特别是对较复杂的产品,如飞机、汽车等可先对其进行模块划分,并让其内部模块实现产品间的关联驱动从而实现整个产品的更新,这种思想不仅可以实现产品级参数化设计模型,而且有利于产品资源配置设计和产品变形设计。综上所述,UG软件中的UG/WAVE技术和部件间表达式建模技术为实现产品级参数化设计提供了较好的支持。

3.1.2参数化设计方法

近年来,参数化设计技术应用的领域越来越广泛,国内外专家学者对参数化设计方法进行了深入探讨与研究并取得了重要进展与成果。主要有基于几何约束的数学变量法、基于几何推理的人工智能法、基于特征的实体造型法、基于辅助线的参数化法、基于生成历程的过程构造法以及编程求解法等。

(1)基于几何约束的数学变量法

该方法通过建立约束方程来确定模型的形状和位置,将几何形状,尺寸约束关系转换成一组特征点为变元的非线性方程组,然后通过多次迭代求解,解出所有特征点的坐标值,确定几何细节。该方法逻辑性强,思路清晰但求解效率较低,稳定性较差。

(2)基于几何推理的人工智能方法

该方法是基于既定事实的尺寸约束和选用一定的规则来推理出几何形体的细节,从而构建出完整的几何模型,是目前应用最多的方法。该方法将作图过程分解成最基础的作图规则,表达简洁直观,同时避免了变量几何法的不稳定性,但由于整个系统过于庞大导致效率低下,计算速度较慢且无法处理循环约束。

(3)基于特征的实体造型方法

特征是作为捕捉设计者意图的方式而提出的,用来取代用直线、圆弧、圆等几何元素构图的方式,不但具有明确的工艺特征结构,而且能记忆自己的功能属性以及与其它相关实体的适应关系。当修改某一特征实体时,所有与之相关的设计模型都能够自动变化。

(4)基于辅助线的参数化方法

该方法是将几何图形轮廓线建立在辅助线的基础上,而辅助线的求解条件在作图过程中已定规则,通过辅助线管理图形的约束,根据图形中搜索和检查要求,简化约束的表达,从而减少约束方程的求解规模。当图较简单时,该方法的求解速度较快,但当几何图形比较复杂时,作辅助线会增加作图操作,从而影响作图的速度。

(5)基于生成历程的过程构造法

该方法采用参数化履历(Parametric History)机制,在画图过程中,系统自动记录模型

生成过程中几何体的生成顺序和相互关系,捕捉设计者的画图思路,并将这些量化信息定性处理形成驱动参数,当参数赋予不同值时得到不同的几何模型。此方法可以处理很复杂的产品模型,经常用于三维实体或曲面的参数化建模,但一般只适于结构相同而尺寸不同的零件设计,设计的柔性有欠缺。

(6)编程求解法

该方法使用编程语言在CAD软件中实现以尺寸为变量,通过各尺寸变量之间的数学关系,输入数值确定变量值,实现约束求解。该方法特别适用于拓扑关系明确的几何图形,一旦拓扑关系发生变化则需要重新编程,灵活性较低,且面对复杂程序时编程难度较大一般情况下,此方法会用于CAD的二次开发中。

在实际应用中,现今几乎所有的著名CAD软件,如PRO/E、UG、SolidWorks等都采用变量几何技术。这主要有两方面原因:一是变量几何技术可以求解所有的几何约束,不存在不能求解的约束模式,并且可以和工程约束一起联立求解,适应面极为广泛;另一方面,变量几何技术可以应用于如参数化绘图、参数化特征建模等机械CAD的众多领域。

3.1.3参数化系统开发的关键技术

在进行参数化系统开发研究中,需要解决一些关键技术,主要包括CAD软件、MFC的接口技术、MFC对话框调用、CAD系统中参数的获取与修改以及实现MFC与ACCESS数据库的链接等。

(1)CAD软件与MFC的接口技术

CAD软件与MFC的接口链接技术是参数化系统开发的基础。Internal环境和External 环境是CAD软件为用户提供的最主要两种不同的运行环境。这两种运行环境有着完全不同的应用程序、编程方法和运行方式,Internal环境模式的应用程序是一个动态链接库,是dll 文件,只有被加载到软件的环境中才能运行,而External环境的应用程序是一个独立的可执行程序,不能在CAD软件的环境中运行。因此,在进行参数化开发前,需要选择合适的运行模式,从而开发相应的接口链接程序。

(2)MFC对话框调用

对话框界面设计是实现CAD软件与用户交互设计的重要手段。所有的参数都需要通过对话框来输入或输出到系统中,从而完成系统参数化设计。与此同时,用户可以按照自己的需求通过对话框读取系统信息,帮助用户了解信息,方便进行下一步的操作。MFC对话框属于VC++的一个重要组成部分,它为设计者提供了风格迥异的对话框样式和造型,弥补了CAD 软件在用户界面设计方面的不足。因此,实现在CAD软件中调用MFC对话框是参数化设计系统中需要解决的关键技术之一。

(3)CAD系统中参数的获取与修改

用户定义参数和CAD系统交互是在参数化设计系统中经常遇到的问题,CAD系统需要获取用户输入参数的时,必须经过对话框或信息栏,通过修改参数更新几何模型。在这个CAD 系统中,对关键参数获取与修改需要开发相应的应用程序,从而生成新的几何模型。

(4)实现MFC与ACCESS数据库的链接

设计人员在进行参数化系统开发时会涉及到大量的数据,为了方便数据管理,用户操作,需要把数据整理成数据库,用户通过MFC对话框来调用数据库中的相关数据。因此,数据库是参数化系统开发过程中必不可少的重要工具,把MFC与数据库进行链接,通过应用程序与数据库之间的中间件来实现系统数据的查询【11】。

【11]侯永涛,丁向阳.UG/OPEN二次开发与实例精解[M].北京:化学工业出版社,2007 3.2模块化设计技术

纵观人类历史文明发展史,无处不体现模块化的思想,例如语言、文字、音乐、印刷等,人类对不用的语音、图形、文字等组件通过不同的排列组合,组成各种复杂的内容和信息,极大的促进了人类的发展、进化和变迁。

“模块化”和“模块化设计”作为清晰的概念和理论是近代发展起来的一种标准化方法,其思想始于二战时期的美国,它总结了欧洲早期的模块化设计基础,确立了模块化的具体理论框架,在上世纪60年代日本造船业将模块化框架发展为模块化设计体系。近50余年来,美、德、日、英等发达国家在产品模块化方面取得了傲人的成绩。现如今的新兴市场对产品的种类、性能和质量提出了更高的要求,传统的设计方法已经远远不能满足这些需求,模块化设计则从不同角度解决了这些矛盾。

模块化设计的主要思想是将整个复杂产品的模型通过某种方式划分成多个功能或结构相对独立的模块,模块作为一个单元,其内部数据封装,只通过接口与其他模块进行链接。每个模块都可以设计出不同的样式形成系列模块,但接口都是一致的。根据市场需求,将模块重组更新,调整产品造型和功能,形成新的产品。这种模块化的思想反应出该思维和运作方法的合理性,通过多年的理论研究和总结归纳,模块化设计作为一种先进的设计方法有着许许多多的优点,它降低了生产成本,缩短了设计周期,扩充了产品品种,解决了与大规模生产之间的矛盾,优化产品设计过程的同时大大俭省了开支。

