当前位置:文档之家› 多小区系统中干扰对齐技术研究

多小区系统中干扰对齐技术研究

多小区系统中干扰对齐技术研究
多小区系统中干扰对齐技术研究

多系统合路室内分布解决方案

多系统合路室内分布解决方案 (市场宣传资料) 北京东方信联科技有限公司 二○○五年

多系统合路室内分布解决方案 前言: 完整的覆盖是一个高质量移动蜂窝网络的必要条件,也是吸引用户的必要因素。所以运营商在建设移动网络时首先考虑的是给用户提供一个完善覆盖的无线网络。但是由于无线电波传播环境的复杂性,加上地形地物的影响以及城市规划和经济的发展,使得大型楼宇、车站、机场、地铁等人口密度大,流动性强,话务量高的场所的覆盖仅仅靠室外的基站来解决将是不可能的。为了解决这一问题,目前普遍采用的是室内分布系统来解决。 但是,传统的室内分布系统形式比较单一和孤立,要么是单系统室内分布、要么是多个系统独立建设,互不相关。这样做存在很多弊病,第一、布线比较困难,工程施工难度大;第二、设备重复投资,造成严重的资源浪费;第三、建设周期长,维护困难;第四、网络建设成本居高不下、竞争力不强;第五、多个室内天馈部分易造成相互间干扰。 随着未来3G网络的建设,还有WLAN的普及。如果脱离现有室内分布系统,不加任何利用的去新建室内分布系统,对于运营商来说:第一,网络的投资将不堪重负;第二,重复建设将造成网络资源的极大浪费;而对业主来说,多个系统的独立建设给业主的管理造成了极大困难。东方信联推出的多系统合路室内分布解决方案将可以使多个系统共用室内天馈部分,只需要对网络进行简单的改造,就能改善网络质量。 东方信联多系统合路室内分布解决方案是一种综合的、开放式的无线网络优化方案,通过多系统合路,不但实现了网络的融合,更重要的是实现了业务的融合,使原来互相独立的室内分布系统能够相互利用,互为补充,不仅降低了网络建设成本、缩短建设周期、增强竞争力;而且改善了网络的整体性能,在业务上更加完善和多样化。

无线通信系统中干扰对齐技术的研究

无线通信系统中干扰对齐技术的研究 未来移动通信网络要满足更好覆盖、更高传输速率、更低发射功率的需求,但又面临着有限频谱资源和复杂传输环境的困境,因此新型网络架构和传输机制被提出,如自组织网络、异构网、中继协同传输等。这些新型网络架构和传输机制的引入实质上构成了新的干扰网络,必然带来新干扰问题。 近年来,干扰对齐被学术界视为一种能够有效抑制干扰的创新性无线传输策略,在网络容量分析方面取得了重大理论突破。干扰对齐从理论转化到实用面临着众多挑战,因此成为当前的研究热点。 本文主要关注制约干扰对齐实用化的两个重要因素,分别为信道状态信息获取和空域维度受限,以降低实施干扰对齐的反馈开销和空域维度需求为目标,对不同场景下的干扰对齐方案展开研究。主要工作如下:1. MIMO干扰信道中的反馈拓扑设计。 在MIMO干扰信道场景中,通过合理的反馈拓扑结构设计能够有效降低干扰对齐实施过程中产生的CSI开销。然而,传统反馈拓扑结构具有明显的缺陷:集中式反馈拓扑结构要么将大量的计算和反馈负担强加于系统中的某个接收节点,要么需要在网络中额外部署的新的硬件单元;而信道状态信息交互式反馈拓扑结构会产生较大的反馈时延。 因此,本文设计了三种新型的反馈拓扑结构,具体设计思路分别为:对收发节点进行配对分组、优化信令交互过程中传递节点的顺序,以及构思全新的干扰对齐闭式解。所提的三种新型结构不仅可以克服传统反馈拓扑结构的上述缺陷,同时能够进一步降低CSI开销。 2. MIMO干扰广播信道中基于干扰对齐的天线资源分配方案。通过对齐相邻