3.2.1 模块与模块化

模块和模块化是现代化产品设计过程中经常使用的概念。

(1)模块

模块(Module)是模块化产品设计中最基础单元。我们将模块划分成两类,专有模块和通用模块,并通过“搭积木”的方式组成系列化的标准化产品,也可以私人订制组成结构性能与标准产品有较大差别的非标准化产品。例如,热风微波耦合干燥设备的微波搅拌棒,电机等作为通用模块,箱体作为专有模块。一般地说,模块应具有以下特征。首先是模块的相对的独立性,这里的独立主要是指各个模块之间的功能是相互独立的,因此无论是设计制造还是组织生产都是相互独立,彼此没有依赖关系,有利于企业的专业化生产。其次,模块具有良好的互换性,模块的接口结构都进行标准化处理,通过简单而可靠的接口链接实现模块间的组合优化与互换,满足市场的各类需求。最后是模块的通用性,可以根据需要组成新的功能或结构单元,实现产品多角度,跨系列产品间的模块通用。

(2)模块化与标准化

标准化的形式和方法主要是:简化、统一化、通用化、组合化和系列化。通过循环的优化设计,选择合适的系列功能和结构单元组成特定的标准件。这些具有通用性和互换性的标准件通过组合形成各种各样的产品,解决人们个性化,多样化需求与大规模生产之间的冲突,同时产品的可靠性、可维修性和可升级性也大大提高。模块化是在通用化、系列化、组合化等标准化基础上引入系统工程原理而发展起来的一种标准化的更高级形式,是标准化思想在产品设计划分的实际应用。模块化是从系统的观点出发,采用分解和组合的方法,建立专业模块体系和通用模块体系的全过程,主要表现为特征尺寸模数化、结构典型化、部件通用化、参数系列化、组装积木化等。模块化继承了标准化的基本属性,具有简洁化、组合化和通用性的基本特征。图3-1为模块系统与产品族关系图。

图3-1模块系统和产品族关系图

Figure 3-1 The Module System and Product Family Diagram

3.2.2 模块划分的原理与原则

产品的模块划分是产品模块化设计的重要基础。模块划分结果是否合理,结构功能划分是否最优,将直接影响整个模块系统的性能、功能、可靠性和成本。模块划分可以采用不同的划分方法和设置不同层次的划分。一般情况下,其划分主要是从功能角度进行分析和研究。根据功能分解的原理,对产品模型进行分析,然后合理分解成各种不同功能的模块系统,从而实现模块的合理划分,创建具有特定功能的独立的多种模块,以便利用不同的模块满足客户所提出的定制要求的产品总体设计方案。

在进行模块化产品开发时,一般需要遵循以下基本原理:相似性原理、分解与结合原理、相对独立性原理、层次压缩原理以及模块优化原理等。

(1)相似性原理

相似性主要包括几何形状相似性、结构相似性、性能相似性和过程相似性四种基本形式。通过对产品模型的研究分析,总结归纳对零部件几何形状之间、产品结构之间、部件或产品功能之间以及事物处理过程之间的相似性加以梳理归纳,形成标准的零部件模块、标准的产品结构、标准的产品功能和标准的事物处理过程,而这些对封存产品的内部多样化有非常重要的作用。

(2)分解与结合原理

模块化设计实质就是对产品模型按一定的规则分解,形成模块系统的分解与组合理论基础上的一种设计方法。这个模块化系统既可以分解也可以组合,总系统可以分解为若干个总分成,总分成又可以分解为若干个具有独立功能的模块,模块单元还可以分解为一些基本的零件或别的构成要素。总分成、独立功能模块单元、零件和基本构成要素构成了不同层次的模块,这些不同层次的模块具有不同的功能,通过组合形成产品。

(3)相对独立性原理

模块的独立性是模块划分的一个重要特征,相对独立性原则是指划分好的模块可以单独从整个产品模块中分离并且可以作为“黑箱”独立的流向市场形成产品。任何一个模块都不能因为要与另外一个连接才能完成自己的功能,也不能成为其他模块的结构附属品,即保证每个模块的相对独立性且有良好的互换性和通用性;而且要便于单独组织生产、便于售后服务和升级更新等。

(4)层次压缩原理

产品的功能结构运用树状结构进行层次分析和描述,树状结构的层次直接反应了其功能组成,间接反映了产品的复杂程度及制造难度。一般来说,产品功能的树桩结构图层次越多,产品的研发与制造周期就越长。因此,合理的简化产品的树结构图,提高模块的“功能集成度”压缩产品的层次,可以缩短产品的研发与生产周期的同时还能适当简化产品研制过程。

(5)模块优化原理

研制产品模块化体系时,对产品模块的分离和优化是整个划分过程中非常重要的一步。优化的最终目的是尽量使模块内的结构、信息和功能等的关联度达到最大;尽量使模块间的结构、信息和功能等的关联度最小。模块优化后应具备较高的功能集成度和利于产品的结构的简化。

满足客户需求是模块划分的主要依据,客户需求的多样性表现为功能多样性和功能特征值的多样性。对于新产品来说,模块划分通过将产品的总功能分解为子功能,将子功能再分解为功能元,明确总功能、子功能和功能元之间的相互关系,在此基础上进行模块划分。新产品的模块划分侧重功能独立性,而已有产品的模块划分与新产品的模块划分不同,已经存在原型产品,模块划分时不仅考虑功能的独立性,也要考虑结构的独立性。

产品的模块划分标准不是零部件,而是以满足顾客需求为导向,实现所有产的功能作为划分依据,将总功能、子功能和功能元之间的关系明确且相匹配。对于产品中不具有的功能,与之相对应的模块也不需要具有。根据实际应用,本文将模块划分原则总结为以下几点:

(1)独立性原则。这里的独立包括功能独立性和结构独立性,功能独立性是通过定义功能相关度,采用模糊数学的方法对模块进行聚类分析从而保证模块间的功能独立性;结构独立性是通过定义结构相关性,采用聚类分析的方式使模块内强耦合,外弱耦合。这样划分的模块结构和功能可尽可能做到独立化,而无需通过依附其他模块。便于排列组合形成多类型产品。

(2)典型性原则。在模块划分时,将结构相对独立的部件作为一个单独的模块单元,但

是有些结构虽然相对独立但内部结构复杂的可以进一步细化,将其内部的某些组件进行模块划分;而对于那些基础零部件,由于其结构简单,功能独立,可单独的模块单元考虑。

(3)模块粒度适中原则。研究表明,产品模块越小,组合的方式越多,越容易满足顾客的各类需求;但另一方面,模块越小其相应的装配越繁琐,管理越复杂,成本也将大大提升。因此,在模块划分过程中,必须控制模块的粒度适中。

3.2.3 模块划分系统流程

模块划分的本质就是将整个产品系统分解为一系列关系较为简单的子模块系统,使传统的复杂产品总设计系统任务转化为相对简单的模块子系统设计任务。在第3章3.2.2中,本文对模块划分的原则进行了简单阐述,但实际应用中模块划分并没有确定一致的划分原则,在上一节提到的原则只能作为基础性的指导原则。当面对不同的研究对象,不同的侧重点其模块划分的原则和方法也是不同的。一般来说,模块划分以功能划分为基础,结构划分为载体,保证模块内部强耦合,外部弱耦合进行模块划分,具体划分对模块的划分并没有完全统一的原则,前面提到的都是一些基础性的指导原则,在实际的模块划分中,研究对象不同,侧重点不同,划分的模块也不相同。模块划分过程通常是以功能为基础,以结构为载体,兼顾模块内部的强、弱关联性而进行的,模块划分过程如图3-2所示。

图3-2模块划分过程

Figure 3-2 The Module Division Process

模块划分的层次和规模是模块划分过程中非常最重要的组成部分。模块划分越细,模块的数目越多,划分的层次也越多,级别越低,单个模块越简单且通用化程度越高,可以排列组合形成各类产品。但是随着模块数量的增加,整个产品系统的管理、装配、制造、模块设计模块等的难度、复杂度和工作量将大大增加。反之,若模块划分粗糙,模块的数量越少,单个模块的设计将越复杂同时也降低了模块的柔性。因此,在对产品进行模块化设计时,必须理论结合实际,从不同的角度出发,应用不同的方法,以功能、结构的分析分解为基础进行划分,灵活运用模块化的原理和原则,达到模块划分的最好效果。

3.2.4模块的功能划分

在20世纪40年代,Miles作为美国通用电气公司工程师首先提出功能的概念,并把它作为产品工程研究的核心价值问题。功能,指事物或方法所发挥的有利作用,是产品所具有的一种重要属性。从使用角度上来说,功能是技术系统或各类产品所具有的特性和特定用途。拿机械类产品举例,功能能为产品提供解决方案,它通过完成特定的动作发挥应有的作用。而在机械设计领域,功能则提供了产品模型应该做什么,需要做什么,最终要达到怎样一个目的的设问并通过既定的方法解决问题。功能在模块化设计中表现为产品(或模块)所具有的的特性满足顾客需求,具有既定的效能、用途和使用价值等,是产品结构树对节点组成和功能模块映射关系的基础。

不论在新产品的设计还是旧产品的再设计,分析产品功能,建立功能模型是模块划分过程中举足轻重的一步。对产品进行的所有功能划分及建模都始于产品总功能的描述,再将总功能分解为总分成、子系统,简单的子功能单元,它们的出发点就是功能与功能以结构为载体的分解。其功能分解的过程如下:

(1)确定产品模型的系统总功能;

(2)声明划分过程中系统需要完成特定的动作和应发挥的作用及与之关联的客体;

(3)根据各类动作及其作用完成子功能的初步划分;

(4)完成整个产品模型的系统功能分解并构建功能模型。此流程参见图3.3。

图3-3功能分解流程

Figure 3-3 The Process of Function Division

将复杂问题简单化是功能分解的重要目的,产品的功能结构通常有两种表达方式:功能结构树和功能结构图(图3-4)。如图3-4 (a)所示,功能结构树是一种按层次走的结构,每一层都描述了产品系统功能的组成,上下相邻两层次间的功能父功能系统与子功能系统的关系。在功能结构树的最上层是产品的整体功能或总功能,然后将总功能分解为一级子功能,

将功能划分以层的方式向下逐步推进式进行,依次可得到二级子功能、三级子功能等等。功能结构图,如图3-4b所示,是用带单箭头的有向图来表达产品模型的系统功能结构。图中的结点代表构成产品系统的某个结构要素,也称为结构组件,若对组件的内部结构不清楚时,可将该类组件描述为具有某项特定功能的结构载体,说明这是系统中一种不可缺少的结构需求。在实际的机械产品中,该结构构造可以是一个连接件、一个零件,一个部件、一个组件、一个模块甚至是一个零件的某一部分。功能结构图明确的描述了产品模型系统内部的组件构成和各组件之问的功能相关联性。

a结构功能树

a Structure Function Tree

b结构功能图

b Structure Function Diagram

图3-4功能分解的结构模型

Figure 3-4 The Structure Model of Function Division

3.3热风微波耦合干燥设备结构的模块划分

3.3.1热风微波耦合干燥设备的模块化实施策略

模块化设备主要表现为箱体以及其他零部件结构典型化、特征尺寸参数化、特征参数系列化和系列产品模块化。根据模块化技术的特点和理论方法,加上几十年国内外的应用实践,热风微波耦合干燥设备的模块化设计可以通过以下几个方面逐步实施。

[39][美]Unigraphics Solutions Inc.UG WAVE产品设计技术培训教程[M].北京:清华大学出版社,2002.

(1)设备箱体型谱分析和主参数确定。

箱体作为热风微波耦合干燥设备的重要组成部分,基本确定了设备的整个构架,通过对箱体的型谱的分析,合理确定箱体的主要参数及参数范围是模块化设计的重中之重,这过程涉及到设备性能、设备应用、设备与箱体要求和各类规范等诸方面因素。本论文选择表征箱体主要尺寸规格的参数作为其主参数,如箱体断面尺寸、箱体内腔尺寸、箱体高度尺寸、箱体与内腔之间的距离尺寸等作为箱体设计的主要技术参数,然后根据市场需求和客户反馈及相关标准在技术所允许的范围内确定具体的参数值。当箱体的主参数确定后,就可以自顶向下确定其他各个模块的主要技术参数。

(2)模块库设计。

在完成上述所说的对设备箱体型谱、结构总功能分析和主参数确定的基础上,对功能结构进行分解,构建功能结构模型,并创建箱体标准模块作为模块化设计的基本模块。为了方便管理各类模块,更好的实施UG的二次开发及计算机辅助模块化设计,按照模块功能、规格、结构及层次等特征建立数字化模块库,并对这些模块进行归类、编码,并按照编码规则建立相应的数据库管理系统。

(3)模块库的更新

根据市场或顾客新的需求,模块库现有的模块所组合出的产品已经不能满足其要求时必须对模块库进行更新,设计开发新的标准模块,修改部分不能适应市场的模块,删除已经被市场淘汰的模块,促进新技术的应用。

(4)模块化CAD集成系统的开发。

先进的信息技术是实现现代产品模块化设计的一项重要技术。在信息技术的支持下,可以进行有效的模块库、参数化软件库、产品数据库管理和过程管理等信息的同步管理,然后通过人机交互主控程序予以实施。

3.3.2热风微波耦合干燥设备的模块划分结果

按照模块划分的原则,并依据该设备模块化实施方案,可将设备划分为以下几个大的方面:微波发生系统、热风发生系统、物料盛放、冷却系统和干燥箱体的标准模块。本课题对热风微波耦合干燥设备的结构功能模块划分的具体框架如图3-5所示。

图3-5热风微波耦合干燥设备模块划分框图Figure 3-5 CHAM Dryer Module Division Diagram

3.4 本章小结

本章主要介绍了参数化、参数化设计、模块、模块化设计的方法及原理,为本课题提供了理论支持;然后根据模块划分原则及设备结构模块化实施策略,对整个设备模型进行功能结构划分,从而为下一步的研究工作奠定了基础。

Grasshopper 参数化建筑设计应用

Grasshopper 参数化建筑设计应用 摘要:在各种常用的参数化辅助设计软件当中,Rhinoceros 和Grasshopper 组成 的参数化设计平台是目前最为流行、使用得最为广泛的一套设计平台,Grasshopper独特的可视化编程建模,适合于前期方案构思阶段的快速实验。Grasshopper 采用并行数据控制方式。使得简单的程序可以处理复杂的的数据控制。它不需要太多任何的程序语言的知识就可以通过一些简单流程方法达到设计师所 想要的模型。Grasshopper 其很大的价值在于它是以自己独特的方式完整记录起始模型(一个点或一个盒子)和最终模型的建模过程,从而达到通过简单改变起始 模型或相关变量就能改变模型最终形态的效果。当方案逻辑与建模过程联系起来时,grasshopper可以通过参数的调整直接改变模型形态。这无疑是一款极具特点、简单易行的参数化设计的软件。 关键词:参数化设计;Grasshopper;模型;变量绪论参数化建模技术在辅助 建筑设计上的应用越来越广泛,参数化设计,对应的英文是Parametric Design 标 准的英语表达是:ParametricDesign is designing by numbers.(Prof.Herr from ShenZhen University)。 它是一种建筑设计方法该方法的核心思想是,把建筑设计的要素都变成某个 函数的变量,通过改变函数,或者说改变算法,人们能够获得形态各异的建筑设 计方案。通过对Grasshopper 在建筑设计应用中的研究,可以帮助我们更好的理 解参数化设计建筑本身对建筑行业的影响,参数化概念的引入,可以对复杂形体 建筑构造进行精确调节,在保持固有衍生关系的前提下,进行最优化设计;并且 可以引入相应数学算法,使建筑自身在一个严密逻辑下进行自我设计。 一、Grasshopper 参数化设计概述1、目前参数化软件应用现状:参数化设计 工具随时间的发展和参数化设计的广泛应用,由一开始的应用其他领域的软件逐 渐发展到应用为建筑领域专门开发的软件。如动画领域的Maya、3dsmax,虽然是 为动画产业设计的软件,但其中有大量功能经恰当使用也可用来定义物体间的几 何逻辑关系。 UG、TopSolid 拥有明确的几何逻辑、强大的造型控制能力、极为准确的建模 功能以及直接将模型转化为施工图纸的建造服务功能。它们虽属工业化设计软件 却被用于辅助建筑设计。还有一类专门为建筑师开发的软件或插件。如以CATIA 为平台GT 开发的Digital Project、以RHINO 为平台的Grasshopper、Autodesk 公司 开发的Revit、以MicroStation 为平台开发的Generative Component 等。上述软件 可被应用于项目的不同阶段,也有各自不同优势。Revit Architecture 软件经过逐 渐的改进,目前已经具有了非常完善的建筑参数化设计与作图功能,其提供的族(Famliy)模型编写平台能够为建筑师较快掌握,建立特定制图环境所需的参数化模型、详图构件与标准符号。DP 主要应用于整个工程全面设计、生产、管理的较好选择。 2、Grasshopper 编程建模在各种常用的参数化辅助设计软件当中,Rhinoceros 和Grasshopper 组成的参数化设计平台是目前最为流行、使用得最为广泛的一套设计平台,Rhinoceros 建模软件拥有强大的造型能力和Grasshopper 独特的可视化编程建模,两者结合比较适合于前期方案构思阶段的快速实验。Grasshopper 采用并行数据控制方式。使得简单的程序可以处理复杂的的数据控制。它不需要太多任何的程序语言的知识就可以通过一些简单流程方法达到设计师所 想要的模型。