小区的同频干扰,干扰对齐技术能够大幅提升多小区MIMO干扰广播信道的空分 复用增益。 传统的干扰对齐闭式解方案由于对齐实施方法上存在的差异,在获得相同自由度的条件下对基站和用户的天线数目提出了不同的要求。从实用化角度考虑,用户终端不可能配备大量的天线,而基站可以部署大规模天线阵列。 因此,本文提出了一种基于干扰对齐的天线资源分配方案,通过灵活调节基 站和用户两侧的天线需求数目,能够实现天线资源用量与自由度增益的有效折中。此外,针对多小区两用户以及三用户的场景,提出了低复杂的干扰对齐实施算法,能够在保持自由度不变的条件下进一步降低现有算法的复杂度。 3.异构网中干扰对齐方案的天线资源用量分析和低空域维度需求的闭式解 研究。对于由C个微微小区和一个宏小区同频组网的异构网络,下行链路时系统中有C个微微用户和K个宏用户同时接收对应基站发送的数据(每用户接收d个数据流),这将带来严重的同级干扰与跨级干扰。 本文基于上述异构网模型,分别在封闭式接入(Closed Subscriber Group, CSG)模式和开放式接入(Open Subscriber Group, OSG)模式下建立了线性干扰对齐的广义可行性条件,并从广义可行性条件中推导出干扰对齐方案获得(C+K)d 个自由度的最少总天线资源用量,利用这个衡量指标可以验证具有任意天线配置的方案在天线利用方面的最优性。本文验证了传统的分级干扰对齐方案在CSG 模式下使用了最少的天线数量,然而在OSG模式下(无论天线数目和每用户数据 流个数如何取值)不是最优的天线利用方案。 对于CSG模式下的广义MIMO异构网,如何利用最少总天线资源用量得到干扰对齐闭式解是一个公开问题。因此,放宽最少总天线资源用量的制约后,设计了新

LTE干扰抑制技术

LTE系统采用OFDM技术,小区内用户通过频分实现信号的正交,小区内的干扰基本可以忽略。但是同频组网时会带来较强的小区间干扰,如果两个相邻小区在小区的交界处使用了相同的频谱资源,则会产生较强的小区间干扰,严重影响了边缘用户的业务体验。因此如何降低小区间干扰,提高边缘用户性能,成为LTE系统的一个重要研究课题。 小区间干扰抑制技术 在LTE的研究过程中,主要讨论了三种小区间干扰抑制技术:小区间干扰随机化、小区间干扰消除和小区间干扰协调。小区间干扰随机化主要利用了物理层信号处理技术和频率特性将干扰信号随机化,从而降低对有用信号的不利影响,相关技术已经标准化;小区间干扰消除也是利用物理层信号处理技术,但是这种方法能“识别”干扰信号,从而降低干扰信号的影响;小区间干扰协调技术是通过限制本小区中某些资源(如频率、功率、时间等)的使用来避免或降低对邻小区的干扰。这种从RRM的角度来进行干扰协调的方法使用较为灵活,因此有必要深入研究以达到有效抑制干扰、提高小区边缘性能的目的。 小区间干扰协调的基本思想就是通过小区间协调的方式对边缘用户资源的使用进行限制,包括限制哪些时频资源可用,或者在一定的时频资源上限制其发射功率,来达到避免和减低干扰、保证边缘覆盖速率的目的。 小区间干扰协调通常有以下两种实现方式。 静态干扰协调:通过预配置或者网络规划方法,限定小区的可用资源和分配策略。静态干扰协调基本上避免了X 接口信令,但导致了某些性能的限制,因 2 为它不能自适应考虑小区负载和用户分布的变化。 半静态干扰协调:通过信息交互获取邻小区的资源以及干扰情况,从而调整本小区的资源限制。通过X 接口信令交换小区内用户功率/负载/干扰等信息, 2 周期通常为几十毫秒到几百毫秒。半静态干扰协调会导致一定的信令开销,但算法可以更加灵活的适应网络情况的变化。

多系统合路系统分析

1多系统合路系统分析 1.1多系统合路类型 单个运营商多网合路系统,如:GSM/TD-SCDMA/WLAN,一般新建室内覆盖站点和原GSM 室内覆盖站点改造需要考虑的共站的互干扰情况。因为这类系统所需要接入的系统相对较少,互干扰情况相对简单,可以采用多网合路器直接进行合路。 多个运营商多网合路系统,如:GSM/CDMA/PHS/WCDMA/TD-SCDMA/WLAN,特殊建设的室内覆盖站点如:会馆、地铁、机场等室内覆盖的重点和热点区域,由于环境限制,众多室内覆盖系统一并建设难以解决天线间互相干扰与有效覆盖等问题,同时这类系统所需要接入的系统相对较多,各系统间的互干扰比较复杂,可以采用多网合路器或者是POI系统进行合路。 1.2多系统合路互干扰分析 多网合路系统共用基于系统间互干扰理论分析以及验证,干扰分为干扰源产生加性噪声干扰、引起被干扰接收机的阻塞和互调干扰。解决干扰的措施是降低干扰源的功率、采用隔离的方法。常用的隔离方法是空间隔离和增加滤波器隔离。系统应用中,采用MCI(POI)平台进行合路,达到多系统间隔离度的目的。MCI(POI)由电桥和合路器组成,电桥进行制式系统的合路,合路器进行异系统的合路。 1.2.1 互干扰的类型 下图为接收机原理图。 图1接收机原理图 系统干扰的总体理解就是干扰源对被干扰接收机产生的干扰。干扰从理论上来讲大致可以分为四类: ?加性噪声干扰:干扰源在被干扰接收机工作频段产生的噪声,包括干扰源的杂散、 噪底、发射互调产物等,使被干扰接收机的信噪比恶化。 ?交调干扰:当多个强信号同时进入接收机时,在接收机前端非线性电路作用下产生