基于SolidWorks的参数化设计

基于SolidWorks的参数化设计 □李轩斌单红梅韩玲 【摘要】论述了SolidWorks环境中,通过产品、部件和零件三者之间参数关联,用一种基于装配约束的参数化设计方法实现部件的参数化建模,阐述了这种参数化设计方法中的关键技术,包括产品结构的划分、尺寸分析、关联设计、基于布局草图的装配体设计和方程式的添加;运用部件参数化设计方法构建SolidWorks部件库。采用这种方法,有利于产品的修改和系列化,提高设计效率。 【关键词】SolidWorks;装配约束;参数化设计;零部件库 【作者简介】李轩斌(1972 ),男,长春轨道客车股份有限公司工程师;研究方向:夹具设计与焊接数控编程 单红梅,女,吉林大学交通学院助工,博士;研究方向:车辆智能化检测 韩玲,女,吉林大学交通学院载运工具运用工程专业在读博士 一、引言 机械制造业的设计制造水平,在很大程度上反映出企业工艺技术水平和制造能力的高低,直接影响着机械产品的加工质量、工人的劳动强度、生产效率和生产成本。 为了提高设计质量和设计效率,提高企业市场竞争力,多年来,许多企业一直致力于参数化设计的研究。大量三维实体造型软件崛起,推动了设计领域的新革命,SolidWorks就是优秀的三维参数化设计软件之一。这些三维软件,不仅仅可创建三维实体模型,还可利用设计出的三维模型来进行模拟装配和静态干涉检查、机构分析、动态干涉检查、动力学分析、强度分析等,产品设计也由原先的二维平面设计向着三维化、集成化、智能化和网络化方向发展,三维CAD的开发受到了普遍关注,并取得了较快的进展。SolidWorks是完全基于Windows的三维CAD/CAE/CAM软件。它采用与UG相同的底层图形核心Parasolid,具有强大的基于特征的参数化实体建模能力,然而要使SolidWorks软件真正为我国企业带来经济效益,必须使其国产化、专业化。 采用参数化设计技术,可以大大提高产品的设计速度。在大多数工程设计中,一个产品往往是多个零件的组合。将零件参数化的思想扩展到部件参数化设计中,实现部件整体参数化设计,无疑会更大程度地提高设计效率,为企业创造经济效益。部件参数化设计的实现以各组成零件的参数化设计为基础,但又不是组成部件的各零件的参数化的简单累加。部件的参数化问题除需解决各组成零件的参数化设计以外,还必须解决参数化时的同步更新问题。所谓的同步更新,是指当进行部件的参数化设计时,对其中某一个零件进行了更改,要求能够引起与之关联的一个或者多个零件的同步更新。同步更新主要有两方面要求,一是部件参数化设计中,各零件的相对位置关系要始终保持正确,二是各零件之间有配合关系的尺寸参数始终保持正确。 二、部件参数化设计方法 本文采用了一种基于装配体的参数化设计方法,来实现部件的参数化。其基本思想是:在参数化零件的基础上,引入零件装配关系作为约束,合理地建立零件之间的装配约束关系,以确保零件之间的相对位置关系;同时建立零部件相互关联的参数之间的关系,以保证参数之间能够联动。这样就可以实现同步更新,在此基础上建立部件的装配布局图,最终实现整个部件的参数化设计。 (一)产品结构的划分。复杂的产品按照功能和企业的生产组织特点分解为一系列的部件,而每个部件可能还会进一步划分为子部件和零件,尤其在民用飞机、汽车等产品中,产品构成十分复杂,涉及到机械、电气、液压、附件(如座椅、 原理都与之不符。现在迈克尔逊-莫雷实验同样被证明是没有说服力的,看来,相对论理论是站不住脚的。由此引发的直接效果就是量子理论失去了理论基础,同样是不科学的。 那么是不是就证明了牛顿力学的绝对正确性呢?起码目前不能这样讲,因为在近代毕竟发现了经典理论不能解释的物理现象。但可以肯定的是,这些现象肯定不能由相对论理论或现有的量子理论来科学解释,需要利用全新的科学方法重新研究和解决。 由此看来,惯性系变换引发的高速粒子的动力学问题是一项十分复杂的物理学课题,目前物理学界对于该问题的认知是不准确的,也是远远不够的,因此非常有必要进行科学细致地研究。 【参考文献】 1.郭硕鸿.电动力学[M].北京:高等教育出版社(第2版),1997 2.周世勋.量子力学教程[M].北京:高等教育出版社(第1版),1979 · 94 ·

proe三十则设计技巧

pro/e数据共享方法详解 pro/e数据共享方法详解:proe Top-Down设计方法系列教程(一) 概述: 在真正的产品设计过程中,不同零件或装配之见的数据共享是不可避免的,如何有效地管理这些数据的参考和传递是一个产品设计在软件层面上的关键所在,本教程详细讲解了在WildFire3.0(野火3.0)中不同零件和装配间的数据传递方法,通过分析它们之间的不同和各自的优缺点帮助新手理解它们之间的不用用途从而在实际的工作中正确地使用它们,同时也为我们将来使用Top Down自顶而下设计方法打下良好的基础 Top_down设计方法严格来说只是一个概念,在不同的软件上有不同的实现方式,只要能实现数据从顶部模型传递到底部模型的参数化过程都可以称之为Top Down设计方法,从这点来说实现的方法也可以多种多样。不过从数据管理和条理性上来衡量,对于某一特定类型都有一个相对合适的方法,当产品结构的装配关系很简单时这点不太明显,当产品的结构很复杂或数据很大时数据的管理就很重要了。下面我们就WildFire来讨论一下一般的Top Down的实现过程。不过在讨论之前我们有必要先弄清楚WildFire中各种数据共享方法,因为top down的过程其实就是一个数据传递和管理的过程。弄清楚不同的几何传递方法才能根据不同的情况使用不同的数据共享方法 在WildFire中,数据的共享方法有下面几种: λFrom File...(来自文件….) Copy Geometry…(复制几何…)λ Shrinkwrap…(收缩几何..)λ Merge…(合并)λ Cutout…(切除)λ Publish Geometry…(发布几何…)λ Inheritance…(继承…)λ Copy Geometry from other Model…(自外部零件复制几何…)λ Shrinkwrap from Other Model…(自外部零件收缩几何..)λ Merge from Other Model…(自外部模型合并…)λ Cutout from Other Model..(自外部模型切除…)λ Inheritance from Other Model…(自外部模型继承…)λ From File…(来自文件…) 实际就是输入外部数据。Wildfire可以支持输入一般常见的图形格式,包括igs,step,parasolid,catia,dwg,dxf,asc等等,自己试试就可以看到支持的文件类型列表。在同一个文件内你可以任意输入各种不同的格式文件。输入的数据的对齐方式是用坐标对齐的方法,所以你要指定一个坐标系统。当然你也可以直接用缺省的座标系。 使用共享数据(Shared Data)的方法有两种: 第一种就是在装配图内通过激活(activate)相应的模型然后进行共享数据的操作。也是在进行结构设计时常用的共享方法,这种方法用于要进行数据共享的两个零件之间有显式的装配关系的时候采用。这种共享方法的复制几何不受原来的默认坐标系的影响,完全依照不同的零件在装配中的定位或装配位置而定,具有更大的灵活性。