交调产物,交调产物频率落入接收机有用频带内造成的干扰,称为接收机交调干扰。 交调干扰主要由三阶交调引起。 ?阻塞干扰:接收微弱的有用信号时,带外的强信号同时进入接收机引起饱和失真所 造成的干扰,称为阻塞干扰。 ?ACS邻道干扰:在接收机第一邻频存在的强干扰信号,由于滤波器残余、倒易混频 和通道非线性等原因,引起的接收机性能恶化,称为邻道干扰。 1.2.2 互干扰解决措施 解决干扰的措施是降低干扰源的功率和采用隔离的方法,常用的隔离方法是空间隔离和增加滤波器隔离。 ●降低干扰源的功率,使得两个系统不产生干扰 ●空间隔离,对解决加性噪声干扰和接收机阻塞以及互调干扰都是有效的。隔离的大 小取决于各个干扰需要的最大隔离度 ●对于加性干扰,可以在发射机端增加滤波器,抑制杂散、噪底以及发射互调产物, 降低干扰。 ●对于接收机阻塞、交调干扰,可以在被干扰系统端增加滤波器,抑制带外强信号的 功率,降低干扰。 ●对于接收互调干扰,可以通过网络优化,避免三阶互调产物落入被干扰频段。 室内分布系统间干扰的研究需要考虑干扰源系统和被干扰系统是否同属于一个运营商,这对于系统间干扰解决方法的选取有非常重要的意义,涉及到运营商间协调、工程难度和建设成本等多个问题,以下将据此进行分类描述。 1.2.2.1 干扰源与被干扰系统属于同一个运营商 干扰源与被干扰系统属于同一个运营商的情况下,如果原有覆盖系统所使用无源器件的工作频段包括了新系统的工作频段,则可以采用合路器隔离的方法消除干扰,充分利用原有网络资源,以便经济、快速的完成网络建设;如果原有覆盖系统不能满足新系统的工作频段要求,则需要更换其中的窄带器件,在进行合路器隔离的方法消除干扰,简略图如下: 图2两系统基站共室内分布系统示意 被干扰基站和干扰源基站共室内分布时,为降低网络建设成本,通常采用共天馈的方式,实际上是通过特定的合路器器件将两系统进行信号合并和干扰隔离的,合路器中包含两个滤