SolidWorks的参数化功能有多种实现方式

SolidWorks的参数化功能有多种实现方式,本文详细介绍了利用Excel表格驱动SolidWorks模型的方法:通过Excel输入参数,利用Excel表格ActiveX控件、方便的数据计算能力,结合SolidWorks方程式及宏功能,实现对SolidWorks模型尺寸修改及更新。 参数化设计方法就是将模型中的定量信息变量化,使之成为任意调整的参数。对于变量化参数赋予不同数值,就可得到不同大小和形状的零件模型。 用CAD方法开发产品时,产品设计模型的建立速度是决定整个产品开发效率的关键。如果该设计是从概念创意开始,则产品开发初期,零件形状和尺寸有一定模糊性,要在装配验证、性能分析之后才能确定,这就希望零件模型具有易于修改的柔性;如果该设计是改型设计,则快速重用现有的设计数据,不啻为一种聪明的做法。无论哪种方式,如果能采用参数化设计,其效率和准确性将会有极大的提高。 在CAD中要实现参数化设计,参数化模型的建立是关键。参数化模型表示了零件图形的几何约束、尺寸约束和工程约束。几何约束是指几何元素之间的拓扑约束关系,如平行、垂直、相切和对称等;尺寸约束则是通过尺寸标注表示的约束,如距离尺寸、角度尺寸和半径尺寸等;工程约束是指尺寸之间的约束关系,通过定义尺寸变量及它们之间在数值上和逻辑上的关系来表示。 在参数化设计系统中,设计人员根据工程关系和几何关系来指定设计要求。要满足这些设计要求,不仅需要考虑尺寸或工程参数的初值,而且要在每次改变这些设计参数时维护这些基本关系。即将参数分为两类:其一为各种尺寸值,称为可变参数;其二为几何元素间的各种连续几何信息,称为不变参数。参数化设计的本质是在可变参数的作用下,系统能够自动维护所有的不变参数。因此,参数化模型中建立的各种约束关系,正是体现了设计人员的设计意图。 SolidWorks是典型的参数化设计软件,参数化功能非常强大,并且实现方法多种多样。笔者今天介绍一种通过Excel表格对模型参数进行驱动的方法,其特点是充分利用Excel 表格强大的公式计算、直观的参数输入、方便的数据维护功能,来实现产品的参数化、系列化设计。如图1所示Excel表格,展示的是一个压力容器的法兰参数。表中直观地将不同法兰用不同颜色体现,并对应相同颜色块的参数。该参数采用下拉列表的方式,直接选取即可,最后只需要点击右下角的“更新法兰参数”,SolidWorks中的模型便实时得到更新。

产品级参数化设计

第三章产品级参数化设计 本章所研究的是关于产品级的参数化设计问题,为此,拟订“产品模块化、模块参数化”的技术思路来对小型热风微波耦合干燥设备模块化设计进行研究。 3.1参数化设计概述 传统的CAD设计主要针对零件级别的建模,对产品设计本身缺乏有效的支撑,只有最后的结果,不注重整个设计过程,有输入数据量大,操作难度大,无参数设计功能,不能自动更新现有模型,设计周期长,效率低,工作量重复等缺点。 参数化设计过程中,Revit Building是一中重要思想,它在保证参数化模型约束不变的的条件下,通过修改模型的基本尺寸参数来驱动参数化模型,完成模型更新从而获得新模型的现代化设计方法。模型的设计不是一蹴而就的,往往经过一个复杂的过程,在设计初期,设计人员对产品的认识较浅,不能完全确定设计其边界条件,并不能一次性设计出满足产品要求的所有条件。随着时间的推移,研究的深入,设计人员通过不断的修改模型的尺寸和造型,摸索研究之后,一步一步设计出满足所有条件的产品。由此可知,设计是一个不断修改,不断更新数据并且不断满足模型约束条件的过程,这种精益求精,追求完美的过程促进了CAD系统中参数化设计的产生华和发展。参数化设计大大提高了设计的效率,缩短了设计周期的同时大大减少了设计人员的工作强度和工作压力。 目前,参数化设计已经实际运用并且不断的发展壮大,已经成为现代设计与制造,机械设计系统等方向的研究热点,与之相关的各种CAD软件系统也不断的设计完善自己的参数化设计系统和功能,满足未来设计发展的需要。另外,对于标准化,系列化产品,参数化设计尤为重要,对于此次热风微波耦合干燥系列产品,采用参数化设计技术是非常好的选择。 3.1.1 参数化设计定义 参数化设计是机械CAD系统的一项非常关键技术,从最初的概念设计到详细设计,到最后形成产品,它贯穿产品设计的全过程。参数化设计是将参数化的产品模型用数学中一一对应关系来表示,而不是确定其数值,当某些参数变化时,与之相关的其他参数也将随之改变,达到几何更改控制几何形状的目的。这种快速反应的尺寸驱动,高效的图形修改功能,为产品设计、产品造型、产品更新修改,产品系列化设计等提供了有效的手段。其核心是通过产品约束的表达方式,使用设计好的一组尺寸参数和约束来描述产品模型的几个图形,能够充分满足相同或者相近几何拓扑关系的设计需求,充分体现设计者的设计思想。 根据参数化设计对象不同,可以将参数化设计分成两种:零件级参数化设计和产品级参数化设计。目前,广泛应用于实践的是零件级参数化设计方法,主要是指在单个零部件的内部通过尺寸参数和约束控制零件的参数化模型,当尺寸参数和约束发生变化时,参数化零件模型自动更新。相对于零件级参数化设计,产品级参数化设计是一种更加高级的参数化设计方法,它更加注重零部件之间的相互关联关系,当某一个零件的参数修改后,与该零件相关的其他零部件也将完成同步更新,这种更新包括形状的更新和尺寸的更新。由此可知,产品

Proe参数化建模

实验报告锥齿轮轴的Pro/E参数化造型设计 一、实验目的: 1、熟悉Pro/E软件菜单、窗口等环境,以及基本的建模方法; 2、了解Pro/E软件参数化设计的一般方法和步骤; 3、能利用Pro/E软件进行一般零件的参数化设计。 二、实验设备: 微机,Pro/E软件。 三、实验内容及要求: 使用参数化建模方法,创建如图所示的齿轮轴 四、实验步骤: 锥齿轮轴参数化设计的具体步骤如下: 1、创建新的零件文件 (1)启动Pro/e界面,单击文件/新建, (2)输入零件名称:zhuichilunzhou,取消“缺省”的选中记号,然后单击“确定”按钮,

(3)选择公制单位mmms_part_solid后单击“确定”按钮,操作步骤见图1 图1 新建零件文件 2、参数输入 (1)在Pro/e菜单栏中依次单击工具/参数,将弹出参数对话框,添加以下参数:圆锥角c=30度,模数m=2,齿数z=20,齿宽w=20,压力角a=20,齿顶高系数为hax=1,齿底隙系数为cx=0.2,变位系数x=0,最后点击确定将其关闭;如图2所示 图2 参数输入 (2)在Pro/e菜单栏中依次单击工具/关系,将弹出关系对话框,添加以下关系式(如图3所示): d=m*z db=d*cos(a)

da=d+2*m*cos(c/2) df=d-2*1.2*m*cos(c/2) dx=d-2*w*tan(c/2) dxb=dx*cos(a) dxa=dx+2*m*cos(c/2) dxf=dx-2*1.2*m*cos(c/2) 其中,D为大端分度圆直径。(圆锥直齿轮的基本几何尺寸按大端计算) 其中,A为压力角,DX系列为另一套节圆,基圆,齿顶圆,齿根圆的代号,DX

“参数化设计”工作流程分析

龙源期刊网 https://www.doczj.com/doc/212867271.html, “参数化设计”工作流程分析 作者:杨满丰 来源:《中国科技博览》2015年第35期 [关键词]参数化;设计方法;计算机程序;设计 中图分类号:T3 文献标识码:B 文章编号:1009-914X(2015)35-0333-01 当今在建筑设计、规划设计、景观设计等领域中“参数化设计”已经成为不可不提的设计手段。从城市尺度上的规划设计到单体建筑的形态和表皮设计,从景观规划的场地布局到产品、家具的外观设计,参数化设计这种基于数字化技术的设计方法以极大包容的态度给设计领域带来了一种全新的工作方法与审美选择。本文从设计方案构思层面探讨参数化设计的特点及其工作流程。 一、参数化设计方法的特点 从方案设计层面上理解,参数化设计是指借助数字化技术手段将设计中的诸多要素,依据特定规则进行组织与关联,并获得设计结果的设计方法。参数化设计实际上是关联规则的设计,这个规则决定了一个系统中各要素间的关系和运行方式,给这个系统输入条件变量,系统就会依据规则生成结果。 传统设计方法由于受技术条件的限制通常被限定在以“几何体”为基本形式元素的思维框架内来解决功能问题。参数化设计将关注点转移到寻求设计要素与功能要求的逻辑关系组织上来,使用程序语言来组织设计条件与功能要求间复杂的逻辑关系,制定规则,并推演出结果是参数化设计方法的主要工作思路。计算机程序语言是处理参数化信息的主要技术手段。参数化设计方法从根本上突破了传统设计方法的几何思维限制和人脑计算能力的限制,这种方法可以获得传统设计手段难以表现的形态或形式组织方式。参数化设计方法中,设计师并不是通过设计形式来承载功能,而是通过寻找逻辑关系来设计一个能够推演出结果的系统。 二、参数化设计方法的一般设计过程 1、条件细分 条件细分是参数化设计方法的第一个工作环节。运用参数化设计方法的一个很重要的前提就是充分理解和认可影响设计的因素是复杂的。通过对复杂条件因素的细分,设计师将设计项目各主要条件因素分成足够数量且相对独立的基本单元。它们可以是基本实体单元如砌筑材料,墙、窗户、一个房间等,也可以是一些条件因素,如特定人群的行为、活动、喜好,气候因素,场地条件,人文因素等,细分内容甚至可以是更为抽象的形态构成元素如三维曲面的控制曲线的等。将以上这些与设计相关的各种条件信息,通过分析,找出其中的一种或几种关键

流体城市--参数化设计

——广西钦州丝路花园规划设计研究 摘要: 随着城市化进程在世界范围内的加速发展,沿用了几十年的现代城市网格体系正受到严峻的挑战。本文从广西钦州3.4平方公里的规划为案例,试图站在一个新的角度看待城市发展,提出一个新的城市发展的模型:流体城市。以适应现在乃至未来城市丰富和多样化的需要。 With the fast development of urbanism globally, the modernism grid system being used for decades is losing its luster. Taking an 3.4 sqkm masterplan in Qinzhou as an example, a new concept “Fluid Urbanism” has been developed to cooperation with the complexity of modern life. 关键词:流体,流动性,城市力场,流体城市 Keywords: Fluid Dynamics, Fluidility,Vector Field, Fluid Urbanism XWG Studio 以广西钦州东部3.4平方公里的规划作为设计研究的案例,试图站在一个新的角度看待城市发展,运用计算机编程技术,提出一个新的城市发展的模型(模式):参数化城市设计——流体城市。 钦州是广西北部湾经济圈的中心城市,有1400年悠久的历史。2008年5月,国务院正式批准设立广西钦州保税港区,这是全国第六个保税港区,也是我国中西部地区唯一的保税港区,为钦州带来了极大的发展机遇。钦州该如何发展? 规划新的思考 正在修编中的钦州新的城市总体规划(2008-2025)提出了钦州向东,向南发展的思路,但是具体规划方式上仍沿用网格规划的方式。通过道路网格,将城市划分成大小相似的街区,形成一种相当匀质而重复的城市布局。这样的例子在现代都市规划中已经屡见不鲜。生活在这样格局里的人群,如峡道中的水流,在严格划分的容器中,碰撞地流动着,冲击着城市网格的束缚。事实和历史已经充分展示了,随着城市人口的迅猛增长,带来许多问题,如交通拥挤、建筑类型分布不合理、建筑资源利用不充分等。同时,随着八九十年代开始的经济繁荣,带来生活方式的丰富、多样化,工作方式的灵活、弹性化。这些现象与问题激发了人们对城市规划和建筑设计多样性和丰富性的要求。现代主义单一的组织方式开始被质疑,沿用了几十年的现代城市网格体系正受到严峻的挑战。 现代城市的建设,除了被一条条纵横交错的道路划成大小均匀的一块一块,就没有别的形式了吗? 场地与流体

1模块化机械设计

1模块化机械设计 1.1模块及模块化的概念 模块是一组具有同一功能和结合要素(指联接部位的形状、 尺寸、连接件间的配合或啮合等),但性能、规格或结构不同却能 互换的单元。模块化则是指在对产品进行市场预测、功能分析的基础上划分并设计出一系列通用的功能模块,然后根据用户的 要求,对模块进行选择和组合,以构成不同功能或功能相同但性 能不同、规格不同的产品。 1.2模块化机械设计相关性 模块化设计所依赖的是模块的组合,即结合面,又称为接 口。为了保证不同功能模块的组合和相同功能模块的互换,模块 应具有可组合性和可互换性两个特征。这两个特征主要体现在 接口上,必须提高模块标准化、通用化、规格化的程度。对于模块化机械设计,可见其关键是怎样划分模块,这里主要通过综合考 虑零部件在功能、几何、物理上存在的相关性来划分模块。 (1)功能相关性零部件之间的功能相关性是指在模块划分 时,将那些为实现同一功能的零部件聚在一起构成模块,这有助 于提高模块的功能独立性。 (2)几何相关性零部件之间的几何相关性是指零部件之间 的空间、几何关系上的物理联接、紧固、尺寸、垂直度、平等度和同轴度等几何关系。 (3)物理相关性零部件之间的物理相关性是指零部件之间 存在着能量流、信息流或物料流的传递物理关系。 1.3模块化机械设计的优点 模块化机械设计在技术上和经济上都具有明显的优点,经 理论分析和实践证明,其优越性主要体现在下述几方面: (1)可使现在机械工业得到振兴,并向高科技产业发展; (2)减轻机械产品设计、制造及装配专业技术人员的劳动强 度; (3)模块化机械产品质量高、成本低,并且妥善解决了多品 种小批量加工所带来的制造方面的问题; (4)有利于企业根据市场变化,采用先进技术改造产品、开 发新产品; (5)缩短机械产品的设计、制造和供货期限,以赢得用户; (6)模块化机械产品互换性强,便于维修。 2模块化机械设计在UG中的实现 2.1总体构思 在用UG进行机械设计时,为了将常用件模块化,首先要把 常用件的三维模型表达出来。对于系列产品,可按照成组技术的 原理进行分类,一组相似的常用件建立一个三维模型,即所谓的 三维模型样板。根据UG参数化设计思想,一个三维模型样板可 认为是一组尺寸不同、结构相似的系列化零部件的基本模型。把