一种超密集异构网中联合干扰协调方法研究

一种超密集异构网中联合干扰协调方法研究 李 莉* 叶 鹏 彭张节 唐延枝 (上海师范大学信息与机电工程学院 上海 200234) 摘 要:针对5G 超密集异构网中严重的跨层干扰问题,该文提出一种基于现有的增强型小区间干扰协调技术和协同多点传输技术的联合干扰协调方法。运用随机几何理论工具推导了两层超密集异构网下用户的中断概率,频谱效率和网络平均遍历容量表达式。仿真结果表明:该文提出的联合的干扰协调方案,相比于传统协同多点传输技术,不仅降低了协作用户数目,同时使得用户在信干比阈值为0 dB 时的中断概率降低了15%;相比较于增强型小区间干扰协调技术,在偏置值为10 dB 时,扩展区域的用户频谱效率改善为35%,整个网络平均遍历容量提升了3.4%。 关键词:异构网络;随机几何理论;增强型小区间干扰协调;协同多点传输中图分类号:TN929.5文献标识码:A 文章编号:1009-5896(2019)01-0009-07 DOI : 10.11999/JEIT180290 Research on Joint Interference Coordination Approach in Ultra-dense Heterogeneous Network LI Li YE Peng PENG Zhangjie TANG Yanzhi (College of Information , Mechanical and Electical Engineering , Shanghai Normal University , Shanghai 200234, China ) Abstract : This paper presents an approach of combining the existing enhanced inter-cell interference coordination technology and the downlink joint transmission scheme of coordinated multi-point transmission technology to solve the problem of serious cross-layer interference in 5G ultra-dense heterogeneous network.With using tools from stochastic geometry theory, the expressions such as the outage probability, spectrum efficiency and network average ergodic capacity of two-layer ultra-dense heterogeneous network are derived.Simulation results show that the proposed joint interference coordination scheme not only reduces the number of cooperative users compared with the traditional coordinated multi-point transmission technology, but also reduces the outage probability of users by 15% in the network at 0 dB. Compared with the enhanced inter-cell interference coordination technology, when the bias value is 10 dB, the user spectrum efficiency in the extended area is improved to 35% and the average traversal capacity of the entire network is increased by 3.4%.Key words : Heterogeneous network; Stochastic theory; Enhanced inter-cell interference coordination;Coordinated multipoint transmission 1 引言 为满足移动数据业务日益增长的需求,超密集异构网络通过在现有的宏基站覆盖区域中叠加密集的小基站被认为是具有前景的措施之一[1,2]。这种 小基站通常由微微基站,毫微微基站或中继等低功率节点组成,通过空间服务距离缩短和频谱复用的方式提高热点地区的覆盖和网络容量[3,4]。然而小基站采用了较低的发射功率,覆盖范围有限,无法有效卸载宏基站负载。为解决这一问题,小区范围扩展(Cell Range Expansion, CRE)技术[5]通过在用户接收来自小基站的平均功率上乘以一个大于1的小区范围扩展偏置值,使用户倾向于接入小基站扩展区域,从而卸载宏基站的负载,但其会导致CRE 区域用户的信干噪比(Signal to Interference plus Noise Ratio, SINR)降低。此外,超密集异构网中宏基站和小基站采用全频率复用部署方式,加 收稿日期:2018-03-28;改回日期:2018-10-10;网络出版:2018-10-25*通信作者: 李莉 lilyxuan@https://www.doczj.com/doc/251973343.html, 基金项目:国家自然科学基金青年科学基金(61701307),上海高校青年教师培养资助计划(ZZssd16044) Foundation Items: The National Natural Science Foundation of China for Distinguished Young Scholar (61701307), The Excel-lent Young Teachers Program in Higher Education Institutions of Shanghai (ZZssd16044) 第41卷第1期电 子 与 信 息 学 报 Vol. 41No. 12019年1月Journal of Electronics & Information Technology Jan. 2019 万方数据

多系统合路干扰分析

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900,DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 ?一次布放,施工简单; ?美观; ?综合造价低廉,共用天馈分布,减少重复建设; ?系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰 杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞

阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 3、我国移动通信系统频谱划分 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所示:表一各系统间的工作频段 系统制式上行频率 (MHz) 下行频率(MHz)备注 GSM900 890~915 935~960 移动 (MHz) 联通 (MHz)890-909 935-954 909-915 954-960 GSM1800 1710~1755 1805~1850 移动联通1710~1725 1805~1820 1745~1755 1840~1850 CDMA800 825~835 870~880 电信PHS 1900~1920 退网 TD-SCDMA 2010~2025(B频段) 1880~1900(A频段-已逐渐使用) 1900~1920(A频段-PHS退网后用) 移动 CDMA 1920~1935 2110~2125 电信

干扰对齐翻译

干扰校对指南 Farzad Talebi 摘要: 作为无线网络中的必然现象,干扰在通信网的设计中总是备受着关注。在此,我们将提到一些传统的抗干扰方法。因为不论用户数目的多少还是抗干扰方法本身都不能概括为两个以上用户案例,所以可以使用这些抗干扰的方法来提高网络的总容量。(因为不论是用户数量还是这种方法本身对两个以上用户都不具有一般性,所以网络的总体能力将会被干扰所限制。)干扰校对是一个令人诧异的方法,通过这种方法,时变干扰网络的总容量就可以使用像时间,频率这样受限的资源,其中这些资源是随着用户数量呈线性增长的。这里将要给出一些容易理解的干扰校对的特例,也会给出对这种方法有用的一些不完美的或者受限的信道状态信息。最后,我们将会讨论干扰校对方法的优势和劣势。 Ⅰ、简介 干扰信道就是当多对发送—接收机共享一个信息时,信息从一个发送机传送到与其对应的接收机时将会干扰其它发送—接收机的信息传送[文献1],在此教程中我们把高斯白噪声看为衰落干扰和X 信道。干扰信道的信号输出是在公式(1)中提出的。X信道与干扰信道有相同的输出,但是在这种情况下每个发送机对每个接收机发送一个特殊的信息,而不仅仅向与它相匹配的接收机。在干扰信道