PROE参数化教程

第10章创建参数化模型 本章将介绍Pro/E Wildfire中文版中参数化模型的概念,以及如何在Pro/E Wildfire 中设置用户参数,如何使用关系式实现用户参数和模型尺寸参数之间的关联等内容。 10.1 参数 参数是参数化建模的重要元素之一,它可以提供对于设计对象的附加信息,用以表明模型的属性。参数和关系式一起使用可用于创建参数化模型。参数化模型的创建可以使设计者方便地通过改变模型中参数的值来改变模型的形状和尺寸大小,从而方便地实现设计意图的变更。 10.1.1 参数概述 Pro/E最典型的特点是参数化。参数化不仅体现在使用尺寸作为参数控制模型,还体现在可以在尺寸间建立数学关系式,使它们保持相对的大小、位置或约束条件。 参数是Pro/E系统中用于控制模型形态而建立的一系列通过关系相互联系在一起的符号。Pro/E系统中主要包含以下几类参数: 1. 局部参数 当前模型中创建的参数。可在模型中编辑局部参数。例如,在Pro/E系统中定义的尺寸参数。 2. 外部参数 在当前模型外面创建的并用于控制模型某些方面的参数。不能在模型中修改外部参数。例如,可在“布局”模式下添加参数以定义某个零件的尺寸。打开该零件时,这些零件尺寸受“布局”模式控制且在零件中是只读的。同样,可在PDM系统内创建参数并将其应用到零件中。 3. 用户定义参数 可连接几何的其它信息。可将用户定义的参数添加到组件、零件、特征或图元。例如,可为组件中的每个零件创建“COST”参数。然后,可将“COST”参数包括在“材料清单”中以计算组件的总成本。 ●系统参数:由系统定义的参数,例如,“质量属性”参数。这些参数通常是只读 的。可在关系中使用它们,但不能控制它们的值。 ●注释元素参数:为“注释元素”定义的参数。 在创建零件模型的过程中,系统为模型中的每一个尺寸定义一个赋值的尺寸符号。用户可以通过关系式使自己定义的用户参数和这个局部参数关联起来,从而达到控制该局部参数的目的。

_参数化实现_设计的一个建筑实例杭州奥体中心体育游泳馆

杭州奥体中心体育游泳馆(以下简称“体育游泳馆”)位于杭州奥体博览中心内北侧,北临钱塘江,西临七甲河,是一座集合了体育馆、游泳馆、商业设施和停车设施等复杂内容的庞大综合体建筑,总建筑面积近40万平米。建筑形态分为上下两个部分,下部是一个形式低调的大平台,内部包含了以商业设施和地下停车为主的功能空间,平台上部放置了一个形态生动的巨大的非线性曲面,把体育馆、游泳馆两个最主要的功能空间覆盖其中。这一非线性曲面通过长短轴连续变化的一系列剖面椭圆连缀放样而成,曲面内的支撑结构和曲面外表皮分块相互对应,保持了内外一致,分格体系呈菱形网格状分布,使曲面成为巨大的网壳体。由于这一形态从造型到构造用传统手段难以完成设计、优化和输出,因此设计者从方案阶段引入了参数化手段直至施工图设计结束。借助参数化手段,设计者应用了一系列逻辑强烈的数学方式对网壳主体和各子体加以描述并确定其形态,对网壳结构和内外表面进行有效划分和组织,对空间构件进行定位,对围护结构构造和内外节点进行设计和控制,并且从实际加工角度对构件进行了逐次优化。同时,还在建筑内部进行了BIM 设计,使上部网壳围护结构的构造、空间结构、内外幕墙、雨水、采光、通风等系统等与下部功能对应的各系统全部虚拟搭建起来,并进行了三维的校核和调整。

之间最大的区别所在。

1. 通过参数化编程进行造型的区域 2. BIM的区域 DesIgn cycle anD aPPlIcatIon software 设计周期和应用软件 各软件分工和使用阶段如下: 平面工作由Microstation完成。方案时期的基础形态由Rhino生成,3DSMAX进行细节加工;初步设计时期引入GC对造型进行参数化,特殊部位使用Rhino生成,Catia进行综合并输出;施工图阶段由GC转移至Rhino平台,并采用Rhinoscript+Grasshopper实现从总体造型到特殊部位全过程的参数化,Catia进行整合、细化和BIM,并在Catia中实现输出。 图5

ProE的参数化特征造型在零件设计中的应用

[研究?设计] 收稿日期:2005208229作者简介:屠 立(1966-),男,陕西西安人,副教授,浙江机电职业技术学院机械系副主任,研究领域为制造业信息化,CAD CAM 。 基于P ro E 的参数化特征造型 在零件设计中的应用 屠 立,陈 峰 (浙江机电职业技术学院,浙江杭州310053) 摘 要:参数化设计就是用参数来描述零件尺寸。设计时通过修改数值来更改零件的外形,实现尺寸对图形的驱动。本文探讨了P ro E 软件的参数化特征造型的设计过程,并以齿轮设计为例分析其具体应用。关 键 词:参数化;特征造型;齿轮 中图分类号:T P 391.72 文献标志码:A 文章编号:100522895(2006)0320059203 0 前 言 参数化设计就是将零件尺寸的设计用参数来描述,并在设计修改时通过修改的数值来更改零件的外形,从而实现尺寸对图形的驱动。其中进行驱动所需的几何信息和拓扑信息由计算机自动提取。P ro E 中的参数不只代表设计对象的外观相关尺寸,而且具有实质上的物理意义。造型过程可以运用体积、表面积、重心等系统参数或密度、厚度等用户自定义参数加入设计构思中,从而来表达设计思想。P ro E 的实体造型是3D 的,而3D 实体模型除了可以将用户的设计思想以最真实的模型在计算机上表现出来之外,借助于系统参数及用户自定义参数可以计算出产品体积、面积、重心、重量、惯性矩大小等,以利于强度分析、应力分析等各类性能分析[1-2]。 1 零件结构参数化设计步骤 (1)零件结构拆分及特征尺寸确定零件特征造型过程中,应按其本身的功能和建模的特点,将零件拆分为相应各个结构,并分别找出建立其实体模型的基本特征。为使所建立的模型尽量反映零件的基本特征,一些不重要的或不具有普遍性的细节,如倒角等可省略,以免加大参数化的工作量。 (2)创建实体模型 零件上的特征主要通过参数和几何约束关系来相互关联,尺寸之间的关系分为2种:一种是自定义的各种外部参数和零件的被约束尺寸的关系;另一种是模型内部特征之间的内部约束关系,它是指零件的几何 元素之间约束关系,例如:平行、垂直、相切、同心等。在创建模型时,这些几何约束关系同时被创建,当模型被 修改时,这些关系可以自动保持设计者的意图不变。一个特征往往有多种创建方法,在设计时必须考虑好如何表达该特征与其它特征的关系。 (3)定义特征参数 建立模型后,所定义的所有零件尺寸由系统自动按照建立的先后顺序命名为相应的内部标识尺寸。在复杂模型上,则需要找出尺寸间的2种对应关系:即内部标识尺寸和外部模型上各个数值之间的对应关系;内部标识尺寸和将要命名的外部参数之间的关系。这2种关系综合在一起就体现了外部参数和零件上被约束尺寸的关系。命名参数时,参数名称要力求简单易懂,必要时可再加入简单注释。 (4)输入特征参数将已定义好的参数输入零件设计列表的“输入部分”,并在关系定义部分定义出与零件各部分尺寸之间的对应关系,同时还可在关系定义部分定义同一零件不同尺寸的相互约束关系。同一零件的各部分需要协同变化的,也需要在这里列出。 (5)修改特征参数 可用2种方法来修改参数:一是根据所附提示,选择每项参数的名称,并逐项修改;二是将所有需要修改的参数生成数据文件,通过读入文件的方式一次性全部修改。第一种方法速度较慢,可以在调试程序、输入变量的时候使用;第二种方法效率较高,当程序编制完   第24卷第3期2006年9月   轻工机械 L ight I ndustry M ach i nery   V o l .24,N o.3. Sep t .,2006