或者X信道中,干扰比噪声更会受关注,因为如果所有的用户都运行于高信噪比中,噪声将会变得不是那么的重要,但干扰将会变得越来越有挑战性。下面是一些已经验证过的实用干扰的管理方法:干扰的解码 当干扰强度强于信号本身时,它将会被解码,即从期望信号中减去干扰信号。因此,它允许接收机解码期望信号。由于复杂的多用户检测,期望信号与实际信号相差很大[文献2],有关强干扰信息理论也验证了这种说法[文献3]。关于这个方法的重要注解是将这种方法推广到两个以上用户并不是那么的简单。 正交化 用实用的方法对抗与信号强度一样的干扰,就是把信号按照时间,频率,代码进行正交。在这里设定其后将被确定的自由度为1,如果有K个用户,那么每个用户的可用率将会是1/Klog(SNR)+o(log(SNR)),其中o(log(SNR))代表的是一种与k无关的log(SNR)的功能。 视它为噪声 不管是在实际上还是在理论上,把弱干扰看作噪声都证明是非常有用的,因为我们知道,在弱干扰中引入结构并没有什么作用。 自由度 在网络文学中自由度是一项重要的容量近似。在这里给出一个值得记录的网络自由度的简单表面描述: 1、网络自由度由于可解释成可解决的信号空间维度的数目。

LTE干扰协调技术专题-李勇

LTE小区间干扰协调研究 第一章、现状 LTE系统中采用正交频分复用传输技术,各子载波之间是正交的。相对CDMA系统,LTE系统解决了小区内部的干扰,但作为代价,LTE系统小区之间的干扰比CDMA系统更加严重。为了降低小区间的干扰,可以采用频率复用的方法。高的频率复用系数可以有效地抑制小区间干扰,但频谱利用率却大大降低。然而,未来的宽带移动通信系统对频谱利用率提出很高的要求,在保证频谱利用率的前提下,如何有效地抑制小区间干扰已成为业界研究的焦点。因此,研究如何抑制LTE系统中的小区间干扰具有十分重要的意义。 目前正在研究的LTE系统干扰抑制技术包括小区间干扰随机化(ICI Randomization)、小区间干扰消除(ICI Cancellation)和小区间干扰协调(ICI Coordination)。这三种技术都能够在一定程度上降低小区间的干扰,但干扰协调技术被认为是最有效和可实现性最高的技术,也是目前各公司和研究组织研究的焦点。本文将主要给大家介绍了几种典型的干扰协调技术,并通过经典方案展示这些技术在现阶段的运用。 第二章、干扰协调控制原理 小区间干扰协调的方法很多,但基本的原理都是对下行资源管理设置一定的限制,以协调多个小区的动作,避免产生严重的小区间干扰。这种限制可以是对频率资源调度的限制,即避免干扰小区使用可能造成干扰的频率资源,也可以是对某个频率资源内发射功率的限制,如控制干扰小区在可能造成干扰的频率资源内的发射功率。这种限制可能是改进接收机的接收载干比(C/I),从而改进服务小区边缘的数据率和覆盖情况。对频率资源调度的限制,可以看作一种“软频率复用”;对发射功率的限制,可以看作一种“部分功率控制”。结合小区间实际情况来统一调度频率与功率资源可以认为是“系统调度控制”。下面将一一介绍这三种基本控制原理。 2.1频率复用 2.1.1软频率复用 如果将干扰协调和传统频率复用进行对比,则可以将干扰协调看作一种“分数频率复用”(Fractional Frequency Reuse)或“软频率复用”。干扰协调实际上是通过有限制的频域调度来实现的。如图所示,按照常理,eNodeB对小区中心的终端采用较低的功率发射,因此可以认为在这些频带上的信号能量能够较好地被限制在小区内部,而不会对相邻小区造成明显干扰。而对小区边缘的终端,eNodeB需要采用较高的功率发射,因此其信号能量很可能

POI系统设计之多频合路干扰分析篇

POI系统设计之多频合路干扰分析篇 基配事业部产品研发部

本文目录 目录 一、P OI系统在室分系统中的应用场景及功能介绍; (3) 二、多频合路干扰分析 (5) 2.1、杂散干扰(介绍及其计算); (7) 2.2、阻塞干扰(介绍及其计算); (9) 2.3、互调干扰(介绍及其计算); (11) 三、天线系统和空间隔离(介绍及其计算); (14) 四、P OI设计中杂散干扰的考量; (16) 4.1室分各系统设计参数列表 (18) 4.2国内通信制式的常见干扰举例; (19) 4.3POI系统的分合缆设计特点; (22) 五、P OI系统干扰设计之工程案例举例; (24) 附表1:基站系统发射机隔离度列表; (30) 附表2:有源设备(直放站)杂散辐射规范要求列表; (36) 附表3:阻塞指标列表; (40) 附表4:共站址天线隔离度计算软件; (42) 附表5:互调计算工具以主流互调测试仪表介绍;; (42)