参数化设计

参数化设计 目录 概述 参数化设计是Revit Building的一个重要思想,它分为两个部分:参数化图元和参数化修改引擎。Revit Building中的图元都是以构件的形式出现,这些构件之间的不同,是通过参数的调整反映出来的,参数保存了图元作为数字化建筑构件的所有信息。参数化修改引擎提供的参数更改技术使用户对建筑设计或文档部分作的任何改动都可以自动的在其它相关联的部分反映出来,采用智能建筑构件、视图和注释符号,使每一个构件都通过一个变更传播引擎互相关联。构件的移动、删除和尺寸的改动所引起的参数变化会引起相关构件的参数产生关联的变化,任一视图下所发生的变更都能参数化的、双向的传播到所有视图,以保证所有图纸的一致性,毋须逐一对所有视图进行修改。从而提高了工作效率和工作质量。 参数化设计在CAD中的应用 用CAD方法开发产品时,零件设计模型的建立速度是决定整个产品开发效率的关键。产品开发初期,零件形状和尺寸有一定模糊性,要在装配验证、性能分析和数控编程之后才能确定。这就希望零件模型具有易于修改的柔性。参数化设计方法就是将模型中的定量信息变量化,使之成为任意调整的参数。对于变量化参数赋予不同数值,就可得到不同大小和形状的零件模型。 在CAD中要实现参数化设计,参数化模型的建立是关键。参数化模型表示了零件图形的几何约束和工程约束。几何约束包括结构约束和尺寸约束。结构约束是指几何元素之间的拓扑约束关系,如平行、垂直、相切、对称等;尺寸约束则是通过尺寸标注表示的约束,如距离尺寸、角度尺寸、半径尺寸等。工程约束是指尺寸之间的约束关系,通过定义尺寸变量及它们之间在数值上和逻辑上的关系来表示。 在参数化设计的本质及意义

参数化圆柱凸轮的proe做法

4.1 参数化设计原理 采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变 【17】 。参数化设计不同于传统的设计, 它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品 【18】 。 4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为: min 2m D r B =?+ (37) 由式(37)、(7)、(31)得:

4 1m in 4 1 4100095.161080003224tan cos 100095.1610800032tan cos 2000 95.1610380002tan cos m h Ft h D r B h Ft h h Ft h D D ρα α ραα α α ---????+ ? ??=?+=? + ????+ ? ??= + ????+ ? ??= + (38) 圆柱周长L 4 200095.1610380002tan cos h Ft h D D L D ππαα-??????+ ? ??? ?==+ ? ??? (39) 单个滚轮中心轨迹按周长展开,如图10所示: 图10 单个滚轮中心轨迹按周长展开

proe参数化设计实例

实验二 Proe参数化设计实验 一、程序参数化设计实验 1、实验步骤 (1)建立实验模型见图1,具体包括拉伸、打孔及阵列操作。 图1 (2)设置参数。在工具D=300、大圆高度H=100、边孔直径DL=50、阵列个数N=6、中孔直径DZ=100、中孔高度DH=100,见图2。

图2 (3)建立参数和图形尺寸的联系。在工具关系,建立如下关系:D1=D、D0=H、D10=DL、NUM=N、D3=DZ、D2=DH。其中NUM是图形中阵列个数的名称改变后得到的。 (4)建立程序设计。在工具程序,建立程序如下: INPUT DZ NUMBER "输入中孔直径值==" DH NUMBER "输入中孔高度值==" H NUMBER "输入大圆高度值==" D NUMBER "输入大圆直径值==" N NUMBER "输入阵列数目==" DL NUMBER "输入边孔直径值==" END INPUT 将此程序保存后,在提示栏中输入所定义的各个参数的值:大圆直径D=500、大圆高度H=20、边孔直径DL=20、阵列个数N=8、中孔直径DZ=150、中孔高度DH=200。 (5)最后生成新的图形见图3 图3 2、实验分析 本实验通过程序的参数化设计,改变了大圆直径、大圆高度、边孔直径、阵列个数、中孔直径、中孔高度的值,得到了我们预想要的结果。

二、族表的参数化设计 1、实验步骤 (1)建立半圆键模型。见图1 图1 (2)建立族表。通过工具族表,单击“在所选行处插入新实例”按钮,建立四个子零件名,再单击“添加/删除表列”按钮,建立所需要改变的尺寸(主要的标准尺寸h、b、d )。见图2 1 图2 (3)校验族的实例和字零件的生成。单击按钮“校验族的实例”,校验成功后,

景观参数化设计初探

景观参数化设计初探 【摘要】参数化设计作为建筑及城市领域的一股热潮,当前也逐渐在景观设计中得到应用。通过近一个月的查阅资料和动手操作,了解了参数化设计的概念,分析了参数化在建筑设计中参数、规则和软件建平台的应用和景观参数化设计的案例,然后加以实践,在过程中对景观参数化设计面临的问题加以总结,希望通过整理能发现一些景观参数化的设计方向。 【关键词】参数化设计;景观参数;应用进展 在做中庭方案之前,还没有参数化设计的准确概念,建筑领域的热潮已经向景观领域涌来。在近来的一些景观设计中或多或少的出现了参数化设计的影子。参数化设计在一定程度上改变了传统的设计方式和思想观念。本文通过自己练习的一个概念设计来挖掘景观参数化的发展方向。 1参数化设计 1.1参数化设计的定义 参数化设计(parametric design),是一种具有普遍应用价值的计算机辅助设计技术,广泛应用于机械、汽车、轻工业等工业领域;而在建筑科学与工程领域,由于牵涉到社会、文化、技术等众多因素,其应用面临着一定的难度。目前关

于参数化设计的定义中较为全面、深刻的认识为徐卫国所提到的“参变量控制或表明设计结果的某种重要性质,改变参变量的值会 改变设计结果”。他认为设计过程的关键环节分别为:设计要求信息的数据化、设计参数关系的建立、计算机软件参数模型的建立等。概括来讲,参数化设计由寻找参数、设定规则和选择软件平台的3个关键过程所组成。 1.2参数化软件构成 根据包瑞清博士的研究,以参数化设计为代表的计算机辅助设计软件系统包括以下几个方面: (1)潜在使用的模型构建工具:如Rhinoceros 及其与之搭配使用的Grasshopper 与Python Script、Autodesk Revit、CATIA 等。 (2)潜在使用的后期渲染工具:如VUE、面向工业设计的Autodesk Showcase 和Alias Image Studio 等; (3)三维文件转换平台Deep Exploration。 (4)结构分析软件ANASYS Workbench(Static Structural)。 (5)地理信息系统工具:如ESRI Arc GIS、Global Mapper、AXWoman 等(目前景观生态学已开始应用); (6)遥感影像处理:最具代表性的是ENVI 和ERDAS Imaging。

豆浆机产品设计及proe环境下的参数化设计学士学位论文

毕业设计 设计题目豆浆机产品设计及Pro/E环境下的参数化设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日

相关主题
文本预览
相关文档 最新文档