一、P OI系统在室分系统中的应用场景及功能介绍; 多系统接入平台(POI:Point Of Interface) 背景:室内分布系统合路建设随着近年来通信、电子技术以及相关工业的发展变得可行并且成熟。 ●在天线方面,宽频天线的应用使得一副天线就可以满足多个系统不同频段的信号覆 盖。 ●在机房使用方面,同时,由于微电子技术的长足发展、通信设备小型化,基站所占 的机房面积也大大减小,一个大机房就可以满足多家运营商几套设备的布放。 ●在射频和微波技术方面,目前采用的基于高Q多腔滤波器技术的POI合路平台, 能满足目前多系统合路建设的需要。 POI作为多种通信系统和多个区域的分布系统之间的界面,是在多系统信号分合路过程中的关键部分。 功能及作用:在室内覆盖系统中,POI的应用将避免错综复杂的走线,避免天花板上安装多个全向天线,避免了电梯井道内布放多个板状天线、多根同轴电缆;在地铁隧道覆盖系统中,采用POI之后,多系统信号可以共用一根泄漏电缆进行传输、覆盖,显著的减小了运营商的投资、降低了施工难度。 各路收发信机信号都通过独立的端口接入POI,混合后输出到相应分布系统的端口;同时将来自不同区域分布系统端口的信号混合后,再按需要分别送到信号源的上行端口。POI 是各通信系统汇集点,同时也是矛盾的焦点,好的POI设备不仅要求能够合路多系统信号而且要能够解决多系统合路带来的诸多问题,并且能够有简单的接口界面,有效的监控和可升级性,为解决室内空间资源的问题起到积极作用。

基于干扰对齐的认知MIMO系统频谱共享与用户调度

2014年1月Journal on Communications January 2014 第35卷第1期通信学报V ol.35No. 1 基于干扰对齐的认知MIMO系统频谱共享与用户调度 李钊,李建东,刘勤,申彪 (西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071) 摘要:在认知MIMO多用户通信场景中,设计基于干扰对齐的信号处理算法,将认知信号与授权信号通过相互正交的子空间进行传输,实现认知用户对授权系统空闲空间信道的无冲突利用,并根据不同信道矩阵的空间传输性能的差异,实现合理的用户调度。仿真结果表明,所提方法能够有效利用空闲空间信道资源,获得多用户分集增益,在不影响授权业务的前提下提高认知用户的传输速率。 关键词:干扰对齐;认知无线电;MIMO系统;多用户 中图分类号:TN929.5 文献标识码:A 文章编号:1000-436X(2014)01-0167-06 Interference alignment based spectrum sharing and user scheduling for cognitive radio MIMO system LI Zhao, LI Jian-dong, LIU Qin, SHEN Biao (State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China) Abstract: In communication scenario with multiple cognitive radio (CR) multi-input multi-output (MIMO) users, signal processing algorithm was designed based on interference alignment (IA) such that transmissions of cognitive and autho-rized signal were carried out in mutual orthogonal sub-spaces. Conflict-free utilization of spare spatial channel(s) autho-rized by primary system was achieved by cognitive user. Moreover, the difference of spatial transmission performance originating from various channel matrices was exploited to implement appropriate user scheduling. Simulation results show that the proposed method can utilize spare spatial channel resource effectively and obtain multiuser diversity gain. On the premise that authorized service is protected from disturbing, transmission rate of cognitive user is improved. Key words: interference alignment; cognitive radio; MIMO system; multiuser 1引言 随着无线通信系统的快速发展,频谱资源稀缺与频谱利用率低的矛盾越来越受到人们的关注。认知无线电(CR, cognitive radio)作为一种非常有前景的提高频谱利用率的技术,最早由Mitola提出[1],经过十几年的研究,研究人员将认知通信场景主要划分为重叠(underlay)方式、覆盖(overlay)方式以及交织(interweave)方式[2,3]。在Underlay方式中,允许认知业务与授权业务共存,但认知发射端对授权接收端的干扰需控制在某一预设门限之下。Overlay 方式强调协作传输,认知用户通过信号处理或编码等技术手段产生的信号能够使授权通信的质量得到改善。Interweave方式则以机会的方式,在不干扰授权业务的前提下利用空闲的时间、频率或空间空洞[3]完成通信。 随着研究的深入,人们对“频谱机会”的认识也更加丰富,尝试从多个维度发掘通信机会,空域 收稿日期:2012-08-25;修回日期:2013-06-06 基金项目:国家自然科学基金资助项目(61231008, 61102057);重大专项基金资助项目(2012ZX03003005-005);国家重点基础研究发展计划(“973”计划)基金资助项目(2009CB320404);高等学校引智计划基金资助项目(B08038);长江学者和创新团队发展基金资助项目(IRT0852);ISN基金资助项目(ISN1103005) Foundation Items:The National Natural Science Foundation of China (61231008, 61102057); National S&T Major Project (2012ZX03003005-005); The National Basic Research Program of China (973 Program) (2009CB320404); The 111 Project (B08038); Program for Changjiang Scholars and Innovative Research Team in University (IRT0852); ISN Project (ISN1103005) doi:10.3969/j.issn.1000-436x.2014.01.019

干扰协调方法和系统

(10)申请公布号 CN 102026361 A (43)申请公布日 2011.04.20C N 102026361 A *CN102026361A* (21)申请号 200910092560.3 (22)申请日 2009.09.11 H04W 52/30(2009.01) H04W 72/12(2009.01) (71)申请人普天信息技术研究院有限公司 地址100080 北京市海淀区海淀北二街6号 (72)发明人张莉莉 潘瑜 路杨 高伟东 (74)专利代理机构北京德琦知识产权代理有限 公司 11018 代理人谢安昆 宋志强 (54)发明名称 干扰协调方法和系统 (57)摘要 本发明公开了一种干扰协调方法,包括:终 端(UE)向基站反馈自身为一中继的干扰终端 (I-UE);所述基站在针对所述中继的中继物理下 行控制信道(R-PDCCH)中增加所述I-UE 的调度信 息,并将所述R-PDCCH 发送给所述中继;所述中继 根据接收到的调度信息,在自身的接入链路上分 配与所述I-UE 使用的时频资源正交的时频资源, 实现干扰协调。本发明同时公开了一种干扰协调 系统。应用本发明所述的方法和系统,能够较好地 实现LTE-A 系统中的干扰协调。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 3 页 说明书 9 页 附图 8 页

1.一种干扰协调方法,其特征在于,该方法包括: 终端UE向基站反馈自身为一中继的干扰终端I-UE; 所述基站在针对所述中继的中继物理下行控制信道R-PDCCH中增加所述I-UE的调度信息,并将所述R-PDCCH发送给所述中继; 所述中继根据接收到的调度信息,在自身的接入链路上分配与所述I-UE使用的时频资源正交的时频资源,实现干扰协调。 2.根据权利要求1所述的方法,其特征在于,所述UE向基站反馈自身为一中继的I-UE之前,进一步包括:UE确定自身为一中继的I-UE,包括: UE确定自身处于所述基站的覆盖范围之内,且接收到的来自所述基站的信号强度与接收到的来自所述中继的信号强度的差值大于零且小于预先设定的第一阈值,则确定自身为所述中继的I-UE。 3.根据权利要求1所述的方法,其特征在于,所述I-UE的调度信息包括:所述I-UE 的标识以及所述I-UE使用的时频资源; 所述中继根据所述调度信息获知所述I-UE使用的时频资源。 4.根据权利要求1所述的方法,其特征在于,所述基站在针对所述中继的R-PDCCH 中增加所述I-UE的调度信息包括: 所述基站将所述I-UE的调度信息与所述基站到所述中继的控制信息进行联合编码调制。 5.根据权利要求1所述的方法,其特征在于,该方法进一步包括: UE向基站反馈自身为一中继的联合终端C-UE; 所述基站在针对所述C-UE反馈的中继的R-PDCCH中增加所述C-UE的调度信息,并将所述R-PDCCH发送给所述C-UE反馈的中继;同时,所述基站在向所述C-UE发送数据时,在目的地址列表中增加所述C-UE反馈的中继的标识; 所述C-UE反馈的中继根据接收到的调度信息以及数据信息,对所述C-UE与基站进行联合传输。 6.根据权利要求5所述的方法,其特征在于,所述UE向基站反馈自身为一中继的C-UE之前,进一步包括:UE确定自身为一中继的C-UE,包括: UE确定自身处于所述基站的覆盖范围之内,且接收到的来自所述基站的信号强度与接收到的来自所述C-UE反馈的中继的信号强度的差值大于零且小于预先设定的第二阈值,则确定自身为所述中继的C-UE。 7.根据权利要求5所述的方法,其特征在于,所述C-UE的调度信息包括:所述C-UE的标识、所述C-UE使用的时频资源,以及传输控制信息。 8.根据权利要求5所述的方法,其特征在于,所述基站在针对所述C-UE反馈的中继的R-PDCCH中增加所述C-UE的调度信息包括: 所述基站将所述C-UE的调度信息与所述基站到所述C-UE反馈的中继的控制信息进行联合编码调制。 9.根据权利要求1所述的方法,其特征在于,该方法进一步包括: UE通过主中继向基站反馈自身为一协作中继的C-UE;同时,所述主中继向所述基站反馈所述C-UE的调度信息;

多系统合路干扰分析

多系统合路干扰分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900,DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 ?一次布放,施工简单; ?美观; ?综合造价低廉,共用天馈分布,减少重复建设; ?系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰

杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞 阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所示:表一各系统间的工作频段

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施 中讯邮电咨询设计院有限公司 2014年06月

目次 1干扰问题现象 (3) 2干扰站点比例 (3) 3 干扰问题原因 (3) 3.1互调干扰分析 (3) 3.2互调干扰的影响因素 (6) 3.3功率容量影响分析 (7) 4建议整改措施 (9) 4.1整改目标 (9) 4.2整改方案 (9) 4.3其他工作要求 (9)

LTE室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE室分建设方案大多为合路至原室分系统,开通后出现了WCDMA室分底噪异常抬升的干扰问题,严重影响了现网3G用户。为解决此类问题,广东联通网络建设部特制定《LTE室分多系统合路干扰分析与整改措施》用于指导LTE室分工程建设。 1干扰问题现象 LTE室分合路至原系统激活之后,WCDMA室分RTWP有1-5dB的抬升;LTE模拟下行加载100%后,部分WCDMA室分RTWP有15-20dB的明显抬升。干扰现象如下图所示: LTE室分多系统合路干扰示意图1(D/W/L合路) 2干扰站点比例 前期专项研究工作主要在广州开展,广州FDD规模为560站,其中合路站点共374站,占比66.8%。目前已开通LTE室分168个,其中方案为合路站点111个;存在干扰站点15个,占比13.5%。 广分LTE站点互调干 扰处理进度0512.xlsx 3 干扰问题原因 3.1互调干扰分析 无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、电缆或连接器) 的非线性特性引起的混频干扰信号。在大功率、多信道系统中,铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生信号

干扰对齐相关知识

干扰对齐相关知识Revised on November 25, 2020

1.干扰对齐(Interference Alignment IA) 是一种有效的干扰管理机制,通过预编码技术使干扰在接收端重叠在一起,以彻底消除干扰对期望信号的影响。与忽略干扰、解码/消除干扰以及正交接入(避免干扰)等现有处理干扰的方法不同,IA通过压缩干扰所占的信号维度,使系统获得最大自由度。由于可以彻底消除干扰,能够显着提高系统容量,IA 技术受到了广泛的关注获得预编码矩阵的方法有两种:直接法和迭代法,直接法需要理想的全局CSI,而迭代法则需要在收发双方反复交替迭代。 2. 无线频谱资源缺乏的新武器---干扰对齐 当多个用户进行无线通信时,相互之间会存在干扰,而干扰会影响信号接收质量,减小接收机的信道容量。现有的处理干扰的技术,如频分复用(FDMA),时分复用(TDMA),和码分复用(CDMA)主要是通过信号的正交化来消除干扰信号对期望信号的影响。其实,当多用户共享频谱资源时,这种处理方法只能做到将频谱资源在K个用户之间进行分配。例如,当相互影响的用户数为K时,每个用户所能获得的频谱资源为单个用户时的1/K。因此,当用户数量很大时,每个用户所能获得的频谱资源仍然非常有限。 干扰对齐技术的提出就是为了解决这一问题,它将信号空间划分为期望信号空间和干扰信号空间两个部分,通过预编码技术使干扰在接收端重叠,从而压缩干扰所占的信号容量,消除干扰对期望信号的影响,达到提高信道容量的目的。 目前加州大学欧文分校的Jafar助理教授已经从理论上证明,通过干扰对齐,在K个用户的无线通信信道中,每个用户最多能获得相当于只有一个用户时,总频谱资源的1/2,K个用户能够获得的频谱资源为只有一个用户时的k/2倍。得克萨斯大学奥斯汀分校的Health教授对干扰对齐进行了实验验证,实验结果表明,干扰对齐能够极大提高系统的频谱利用率。 当然,干扰对齐技术还处于研究阶段,还有很多问题没有解决。首先是干扰对齐所要求的全局信道状态信息在实际中很难达到;其次随着用户数量的增加,干扰对齐的约束条件会急剧增加而导致难以实现,这也是当前干扰对齐领域研究的热点。

相关主题
文本预览
相关文档 最新文档